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Abstract

A vertex-colored graph G is rainbow connected, if any two
vertices are connected by a path whose internal vertices have
distinct colors. The rainbow vertex connection number of a
connected graph G, denoted rvc(G), is the smallest number
of colors that are needed in order to make G rainbow ver-
tex connected. In this paper, we show that rve(G) < k, if
|E(G)| = ("3%) +k, for k = 2,3,n — 4,n —5,n — 6. These
bounds are sharp.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. We
follow the terminology and notation of {1].

An edge-colored graph G is called rainbow connected, if any two vertices
are connected by a path whose edges have distinct colors. The concept of
rainbow connection in graphs was introduced by Chartrand et al. in [2].
The rainbow connection number of a connected graph G, denoted r¢(G), is
the smallest number of colors that are needed in order to make G rainbow
connected. Obviously, we always have diam(G) < r¢(G) < n — 1, where
diam(G) denotes the diameter of G. Notice that r¢(G) = 1 if and only if
G is a complete graph, and that re(G) = n — 1 if and only if G is a tree.

In [4], Krivelevich and Yuster proposed the concept of rainbow vertex
connection. A vertex-colored graph G is called rainbow vertex connected,
if any two vertices are connected by a path whose internal vertices have
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distinct colors. The rainbow vertex connection number of a connected graph
G, denoted rve(G), is the smallest number of colors that are needed in order
to make G rainbow vertex connected. Observe that rve(G) < n — 2 and
rve(G) = 0 if and only if G is a complete graph. It is easy to verify that
rve(G) 2 diam(G) — 1 with equality if the diameter is 1 or 2. The rainbow
connection has been studied for several graph classes. These results are
presented in a recent survey [5].
In (3] the following problem was suggested:

Problem 1.1 For every k,1 < k < n — 1, compute and minimize the
function f(n,k) with the following property: If |E(G)| > f(n,k), then
re(G) < k.

They give the lower bound of f(n, k) and compute f(n,2) = (";') +2.
In [6], they give a simple method to prove f(n,2) = (";1) + 2, and also
showed that f(n,3) = (";%)+2 and f(n,4) = (*;°) +3. In this paper, we
consider an analogous problem of rainbow vertex connection:

Problem 1.2 For every k,0 < k < n — 2, compute and minimize the
function g(n,k) with the following property: If |E(G)| > g(n,k), then
rve(G) < k.

We compute g(n, k) for k € {0,1,2,3,n — 3,n — 2} in section 2 and for
k€ {n—6,n—5n—4} in section 3.

2 Main results for dense graphs

At first, we give some notation which will be used in the sequel.

Definition 2.1 Let G be a connected graph. The distance between two
vertices u and v in G, denoted by d(u,v), is the length of a shortest path
between them in G. Distance between o verter v and a set S € V(G) is
defined as d(v, S) = minzesd(v,z). The k-step open neighborhood of a set
S € V(G) is defined as N*(S) = {z € V(G)|d(z,S) = k},k € {0,1,2---}.
When k = 1, we may omit the qualifier “l-step” in the above name and the
superscript 1 in the notation. The neighborhood of a vertex v in G, denoted

by N(v), is defined as N(v) = {z|zv ¢ E(G)}.
Now, we give a lower bound for g(n, k).
Proposition 2.2 g(n,k) > (";*) + k.

Proof.  We can construct a graph G with |E(G)| = (";*) + k — 1 but
rvc(G) > k. Let G be the graph constructed from K,_; — e with e = vyv,
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and the path Pey : uy,- -+ ,uks+1 by identifying v; and uii;. We know
|E(G)| = (*3*) + k — 1 and diam(G) =k +2. So rve(G) > k + 1. ]

In [7], Li et al. investigated the vertex rainbow connection number for
2-connected graphs.

Theorem 2.3 Let G be a 2-connected graph of order n > 3, then

[31—-2, i n=3,59;
rve(G) < [3]1-1, if n=4,6,7,8,10,11,12,13,15;
21, if n>16 or n=14.

