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Abstract: In order to find more sufficient conditions for the existence of
hamiltonian cycles of graphs, Zhu, Li and Deng proposed the definition
of implicit degree of a vertex. In this paper, we consider the relationship
between implicit degrees of vertices and the hamiltonicity of graphs, and
obtain that: If the implicit degree sum for each pair of nonadjacent vertices
of an induced claw or an induced modified claw in a 2-connected graph G
is more than or equal to |[V(G)| — 1, then G is hamiltonian with some
exceptions. This extends a previous result of Cai et al. [J. Cai, H. Li and
W. Ning, An implicit degree condition for hamiltonian cycles, Ars Combin.
108 (2013) 365-378.] on the existence of hamiltonian cycles.
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1 Introduction

Throughout this paper, we consider only finite, undirected and simple
graphs. Let G be a graph and H be a subgraph of G, G[H] denotes the
subgraph of G induced by V(H). For a vertex u € V(G), Ny (u) and dg(u)
denote the neighborhood and the degree of v in H, respectively. If H = G,
we can use N(u) and d(u) in place of Ng(u) and dg(u), respectively. Let
No(u) = {v € V(G) : d(u,v) = 2}, where d(u,v) indicates the distance
from u to v in G. Let A and B be the subsets of V(G), e(A, B) denotes the
number of edges zy of G with = € A and y € B. We write e(A4, y) instead
of (4, {y})-

A cycle (or path) containing all the vertices of G is called a hamiltonian
cycle (or hamiltonian path) of G, G is called hamiltonian if it contains
a hamiltonian cycle. We call a cycle C an [-cycle if |V(C)| = l. Other
notation and terminology not defined here can be found in [2].
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Hamiltonian problem is an important problem in graph theory. Various
sufficient conditions for a graph to be hamiltonian have been given in terms
of degree conditions. We have the following classic result due to Fan.

Theorem 1. ([7]) Let G be a 2-connected graph of order n > 3. If
max{d(u),d(v)} > n/2 for every pair of vertices u and v at distance 2,
then G is hamiltonian.

In 1987, Benhocine and Wojda (1] extended the result of Fan as follows.
Where H is the graph of order 9 depicted in Fig.1 and &, denotes the family
of graphs such that G € ¥, if and only if |[V(G)| = n and the vertex-set
of G is the disjoint union of the sets A,, A, By, B; and {a;,a3,b} so that
(i) |A; U Bi| = 253,i = 1,2 (ii) |As] > 2,4 = 1,2; (iii) G[A: U B;] and
G[A; U {a;}] are both complete subgraphs of G for i = 1,2 and j = 1,2;
(iv) e(a1,a2) < 1; (v) |A1 U Az| > 2532 — e(ay,a2); and and (vi) d(b) = 2
and the neighbors of b are a; and a;. (See Fig.2)

Theorem 2. ([1]) Let G be a 2-connected graph of order n > 3 with
independent number a(G) < % such that max{d(u),d(v)} > 2=L for each
pair of vertices v and v at distance 2, then either G is hamiltonian or
Ge¥Y% UH.

In the case that some vertices may have small degrees, we hope to use
some large degree vertices to replace some small degree vertices in the right
position considered in the proofs, so that we may construct a longer cycle.
This idea leads to the definition of implicit degree given by Zhu, Li and
Deng (9] in 1989.

Definition 1. (/9]) Let v be a vertez of a graph G. If Na(v) # @ and
d(v) > 2, then set | = d(v) — 1, m§ = min{d(u) : u € Na(v)} and M} =
max{d(u) : u € Np(v)}. Suppose thatd} < d§ < ... <dy,, <...is the
degree sequence of vertices of N(v) U Na(v). Let

my, if my > dy;
d*(v) = { d}},, if df, > M3,
dy, otherwise.
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Then the implicit degree of v is defined as id(v) = max{d(v),d*(v)}. If
Ny(v) =0 or d(v) £ 1, then id(v) = d(v).

Clearly, id(v) > d(v) for every vertex v from the definition of implicit
degree. The authors in [9] used implicit degree in place of degree in Ore’s
theorem [8] and gave a sufficient condition for a 2-connected graph to be
hamiltonian.

