Rainbow vertex connection number of dense and sparse graphs *

Mengmeng Liu
Department of Mathematics
Lanzhou jiaotong University, Lanzhou 730070, China
liumm05@163.com

Abstract

A vertex-colored graph G is rainbow connected, if any two vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex connection number of a connected graph G, denoted rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex connected. In this paper, we show that $rvc(G) \leq k$, if $|E(G)| \geq \binom{n-k}{2} + k$, for k = 2, 3, n-4, n-5, n-6. These bounds are sharp.

Keywords: vertex-colored graph, rainbow vertex coloring, rainbow vertex connection number.

AMS classification 2010: 05C15, 05C40.

1 Introduction

All graphs considered in this paper are simple, finite and undirected. We follow the terminology and notation of [1].

An edge-colored graph G is called rainbow connected, if any two vertices are connected by a path whose edges have distinct colors. The concept of rainbow connection in graphs was introduced by Chartrand et al. in [2]. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. Obviously, we always have $diam(G) \leq rc(G) \leq n-1$, where diam(G) denotes the diameter of G. Notice that rc(G) = 1 if and only if G is a complete graph, and that rc(G) = n-1 if and only if G is a tree.

In [4], Krivelevich and Yuster proposed the concept of rainbow vertex connection. A vertex-colored graph G is called rainbow vertex connected, if any two vertices are connected by a path whose internal vertices have

^{*}Supported by NSFC (No.11501271) and the Young Scholars Science Foundation of Lanzhou Jiaotong University (No.2015027)

distinct colors. The rainbow vertex connection number of a connected graph G, denoted rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex connected. Observe that $rvc(G) \leq n-2$ and rvc(G) = 0 if and only if G is a complete graph. It is easy to verify that $rvc(G) \geq diam(G) - 1$ with equality if the diameter is 1 or 2. The rainbow connection has been studied for several graph classes. These results are presented in a recent survey [5].

In [3] the following problem was suggested:

Problem 1.1 For every $k, 1 \le k \le n-1$, compute and minimize the function f(n,k) with the following property: If $|E(G)| \ge f(n,k)$, then $rc(G) \le k$.

They give the lower bound of f(n, k) and compute $f(n, 2) = \binom{n-1}{2} + 2$. In [6], they give a simple method to prove $f(n, 2) = \binom{n-1}{2} + 2$, and also showed that $f(n, 3) = \binom{n-2}{2} + 2$ and $f(n, 4) = \binom{n-3}{2} + 3$. In this paper, we consider an analogous problem of rainbow vertex connection:

Problem 1.2 For every $k, 0 \le k \le n-2$, compute and minimize the function g(n, k) with the following property: If $|E(G)| \ge g(n, k)$, then $rvc(G) \le k$.

We compute g(n,k) for $k \in \{0,1,2,3,n-3,n-2\}$ in section 2 and for $k \in \{n-6,n-5,n-4\}$ in section 3.

2 Main results for dense graphs

At first, we give some notation which will be used in the sequel.

Definition 2.1 Let G be a connected graph. The distance between two vertices u and v in G, denoted by d(u,v), is the length of a shortest path between them in G. Distance between a vertex v and a set $S \in V(G)$ is defined as $d(v,S) = \min_{x \in S} d(v,x)$. The k-step open neighborhood of a set $S \in V(G)$ is defined as $N^k(S) = \{x \in V(G) | d(x,S) = k\}, k \in \{0,1,2\cdots\}$. When k = 1, we may omit the qualifier "1-step" in the above name and the superscript 1 in the notation. The neighborhood of a vertex v in \overline{G} , denoted by $\overline{N}(v)$, is defined as $\overline{N}(v) = \{x | xv \notin E(G)\}$.

Now, we give a lower bound for g(n, k).

Proposition 2.2 $g(n,k) \ge {n-k \choose 2} + k$.

Proof. We can construct a graph G with $|E(G)| = {n-k \choose 2} + k - 1$ but rvc(G) > k. Let G be the graph constructed from $K_{n-k} - e$ with $e = v_1v_2$

and the path $P_{k+1}: u_1, \dots, u_{k+1}$ by identifying v_1 and u_{k+1} . We know $|E(G)| = \binom{n-k}{2} + k - 1$ and diam(G) = k + 2. So $rvc(G) \ge k + 1$.

In [7], Li et al. investigated the vertex rainbow connection number for 2-connected graphs.

Theorem 2.3 Let G be a 2-connected graph of order $n \geq 3$, then

$$rvc(G) \leq \left\{ \begin{array}{ll} \left\lceil \frac{n}{2} \right\rceil - 2, & if \ n = 3, 5, 9; \\ \left\lceil \frac{n}{2} \right\rceil - 1, & if \ n = 4, 6, 7, 8, 10, 11, 12, 13, 15; \\ \left\lceil \frac{n}{2} \right\rceil, & if \ n \geq 16 \ or \ n = 14. \end{array} \right.$$

Lemma 2.4 Let G be a connected graph of order $n \geq 4$, then rvc(G) = n-2 if and only if G is a path.