Lemma 2.4 Let G be a connected graph of order n > 4, then rve(G) =
n — 2 if and only if G is a path.

Proof. If G is a path, then rvc(G) = n—2 is obvious. On the other hand, if
rve(G) = n—2, then G has at least one cut vertex by Theorem 2.3. If there
is an end block with k vertices which is 2-connected, then by Theorem 2.3,
rve(G) < [%] for k > 8. We can assign B; except the cut vertex with [£]
colors and assign n —k+1 distinct colors to the remaining n —k+1 vertices
of G, thus rve(G) < [-’25] +n—k+1<n-3,for k>8. Fork=3,4,5,6,7,
we can also get rve(G) < n — 3 by Theorem 2.3. Now we can assume that
all end blocks are K5, then G has exactly two pendent vertices. Otherwise,
we can assign n — 3 distinct colors to the n — 3 vertices except the three
pendent vertices, thus G is rainbow vertex connected. Now let v1,v2 be
two pendent vertices. If G is not a path, then there exists a block Bz # Ko,
which is not an end block. Let w € Bs be one cut vertex and ww' € E(B3).
We assign color 1 to w,w’,v1,v2 and n — 4 distinct colors different from
color 1 to the remaining n — 4 vertices of G, then rve(G) < n — 3, which is
a contradiction. Hence G is a path. |

We can easily compute g(n, k) for k € {0,1,n — 3,n — 2} from Lemma
24.

Theorem 2.5 g(n,0) = (3),9(n,1) = ("3 +1,9(n,n - 3) =n,g(n,n—
2)=n-1.

Theorem 2.6 Let G be o connected graph of order n > 4. If |E(G)| >
(";2) + 2, then rve(G) < 2.

Proof. Our proof will be by induction on n. For n = 4, we have g(n,n —
2)=n-1=3= (%% +2 forn =25 wehave g(n,n—-3) =n=5=
(5;2) + 2. So we may assume n 2 6.

Claim 1: diam(G) < 3.
Proof. Suppose diam(G) > 4 and consider a diameter path vy, v, - ,vp41
with D > 4. Then d(v1) +d(v4) < n—2 and d(vp) +d(vs) < n—2 implying
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|E(G)| < (5)—2(2n—3~(n-2)) = (3)-2(n—1) = (";2) -1 < (";%) +2,
a contradiction.

Claim 2: If §(G) = 1, then rvc(G) < 2.

Proof. Let w be a vertex with d(w) = §(G) = 1, let H = G — w. Then
|E(H)| 2 ("3Y)+2-1= ("33 +1=(""D"1) +1, hence rve(H) < 1 by
Theorem 2.5. Let v is the neighbor of w, and set c(u)=1 for u € V(G)\{v}
and c(v)=2. Then G is 2-rainbow vertex connected.

Hence we may assume 6(G) > 2. Let wy,ws € V(G) with wyw, ¢
E(G). Suppose N(w;) N N(wz) = 0. Let H = G — {w,w;}. Then
EH)| 2 (") +2-(n=-2) = (") +1= ("D 41 Thus H
is connected. Hence rvc(H) < 1 by Theorem 2.5. We may assume that
c(u) = 1 for all u € V(H). Since diam(G) < 3, there is a wyws-path
w)u ugws, then change c(u;) = 2. Since §(G) > 2, there is a vertex u with
uwz € N(G), now change c(u) = 2. For any two vertices z,y € V(H), the
rainbow path from z to y doesn’t contain both %; and u, so G is 2-rainbow
vertex connected.

Hence we may assume if wy, w; € V(G), wiwy ¢ E(G), then N(w;) N
N(wsz) # 0. Thus diam(G) < 2, so rve(G) < 1. |

Theorem 2.7 Let G be a connected graph of order n > 5. If |[E(G)| >
("3°) +3, then rve(G) < 3.

Proof. We apply the proof idea from the proof of Theorem 2.6.

Our proof will be by induction on n. For n = 5, we have g(n,n — 2) =
n—1=4=(°;%)+3andforn=6,wehave g(n,n—3) =n=5= (%53 +3.
So we may assume n > T.