Theorem 3. ([9]) Let G be a 2-connected graph of order n > 3. If id(u)+
id(v) > n for each pair of nonadjacent vertices v and v in G, then G is
hamiltonian.

In 2006, Chen and Zhang extended Theorem 3 as follows.

Theorem 4. (/3]) Let G be a 2-connected graph such that max{id(u), id(v)}
> ¢/2 for each pair of nonadjacent vertices u and v that are vertices of an
induced claw (K, 3) or an induced modified claw (K13 +e). Then G con-
tains either a hamiltonian cycle or a cycle of length at least c.

The join of two disjoint graphs G and H, denoted by GV H, is defined as:
V(GVH)=V(G)UV(H) and E(GVH) = E(G)UE(H)U {uw : u € V(G)
and v € V(H)}. Recently, Cai, Li and Ning [4] extended Theorem 2 as
follows. Where J%, = (kK; U 2K l‘rl“k) V K41, @Bn denotes the family
of graphs such that G € %, if and only if |V(G)| = n and V(G) is the
disjoint union of the sets A;, A2, By, B2 and {a;, az,b} so that they satisfy
the above (i),(iv),(v),(vi) and (vii) G[A; U {a;}] is complete subgraph of G
and uv € E(G) for any vertex u € A; and any vertex v € B; for i = 1,2 and
j =1,2; (viii) |A;| > max{2,|{b: d(b) < 252 and b€ B;}| +1},i=1,2.

Theorem 5. ([4]) Let G be a 2-connected graph of order n > 3 such
that id(u) + id(v) > n — 1 for each pair of vertices v and v at distance
2, then either G is hamiltonian or G € %, U H or G is a subgraph of
KU (BE K1V Kas).

Motivated by the results of Theorem 2 and Theorem 5, we study implicit
degrees and the hamiltonicity of graphs and extend Theorem 5 as follows.

Theorem 6. Let G be a 2-connected graph of order n > 3. If id(u) +
id(v) = n — 1 for each pair of vertices u and v that are vertices of an
induced claw or an induced modified claw, then either G is hamiltonian or
G € B, UH or G is a subgraph of.??;.U(E{—IKl VKL;_x).

2 Lemmas

For a cycle C in G with a given orientation and a vertex z in C, z+ and
z~ denote the successor and the predecessor of x in C, respectively. Define
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gD+ = (gh+)+ for every integer h > 0, with 2% = z. And for any
ICV(C),let I- ={z:2* €I} and It = {m z~ € I}. For two vertices
z,y € C, zCy denotes the subpath of C from z to y. We use yCz for the
path from y to z in the reversed direction of C.

Lemma 1. (/6]) Let G be a 2-connected graph of order n > 3.If zPy is a
longest path of G such that d(z) + d(y) > n, then G is a hamiltonian.

Lemma 2. (1) If a graph G of order n > 3 has a cycle C of length n—1,
such that the vertex not in C has degree at least 2, then G is hamiltonian.

Lemma 3. ([9]) Let G be a 2-connected graph and P = z125...z, be a
longest path of G. If d(zy) < id(z1) and z1z, ¢ E(G), then ezther

(1) there is some vertex x; € (N(x1))~ such that d(z;) > id(z,); or

(2) N(zl) = {-’L‘z, 3,. ,md(l‘l)'l'l} and ld(.’l?l) = m; .

Lemma 4. ([4]) Let P = z1z3...2, be a path and y1,yo be two vertices
not in V(P). If (Np(11))™ N Np(y2) =0 and 7131 ¢ E(G), then dp(y1) +
dp(y2) < [V(P)].

3 Proof of Theorem 6

Let G be a graph satisfying the condition in Theorem 6 and suppose G is
not hamiltonian. By Lemma 4, G contains an (n — 1)-cycle. We choose an
(n — 1)-cycle C such that the degree of the vertex not in C is as large as
possible. Let z be the vertex not in C of G. Without loss of generality,

we give C a clockwise orientation, and define 1,32, ..., yk+1(k > 1) to be
the neighbors of z. Since G is not hamiltonian, {z,y,y;,... +Ynp1) is an
independent set and d(z,y;") = 2 for every i = 1,2,...,k + 1. Similarly,
{z,97,%2,-- -, Y541} is an independent set and d(z,y;") = 2 for every i =
1,2,...,k+1. Moreover, d(x) <zl by Lemma 2.