Proof. If G is a path, then rvc(G) = n-2 is obvious. On the other hand, if rvc(G) = n-2, then G has at least one cut vertex by Theorem 2.3. If there is an end block with k vertices which is 2-connected, then by Theorem 2.3, $rvc(G) \leq \lceil \frac{k}{2} \rceil$ for $k \geq 8$. We can assign B_1 except the cut vertex with $\lceil \frac{k}{2} \rceil$ colors and assign n-k+1 distinct colors to the remaining n-k+1 vertices of G, thus $rvc(G) \leq \lceil \frac{k}{2} \rceil + n - k + 1 \leq n - 3$, for $k \geq 8$. For k = 3, 4, 5, 6, 7, we can also get $rvc(G) \leq n - 3$ by Theorem 2.3. Now we can assume that all end blocks are K_2 , then G has exactly two pendent vertices. Otherwise, we can assign n-3 distinct colors to the n-3 vertices except the three pendent vertices, thus G is rainbow vertex connected. Now let v_1, v_2 be two pendent vertices. If G is not a path, then there exists a block $B_2 \neq K_2$, which is not an end block. Let $w \in B_2$ be one cut vertex and $ww' \in E(B_2)$. We assign color 1 to w, w', v_1, v_2 and n-4 distinct colors different from color 1 to the remaining n-4 vertices of G, then $rvc(G) \leq n-3$, which is a contradiction. Hence G is a path.

We can easily compute g(n,k) for $k \in \{0,1,n-3,n-2\}$ from Lemma 2.4.

Theorem 2.5
$$g(n,0) = \binom{n}{2}$$
, $g(n,1) = \binom{n-1}{2} + 1$, $g(n,n-3) = n$, $g(n,n-2) = n-1$.

Theorem 2.6 Let G be a connected graph of order $n \geq 4$. If $|E(G)| \geq {n-2 \choose 2} + 2$, then $rvc(G) \leq 2$.

Proof. Our proof will be by induction on n. For n=4, we have $g(n, n-2)=n-1=3=\binom{4-2}{2}+2$, for n=5, we have $g(n, n-3)=n=5=\binom{5-2}{2}+2$. So we may assume $n\geq 6$.

Claim 1: $diam(G) \leq 3$.

Proof. Suppose $diam(G) \ge 4$ and consider a diameter path v_1, v_2, \dots, v_{D+1} with $D \ge 4$. Then $d(v_1) + d(v_4) \le n - 2$ and $d(v_2) + d(v_5) \le n - 2$ implying

 $|E(G)| \le {n \choose 2} - 2(2n - 3 - (n - 2)) = {n \choose 2} - 2(n - 1) = {n - 2 \choose 2} - 1 < {n - 2 \choose 2} + 2$, a contradiction.

Claim 2: If $\delta(G) = 1$, then $rvc(G) \leq 2$.

Proof. Let w be a vertex with $d(w) = \delta(G) = 1$, let H = G - w. Then $|E(H)| \ge \binom{n-2}{2} + 2 - 1 = \binom{n-2}{2} + 1 = \binom{(n-1)-1}{2} + 1$, hence $rvc(H) \le 1$ by Theorem 2.5. Let v is the neighbor of w, and set c(u)=1 for $u \in V(G)\setminus\{v\}$ and c(v)=2. Then G is 2-rainbow vertex connected.

Hence we may assume $\delta(G) \geq 2$. Let $w_1, w_2 \in V(G)$ with $w_1w_2 \notin E(G)$. Suppose $N(w_1) \cap N(w_2) = \emptyset$. Let $H = G - \{w_1, w_2\}$. Then $|E(H)| \geq \binom{n-2}{2} + 2 - (n-2) = \binom{n-3}{2} + 1 = \binom{(n-2)-1}{2} + 1$. Thus H is connected. Hence $rvc(H) \leq 1$ by Theorem 2.5. We may assume that c(u) = 1 for all $u \in V(H)$. Since $diam(G) \leq 3$, there is a w_1w_2 -path $w_1u_1u_2w_2$, then change $c(u_1) = 2$. Since $\delta(G) \geq 2$, there is a vertex u with $uw_2 \in N(G)$, now change c(u) = 2. For any two vertices $x, y \in V(H)$, the rainbow path from x to y doesn't contain both u_1 and u, so G is 2-rainbow vertex connected.

Hence we may assume if $w_1, w_2 \in V(G), w_1w_2 \notin E(G)$, then $N(w_1) \cap N(w_2) \neq \emptyset$. Thus $diam(G) \leq 2$, so $rvc(G) \leq 1$.

Theorem 2.7 Let G be a connected graph of order $n \geq 5$. If $|E(G)| \geq {n-3 \choose 2} + 3$, then $rvc(G) \leq 3$.

Proof. We apply the proof idea from the proof of Theorem 2.6.

Our proof will be by induction on n. For n = 5, we have $g(n, n - 2) = n - 1 = 4 = \binom{5-3}{2} + 3$ and for n = 6, we have $g(n, n - 3) = n = 5 = \binom{6-3}{2} + 3$. So we may assume $n \ge 7$.