By Theorem 2.6, we have rvc(G) < 2 for |E(G)| > (";2) + 2. Hence
we may assume |E(G)| < ("3%) + 1. This implies §(G) < M:iﬂ =
n—5+ % <n-3.

Claim 4: diam(G) < 4.

Proof. Suppose diam(G) > 5 and consider a diameter path vy, v, -+ ,up41
with D > 5. Then d(v;) + d(vig3) < n—2 for i = 1,2,3 implying
IE(G)| < (3)=3(2n—3—(n-2)) = (3) -3(n—1) = (";%) -3 < (";%) +3,
a contradiction.

Claim 5: If §(G) = 1, then rve(G) < 3.

Proof. Let w be a vertex with d(w) = 6(G) =1, let H = G — w. Then
IE(H)| 2 ("33 +3-1=("3%) +2=(""D-2) + 2, hence rvc(H) < 2 by
Theorem 2.6. Take a 2-rainbow vertex coloring for H and change c(v) = 3
for the vertex incident with w. Then rvc(G) < 3.

Hence we may assume §(G) > 2.

Case 1 : If there are wy, w2 € V(G),wiwy ¢ E(G), with N(w,) n
N(wz) = 0 such that d(w,) + d(wz) <n—3.
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Let H = G—{wi,w2}. Then |E(H)| > (*;%)+3-(n-3) = (";¥)+2=
(("'g)'Z) + 2. We claim that H is connected. If not, by computing edges,
we know H has at most 2 components and one of them is a single vertex.
Thus 8(G) = 1, a contradiction. Hence rvc(H) < 2 by Theorem 2.6.
Consider a 2-rainbow coloring of H with colors 1,2. If d(w;,wz) = 3, there
is a path wyuyuows. If there is a vertex v € N(w2) such that uyv ¢ E(G),
then change c(u;) = ¢(v) = 3. For any two vertices z,y € V(H)\{w1,v},
the rainbow path from z to y doesn’t contain both u; and v, otherwise
contradict with rvc(H) < 2. So G is 3-rainbow vertex connected. If for
every v € N(wp),u1v € E(G), now just change c(uz) = 3. Then G is
3-rainbow vertex connected. If d(wy, w2) = 4, then we can claim that there
is a path wjujusuzws such that at most two internal vertices with the
same color. Otherwise, all paths wyzyzw, from w; to w satisfy ¢(z) =
¢(y) = c(z), then there is no rainbow path from the vertex u € N(w;)
with c(u) = 1 to the vertex v € N(wz) with c¢(v) = 2. Hence we can
assume that c(u;) = c(uz2) = 1, c(us) = 2, since §(G) > 2, there is a vertex
v € N(wsy)\{us}, we change c(u;) = 3,¢(v) = 3. Obviously u;v ¢ E(G),
then G is 3-rainbow vertex connected.

Case 2 : For all wy,ws € V(G),wiws ¢ E(G), such that N(w;) N
N(w2) # 0 or d(wy) +d(wz) > n —2.

We know that in this case diam(G) < 3. Choose a vertex w with
d(w) =6(G) and set d(w) =n—-2—-twith2<t<n-4.

Subcase 2.1 : N3(w) = 0.

Let H = G —w, then |E(H)| 2 (")) +3-(n-2-t) = (";%) - n+
7+t—-2> ("7 +3.

If H is connected, by induction, H is 3-rainbow vertex connected. Now
take a 3-rainbow coloring of H. Set c(w) = 1, for every u € N?(w), there
is a vertex u' € N(w) such that uu’ € E(G), so there is a rainbow path
from w to u. Then G is 3-rainbow vertex connected.