If d(:t) 1 , then {z,yF,vyF,. ’yli-l } is an independent set of G

with 2L elements It is easy to check that G is the subgraph of 21 K; v
Koo So next we can assume d(z) < 251

Let P = yfy¥ .y tyerypitydT 1)+ ..y , where h and ! are the
minimum 1ntegers such that yi* = y5 and yi" = Yy , respectively. For
convenience, let P = z,25...1,, where z; = yf',:z:g = yl"', and so on.
Without loss of generality, suppose z,, = z.

Claim 1. id(z) > 231

Proof. Suppose to the contrary that id(z) < "‘ . Foreveryi=1,2,...,k+
1, since {yi,z, ¥,y } induces a claw or a modlﬁed claw, id(y]) > 23!
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Since P is a hamiltonian path of G, 12, ¢ E(G). By Lemma 1, we can
assume, without loss of generality, that id(z;) > d(z1). Since y{y1 € E(G)
and y§z ¢ E(G), Np(z1) # {z2,%3,--.,Td(z,)+1}. Therefore, there exists
a vertex z; € (Np(z;1))~ such that d(z;) > id(z,) by Lemma 3. Then P’ =
ZpTp—1..-Ti41Z1%2...T; is hamiltonian path of G. Since d(z) < "—2‘-1-,
i #m. If id(z,) = d(zn), then d(zn) + d(zi) > id(zn) +id(z1) > n -1,
and hence by Lemma 1, G is hamiltonian, a contradiction.

Suppose d(:z:,.) < id(zn). For convemence, let P/ = 2122 Since
y2 y2 € E(G),yfz ¢ E(G) if i < m and yFy; € E(G),y5y7 95- E(G) if
i > m, Np/(z,) # {22,23,..., 2d(z,)+1}- Therefore, there is a vertex z; e

(Np/(z,))~ such that d(z;) > id(zn). Then P = z;2;..1... 2125112542 - -
is a hamiltonian path of G with d(z;) + d(z,) = id(zn) + id(z1) > n — 1
Thus G is hamiltonian by Lemma 1, a contradiction.

By Claim 1, we know d(z) < id(z). Moreover, by the proof of Claim
1, we have id(y;") < 25! for each i = 1,2,...,k + 1. Since d(z,;") = 2,
|Na(z)| > k+1. By the definition of 1mphcxt degree, we can easily get that
id(z) # df,,. We consider the following two cases.

Case 1. id(z) =m3

For each i = 1,2,...,k + 1, since d(z,y}) = 2, d(y}) > m§ = zd(x)>

221, Since G is not harmltoman, it is easy to check that (1) e(yy,z%) +
e(y2 ,z) < 1for every z € A = {yi et ,y,"'} and (2) e(yf,z) +
e(ys,zt) < lforeveryz€ B = {y;,yg"', LYst} Asyfz ¢ E(G) and
y3z ¢ E(G), (1) and (2) imply

n-1 < d(yf)+dwd)
= Y le(w!,z*) +e(d, D+ Y _lewT, 2) + e(vs, 2 )]

zEA z€B

+e(yi"ay1) +e(y;1 y2)
< h+l+2=n-1,

which implies that all the inequalities above are equa.lities. In particular,
d(y}) = d(y3) = 252, n is odd and id(z) =

Claim 2. d(z) = 2.
Proof Suppose d(x) > 3. Then e(yf ,y3) + e(ys ,y2+) 1. Since

vivi ¢ E(G), yfy3™ € E(G). So C' = y3 C'yaz:ngy;,z, y3 is an (n —1)-
cycle avoiding y{," whose degree is at least 25=, 1. contrary to the choice of C.0
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By Claim 2 and by the choice of C, we can assume that whenever we
have an (n — 1)-cycle, then the vertex not in the cycle has degree precisely
2 By ana.logous argument as in the proof of Claim 2, we can get that
viyit € B(G), v y2 € E(G), ¥3yi* ¢ E(G) and yiy3 2+ ¢ E(G).