If H is disconnected, since H has no isolated vertices then H has at
most 2 components. Otherwise |E(H)| < (";4) + 3. Hence H has exactly
2 components Hy, H,. we may assume that |H| > |H;| > 2. Sincen 2 7,
then |Hs| > 3. Thus we have

E(H)| 2 (";4)+3_(”;2l)

1
5 (L = 3|Hn| + 4] + |Hy||H| — 3| Ha| = 2/H:| +7

v

(|H1|2_ 1) +143(n—4) - 3(n—1) +|Hh| +7

|Hy| -1
( 1) 1

v
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Similar |E(Hz)| > (|H22|—1) + 1. Hence both H;, H, are 1-rainbow
vertex connected. Set c(u) = 1, for all u € V(H;),c(u) = 2, for all
u € V(H3),c(w) = 3, since d(w,z) < 2 for £ € V(G), then G is 3-rainbow
vertex connected.

Subcase 2.2 : N3(w) # 0.

For every u € N3(w),wu ¢ E(G) and N(w) N N(u) = @, then d(w) +
d(u) = n — 2, that is N(u) = N2(w) U N3(w)\{u}. Set c(w) = 3,c(u) =2
for v € N(w),c(u) = 1 for u € N?(w) U N3(w). It's easy to check that G
is 3-rianbow vertex connected. |

3 Main result for sparse graphs

The following result of this paper is the solution of Problem 1.2 for n — 6 <
k < n — 4. The proof of this result consists of two parts. Firstly, we prove
for 2-connected graph of order n and size at least (";k) +k that rve(G) < k,
if n—6 < k < n—4. The same statement for G is not 2-connected is proved
in second step.

Theorem 3.1 Let G be a 2-connected graph of order n, if |[E(G)| > (";%)+
k, then rve(G) < k forn—6<k<n-4.

Proof. We may assume that k > 4.

If k=n — 4, then n > 8, thus rve(G) < [%]
If k=n—5, then n > 9, thus rve(G) < [%
n =9, by Theorem 2.3, we know rvc(G) < [3] —-2<n-5.

If Kk =n—6, then n > 10, thus rve(G) < [$] < n—6, for n > 12. When
n = 10,11, by Theorem 2.3, we know rve(G) < [3] -1 <n—6. 1

—4.

<n
1 € n—-35, for n > 10. When

Theorem 3.2 Let G be a connected graph but not 2-connected graph of
order n, if |E(G)| > (";%) + k, then rve(G) < k forn —6 < k < n — 4.

Proof. Let k = n—t, then g(n, k) = g(n,n—t) = (})+n—t = n+(‘;1) —-1.
The proof will be by induction on the order n.

Forn =t+1,g(t+1,1) = (;) + 1. We may assume that the result is
true for the graphs with order less n. Let G be the graph of order n + 1
and |E(G)|=n+1+ (*3') - 1.

If G contains a bridge, say e, then |E(G/e)| = |[E(G)|-1 = n+(*3') —1.
Hence by induction hypothesis, rve(G/e) < n — t and therefor rve(G) <
n+1l-—t

If G contains no bridges, then G has a cut vertex, say w, thus G can be
divided into two subgraphs Gy, G such that V(G;) U V(G3) = V(G) and
V(G1) NV(G2) = {w}. Let v(G;) = n; and E(G;) = n; + s; for i = 1,2.
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Since G has no bridge we conclude that n; > 3 and s; > 0. For each s;,
there is an integer ¢; > 3 such that (“'l) —-1<s < (%) -1

If G; is 2-connected, then rve(G;) < ni—t; by Theorem 3.1. If G; is not
2-connected and 4 < t; < 6, by induction hypothesis, we have rvc(G;) <
n; —t;, this is also true for ¢; = 3 by Theorem 2.5. Hence we have rve(G) <
T0e(G1) + Tve(Ge) <ny —t1 +ng —ta =n+2 — (t + t2).

We claimed that t; +t; > t + 1. Suppose that ¢t; +t; < ¢. From
|IE(G)| =n+1+ (‘;1) —1=mny+s1+n2+s2 =n+2+(s; + s2), we have

t—1 ti+ta—2

s1+s2+2 = ( ) ZJ> Z J
ti—1 t;+t2~2 =
= Y i+ > J>( >+ZJ
j=1 j=t1 i=1
ty 123
()+()

> s +s2+2.

It

a contradiction. So we get rvc(G) < n+1—t, which complete the proof.
|
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