Observe that yi” and y; have degree precisely ——1- a.nd are joined by the
hamiltonian path P. We can easily deduce the followmg useful properties:
Property 1. e(z;,zi41) + e(zn,z:) =1 forevery i =1,2,...,n — 1.
Property 2. If e(z1, zi+1) + €(Zn, Zi-1) = 2 for some i = 2 3,...,n—1,
then d(z;) = 2. Moreover, by the definition of lmphcn: degree, we have
d(zi-2) = id(z;) > 25" and d(zi42) > id(z;) > -l
Property 3. z1z,-; ¢ E(G) and xnmz ¢ E(G).

Since z1z3 = ¥ ¥i+ € E(G),y{y1 € E(G) and yiz ¢ E(G), only two
cases can arise.

Case 1.1. There are ¢ and j with j > i +1, such that z1z;_1,T1Zj41 €
E(G) and z1z, ¢ E(G) for each s =i,i+1,.

Choose such i such that ¢ is as small as possible. By Property 1
and Property 3, we have i > 4, j < n — 3 and z,z, € E(G) for all
s=i1—-1,4,...,5—1.

Claim 3. If 212;... 2, is a hamiltonian path of G such that there are i
and j with i +1 < j, 212, € E(G), 21241 € E(G), 2125 ¢ E(G) for each
s =4,i+1,...,5, then d(z;_2) > 25! and d(zj42) > 251. Moreover,
j=i+1.

Proof. Suppose j > 1 + 2. By Property 2, d(2;) = 2. By similar proof as
in Claim 1, id(z;) > B>=. Moreover, by the definition of implicit degree,
d(z;_2) > id(z;) 2 and d(zj42) > id(x;) > 25!
Since z;_2z;j_3. zlz,+1sz,_1znzn_1 e 2542 ls a hamiltonian path,
z1zj_2 ¢ E(G) and zj+222 € E(G). Then 2j412j2j_1...ziznZn—1 ... 2j422223
-+ 2i—121Zj41 is a hamiltonian cycle, a contradiction. So j =i + 1. m]

Claim 4. z,z, € E(G) for each s <i—2.

Proof. By the choice of i, we suppose to the contrary that there exists
some s, (4 < s < i—2) such that z1z,_1,Z1%,41 € E(G) and 712, ¢ E(G).
Since x172, 7123 € E(G), s > 4. By Property 1, z,z,_; € E(G) and
TnZs—2 ¢ E(G); by Property 2, d(z,) = 2, thus d(zs42) > id(z,) > 251
and d(z,-2) > id(z,) > 251, So 17,3 € E(G).

Next, we will d1stmgulsh the following two cases to discuss.
(1) T1z542 € E(G).
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By Property 1, Zpzs4+1 € E(G). Since d(z,42) 2> 25, T1Zs43 € E(G)
by Property 2. Thus, £,zs+2 € E(G). By the choice of ¢ z we have i = s+2.
Then i > 6 and d(z;) > 25*.

By Claim 3, d(z;_1),d(zi4+3) > 25. Let P/ = 2125... Ti1TnTn-1.. . Ti.
Then P’ is a hamiltonian path with z 1:1:‘_ 1, Z1%i42 € E(G) and T1Tn, T1%n—1
¢ E(G). By Claim 3 again, 212Zn—2 € E(G). Moreover, d(zn—1) = 2 and
d(ziy2) > 251. Then use P we can obtain z,z,-3 ¢ E(G).

If i + 3 < n — 2, then since T;—_1Zi—2...T1Zi+2Ti+1%iTnTn—1 ... Ti4+3 I8
a hamiltonian path of G and £,-1Zi+3 € E(G), Zi—1Zn—2 € E(G) by Prop-
erty 1. Moreover, considering the hamiltonian path 21z2 ... Zi~1Zn-2Tn-1Zn
ZiTiy1...Tn—3 and observing that zn_3z, ¢ E(G) implies 11z; € E(G)
by Property 1, but this contradicts the hypothesis in Case 1.1.

Suppose i + 3 = n — 2. Since Z2%3 ... Ti—1TnTn—1Tn-2T1Ti42Ti+1 - - - Ti
is a hamiltonian path, ;2 ¢ E(G). Considering the hamiltonian path
TiTip1Tig2T1Z2 - . . Tim1Ti45Ti+aTi43 and d(Zi41) = 2, we have 7,742 €
E(G) by Property 1. Since z;z1 ¢ E(G) and z;z;_1 € E(G), ziz3 €
E(G)by Claim 3. This implies that d(zs) = 2. Then d(z4) > 2371
Since ;42Ti+1ZiTaT221%i4+3Ti+4Ti+5Ti-1Ti—2 ... T4 is a hamiltonian path,
Zi4aTits5 € E(G) by Property 1 and the fact d(z;+4) = 2. Then z;12%i41. ..
T1Zi43Ti+4Ti+5Ti+2 i a hamiltonian cycle, a contradiction.

(2) z1z542 € E(G).

By Property 1, z,2541 € E(G). Since z,_22,-3...21Z5-1TsTs41-.-Zn
is a hamiltonian path and z,z;11 ¢ E(G), Ts-2Zs4+2 € E(G). Then
Ty_2T9—3..-T1Ts41TsTs—1ZnTn—1- .- Ls+2Zs—2 is 2 hamiltonian cycle of G,
a contradlctlon .0

Claim 5.([4]) T1Zi43 € E(G)
Claim 6.([4]) z1z, ¢ E(G) foreach s =i+4,i+5,...,n

By Claim 6, e(z1, {Zit4, Ti45; - - - ,xn}) = 0. So e(Tn, {Ti—1, Tis Tit3) Titas
...yZn—1}) = n—i—1by Property 1. Thus, i = 1;—1- For every s < i—2 and
t > i+ 4, we have z,1, T,%;, T4 Tive € E(G), for ,5—1... T1Zs41%s42 . - -
Tt—1TnTp—1.+.. Tty TsTg—1 .+ L1L341T342:+: Tij=1TLnTn—-1..-Ti) TtTt41..-Tn
Tt—1Tt—2 ... Tit3T1T2 . . . Tit2 are hamiltonian paths of G, respectively. Then
{x;_l,zi,x¢+1x,~+2,x¢+3} is a cut-set of G. Let U} = {171,122, . .'121_2}
and Uy = {Ziy4,Tiys,...,%n}, We see that |Uj| = |Up| = 252. More-
over, d(z,) < 25} for any z, € Uy UUj, and if d(z,) = ";g for some
x5 € Uy UU,, then N(a:s) = (U1 \ {:c,}) U {xi—l,$i+2,-’l’i+3} when z; € U)
and N(z;) = (U2 \ {zs}) U {zi-1, %, Ti33} when z, € Us.

Case 1.1.1 d(z;) > 25*
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Then P/ = z1%3 ... Zi 1 TnZp_1 . . . T; is a hamiltonian path with d(z1) 2
221 and d(z;) > 23t Since z17i1 € E(G),z12n ¢ E(G),21Tn—; ¢
E(G),z1zi42 € E(G), we have z1z,_; € E(G) by Claim 3. Therefore,
n—2 <143 by Claim 6. Son < 9. Since z12; ¢ E(G),i>4. Thenn =9
and G is isomorphic to H.

Case 1.1.2 d(z;) < 251.
Claim 7. id(z;) > 271

Proof. Suppose id(z;) < 23!, Since zi—oTi—3...T1Tim1ZnTn_y...T; is
a hamiltonian path, z;_ex; ¢ E(G). Then {z;_,,z;,z;—2,7;} induced
a modified claw and zd(x,_g) > o= 1. Considering the hamiltonian path
P = z;_om; 3. X1Ti1Ti...Ln = 2123...2, and d(.’L‘,) < 9—;—1 with
z; € Na(zi-2), by Lemma 3 there must exist a vertex z, € (Npi(z1))~
such that d(z,) > id(z1) > 25*. Then P” = z,2,_1...2125412542 ... 2p iS
a hamiltonian path with d(za) +d(zn) > 252 + 251 = n — 1. Then by
Lemma 1, G is hamiltonian, a contradlctlon ]

Claim 8.([4]) If z;z; € E(G) for some z; € Up, then ;T¢q1, TiTeyn ¢
E(G)

Let d(z;) = s+1. By the above, we can get that (N (z;))~U(N(z;))*)n
U € Ny(zs) and (N(:))~ N(N(2:))* = 0. Thus, |(N(2:))~ U(N(z:))*] 2
2s~-3 > s and d(z;) < 252 for any z; € (N(z:))~U(N(z;))*. It is contrary
to the definition of 1mphc1t degree.

Case 1.2. z12;—1 € E(G),z17:41 € E(G) and z1z; ¢ E(G) for some
1=4,5,...,n—3.

Choose such 7 such that i is as small as possible, then e(z1, {z2, z3,...,
zi-1}) =i -2 and e(zn, {z1,%2,...,Ti—2}) = 0. By Property 1, z,z;_; €
E(G) and _ZnTi-2 ¢ E(G); by Property 2, d(z;) = 2, thus d(z;42) >
id(z;) > 251 and d(z;-2) 2 id(z:) > %51, So zpzi_3 ¢ E'( )

Since x,_gm,_s T1Ti-1Ti. .. T lS a hamiltonian path and z,z; ¢
E(G),zi—a2ziy) € E(G) by Property 1. Butsince z1%3 ... L5 0%ip) TiTim1Tn
Tp—1...Zit+2 is a hamiltonian path of G, we have z1z;,2 ¢ E(G). Which
implies by Property 1, z,z:4+1 € E(G) and by Property 2, z,z:43 ¢ E(G).
Now, we can suppose that e(z1, {Tit+2,Ti+3,-..,Zn}) = 0, otherwise Case
1.1 holds. Thus e(zn, {Ti+1,Zi42,..+,Zn—1}) = n—i—1. The degree of z;
and z, impose i = &

For every s <i—2 and t > i+2, we have 2,2, € E(G) for z,x5-1...71
Ts41Zs42 - - Tt—1ZnTp—1 ... T¢ is @ hamiltonian path of G. We deduce that
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{zi—1,zi,Tir1} is a cut-set of G, and d(u) < Z3= 1 for any u € V} U V3,
where V; = {z1,%2,...,zi—2} and Vo = {z:,.,.z,a:..,.a, .,Zn}. We see that
il = |Vo| = 1‘—;—3- and z; = z. Moreover, if z;, € V; UV, such that
Z,zi_1 € E(G) or z,z:41 € E(G), then d(z,) = 231 for id(x) = mj and
z, € No(z). And e(z,, {Zi-1,Zi+1} = 0,2 for each :z:, eViuV,.

Claim 9. zd(x,_l) > 221 and id(ziy1) 2 ”;l. Moreover, d(z;—1) =
id(zi—1) 2 -’l— and d(zi41) = id(ziy1) 2 & —.

Proof. Firstly, suppose, without loss of generality, that id(z;—;) < 25%
Then d(zi-1) < id(zi—1) < Z5t. Since i = 2F1, there exists some ver-
tex, say z;, in {z2,23,.. ,.'z:,_g} such tha.t zj—1%i-1 € E(G) and zjz;_1 ¢
E(G). Since d(z;) = 2, d(z;—1) > %5+ and thus z;_1Z:+1 € E(G). Then
{:v,_l,zj,x,_l,x,.,.l} induces a claw or a modified claw. Thus zd(:c,) >

2 . Considering the hamiltonian path P/ = z;z;_, .. :z:lx,“:z:ﬁg =
2123...2n and using the fact that z;_;1 € Na(z;) and d(zi-1) < 25=, we
can get that there exists some vertex z, € (N(21))~ such that d zs) >
id(z1) > %5~ l by Lemma 3. Then P” = z,2,_1...2125412542.--%n IS 8
hamlltoman path with d(z,) + d(2p,) > n —1. Then by Lemma 1, Gis
hamiltonian, a contradiction. So id(z:-1) > 2%5*.

Secondly, suppose d(z;_1) < id(z;—1) and let d(z;—;) = {+1. Since r; is
adjacent to each vertex of {z3,z3, ..., Zi—1, Tit1} and z, is adjacent to each
vertex of {z;—1,Zit1,Zit2,...,Tn-1}, We get that [N (zi=1) U No(zi-1)| =
n — 1. Since each vertex with degree at least 23= L must be adjacent to z;_;
and z;41, we get that d(u) < 25= “'1 for each u € Na(z;-1). By the defini-
tion of implicit degree, we can easﬂy check that zd(a:i_l) #my' "t d
Therefore, id(z:—1) = dj;7', then di{7' > M3*~*, but |[Na(zi1)| > I, a
contradiction. So d(z;-1) = id(zi—1 ) Slmlla.rly, d(a:,.,.l) = id(Zi41)- O

For j = 1,2,V; can be partitioned into A; U B; such that d(a) > 25!
for each a € A, U A, and d(b) < 23! for each b € B, U B,. Smce
T1,Ti—2,Ti+2, Tn have degree at least 271, we have |4;] > 2,5 = 1,2.

Moreover, taking a € A;, we have

n '2- 1 S d(a)
< A1l =14 |Bi| + ela, {xi-1,Zit1})
< Wil+1.

And similarly, 251 < |V,|+ 1. Thenn—1 < V3| +|Vo| + 2 =n — 1, that
implies e(A; U Az, {Zi—1,Tit1}) = 2|A1 U Ag|.

If B, UB; = 0, then d(u,z;) = 2 for any u € Vi UV,. Therefore, by
the definition of implicit degree, we have d(u) = "T"l for any u € VU Va.
Then G € B,.
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So suppose By U By # . Since each vertex of B;,j = 1,2, is not
adjacent to {ri_1,Zit1}, d(zi—1) = d(zis1) = |A1| + |A2| + 1 + e where
e= e(:c,_l,a:,+1) Since d(z;-1) = d(zi41) > 252, we get |4y + 42|+ 1+

Z"_ , S0 |A1] + |A2] > ——3—6

Claim 10. ([4]) For any two vertices a,b € By, if ab ¢ E(G), then
id(a) > 251 and id(b) > 251. Similar for B,.

If G[B,] is not a complete graph, then choose two vertices a,b € B,
such that ab ¢ E(G). By Claim 10, d(b) < id(b). Let d(b) = a+1, |4;| =
m,|N(b) N Bl| = k; and |N2( )nBll = ko. Then k; +k2 +m= ";5 nd
a+1 = k; +m. Since d(z;—1,b) = 2 and d(z;—1) > 251, id(b) # d5,,,m}.
So id(b) = d¥,. Therefore, ky+kz < a—1 = k;+m—2. Then k2 < m-2. By
the arb1trary of b, we have |A;| > max{|N2(b)NB1|+2 : b € B;}. If G[By] is
a complete graph, then Ny(u) = 0 for each vertex u € B. Since |4;| > 2 =
{IN2(b)NBy|+2: b € B1}. Therefore, |A;| > max{|N2(b)NB1|+2: b € B;}.
Similarly, |A2| > max{|Nz(b) N Ba| + 2 : b € By}. Consequently, G € B,,.

Case 2. id(z) = dj.

Then di > m3 and k > 2. Let W1 = {y; : [V(C(3i,%i+1))| = 1}
and Wp = {y; : |V(C(%i,%i+1))| = 2}. Set |W1| = w; and |Wy| = ws.
Then w; + w2 = k + 1. Moreover, {y},y5; 1 ¥i € Wa} C Np(z) and
{y} : yi € W1} C Ny(z). So [Na(z)| > wy + 2wy. By the choice of C, we
can get that d(y}) < d(z) < 252 for any y; € W;. Since id(z) = dZ, there
are at least ws + 2 vertices in N(z) with degree at least id(z) > 231,

Claim 11. wy = 2.

Proof. If wy < 1, then since there are at least wy + 2 vertices in No(z)
with degree at least "2 , We can easily check that there exists at least one
vertex, without loss of generality, say y;, in W; such that d(y;]) > "‘
contrary to the choice of C.

If wy > 3, then there are at least three vertices in {y1 yi € Wy}
with degrees at least id(z) or at least three vertices in {y;}, : y: € Wy}
with degrees at least id(x). Without loss of generality, suppose there are
at least three vertices in {y} : y; € W,} with degrees at least id(z) >

. Let yr,ys,y¢ € Wy such that d(yh),d(y),dyt) > 25t Set P/ =
y; Cy,:cy,.Cys . By similar argument as in Case 1 to the path P’ , We can
get an (n — 1)-cycle avoiding y;", contrary to the choice of C. o

By Claim 11, we can assume W5 = {y;,ys} with 2 < s <k + 1. Then
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d(y{),d(y3), d(y}), d(ys;,) = id(z). Since yif Cy,zy1Cy} is a hamiltonian
path of G, d(y7) +d(y}) < n~1 by Lemma 1. Hence, id(z) = 2=l For
each vertex y; € W1, since {y;41,;, Y11, 2} induces a claw, id(yf) 2 azl

Claim 12. N(y}) = N(z) for any y; € W1.

Proof. Let d(yf) =+ 1. Since z € Np(y;) and d(z) < n=l, we can

get that id(y;' ) # m;; . Since C' = y;zy;4+1Cy; is an (n — 1)-cycle of G
avoiding y;', by the choice of C, we have d(y;") < "—;l Since G is not
hamiltonian, id(y;") # dﬁl.

Therefore, id(y}") = d:'; . If there exists some vertex y, € Wi such that
yty}" € E(G) and ytd,.lyj?L ¢ E(G), then by similar argument as in Claim
11 to the cycle C’, we can get that d(y;") > id(y;') > 251, a contradiction.
Therefore, if there exists some vertex y; € W such that yty;-" € E(G), then
y¢+1y;' € E(G). Similarly, if there exists some vertex y, € W1 such that
vy} € E(G), then y;_1y; € E(G).

Since y;-*’yj € E(G) and y;-"y,-“ € E(G), we have yry;" € E(G) for
eachr =2,3,4,...,s. By similar argument as in Claim 11 to the cycle C’,

there must exist some y, € Wy fort = s+ 1,5+ 2,...,k + 1. Therefore,
y,y}' € E(G) foreach r = 1,5+ 1,5+2,...,k+1. So N(y}) = N(z). O

Claim 13. N(z) C N(u) for anyu € {yi",y;,yj,y;_,_l}.

Proof. Considering the hamiltonian path P’ = yf Cy,zy:Cy} and using
the fact d(yy) > 27} and d(y}) = 23}, we deduce d(y)") = d(y) =
221, Since yfy; ¢ E(G) for any y- € Wi and zy; ¢ E(G), we have
N(z)\{2} € N(y}). Since yfy} € E(G) for any y, € Wy and zy{ ¢
E(G), N(@)\{¥s+1} € N(v). _ _

By Claim 12, yf Cys412y:Cy2y711Cy5 and yi Cyazy1Cva1¥3 CVppa
are hamiltonian paths of G. Then yfys; ¢ E(G) and y{y,,, ¢ E(G).
By using P’, we get that yfy. € E(G) and yfy,+1 € E(G). There-
fore, N(x) C N(y7) and N(z) € N(y}). Similarly, N(z) € N(y;) and
N(z) € N(¥7)- o

Let C'1 = C[yi'-7y§-]’c2 = C[y:-’y.:{»l] and C3 = C[yZ:ys] U C[ys+lsy1]-
By the proof of Claim 13, y}y; ¢ E(G) and y{y,, ¢ E(G). Since G is
not hamiltonian, we have (Ng, (yF))* N Ne,(y7) = @ and (Ne,(yF)* N
Ng,(y}) = 0. By Lemma 4, we can get that d¢, (v17)+dc, (vF) < [V(C1)|—
1 and dc,(y) + do, (v3) < |V(Ce)| — 1. Similarly, de, (7 ) + de, (¥541) <

391



[V(C2)| -1 and dc, (y3 ) + dc, (y;,) < [V(C1)| — 1. By the above inequal-
ities

2zn—1) < de(yf)+deyd) +de(yy) + delyry,)
< 4k+1)+2(V(C)-1) +2(IV(Ca)| - 1)
< 2(n-1),

which implies that all the inequalities are equalities. If there exists some
vertex y € V(C1) such that yty € E(G), then y; ¥y, 5y, 5 vF, v3 42t ¢
E(G) and y;,,y~ ¢ E(G). By Lemma 4, we can get that dc,(y;,,) +
de,(y2) < |Ci| — 1, a contradiction. Hence, Nec,(y}) = 0. Similarly,
we can get that Ng, (y;;,) = 0, Ne,(v]) = 0 and Ng,(y5) = (?) Hence,

de, (i) = |V(Cl)| —1and dg,(y}) = |[V(Cy)| - 1. Smce d(yf) = 252 and
d(ys) = 251, we can get that |V(C))| = |[V(Cy)| = —k. Therefore, we
can get that G is the subgraph of 4%,. Then Theorem 6 holds. m}
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