By Theorem 2.6, we have $rvc(G) \le 2$ for $|E(G)| \ge {n-2 \choose 2} + 2$. Hence we may assume $|E(G)| \le {n-2 \choose 2} + 1$. This implies $\delta(G) \le \frac{(n-2)(n-3)+2}{n} = n-5+\frac{8}{n} < n-3$.

Claim 4: $diam(G) \leq 4$.

Proof. Suppose $diam(G) \geq 5$ and consider a diameter path $v_1, v_2, \cdots, v_{D+1}$ with $D \geq 5$. Then $d(v_i) + d(v_{i+3}) \leq n-2$ for i=1,2,3 implying $|E(G)| \leq \binom{n}{2} - 3(2n-3-(n-2)) = \binom{n}{2} - 3(n-1) = \binom{n-3}{2} - 3 < \binom{n-3}{2} + 3$, a contradiction.

Claim 5: If $\delta(G) = 1$, then $rvc(G) \leq 3$.

Proof. Let w be a vertex with $d(w) = \delta(G) = 1$, let H = G - w. Then $|E(H)| \ge \binom{n-3}{2} + 3 - 1 = \binom{n-3}{2} + 2 = \binom{(n-1)-2}{2} + 2$, hence $rvc(H) \le 2$ by Theorem 2.6. Take a 2-rainbow vertex coloring for H and change c(v) = 3 for the vertex incident with w. Then $rvc(G) \le 3$.

Hence we may assume $\delta(G) \geq 2$.

Case 1: If there are $w_1, w_2 \in V(G), w_1w_2 \notin E(G)$, with $N(w_1) \cap N(w_2) = \emptyset$ such that $d(w_1) + d(w_2) \le n - 3$.

Let $H = G - \{w_1, w_2\}$. Then $|E(H)| \ge {n-3 \choose 2} + 3 - (n-3) = {n-4 \choose 2} + 2 =$ $\binom{(n-2)-2}{2}+2$. We claim that H is connected. If not, by computing edges, we know H has at most 2 components and one of them is a single vertex. Thus $\delta(G) = 1$, a contradiction. Hence $rvc(H) \leq 2$ by Theorem 2.6. Consider a 2-rainbow coloring of H with colors 1, 2. If $d(w_1, w_2) = 3$, there is a path $w_1u_1u_2w_2$. If there is a vertex $v \in N(w_2)$ such that $u_1v \notin E(G)$, then change $c(u_1) = c(v) = 3$. For any two vertices $x, y \in V(H) \setminus \{u_1, v\}$, the rainbow path from x to y doesn't contain both u_1 and v, otherwise contradict with $rvc(H) \leq 2$. So G is 3-rainbow vertex connected. If for every $v \in N(w_2), u_1v \in E(G)$, now just change $c(u_2) = 3$. Then G is 3-rainbow vertex connected. If $d(w_1, w_2) = 4$, then we can claim that there is a path $w_1u_1u_2u_3w_2$ such that at most two internal vertices with the same color. Otherwise, all paths w_1xyzw_2 from w_1 to w_2 satisfy c(x) =c(y) = c(z), then there is no rainbow path from the vertex $u \in N(w_1)$ with c(u) = 1 to the vertex $v \in N(w_2)$ with c(v) = 2. Hence we can assume that $c(u_1) = c(u_2) = 1, c(u_3) = 2$, since $\delta(G) \geq 2$, there is a vertex $v \in N(w_2) \setminus \{u_3\}$, we change $c(u_1) = 3$, c(v) = 3. Obviously $u_1 v \notin E(G)$, then G is 3-rainbow vertex connected.

Case 2: For all $w_1, w_2 \in V(G), w_1w_2 \notin E(G)$, such that $N(w_1) \cap N(w_2) \neq \emptyset$ or $d(w_1) + d(w_2) \geq n - 2$.

We know that in this case $diam(G) \leq 3$. Choose a vertex w with $d(w) = \delta(G)$ and set d(w) = n - 2 - t with $2 \leq t \leq n - 4$.

Subcase $2.1:N^3(w)=\emptyset$.

Let H = G - w, then $|E(H)| \ge {n-3 \choose 2} + 3 - (n-2-t) = {n-3 \choose 2} - n + 7 + t - 2 \ge {(n-1)-3 \choose 2} + 3$.

If H is connected, by induction, H is 3-rainbow vertex connected. Now take a 3-rainbow coloring of H. Set c(w) = 1, for every $u \in N^2(w)$, there is a vertex $u' \in N(w)$ such that $uu' \in E(G)$, so there is a rainbow path from w to u. Then G is 3-rainbow vertex connected.

If H is disconnected, since H has no isolated vertices then H has at most 2 components. Otherwise $|E(H)| < \binom{n-4}{2} + 3$. Hence H has exactly 2 components H_1, H_2 . we may assume that $|H_2| \ge |H_1| \ge 2$. Since $n \ge 7$, then $|H_2| \ge 3$. Thus we have

$$|E(H_1)| \geq {n-4 \choose 2} + 3 - {|H_2| \choose 2}$$

$$= \frac{1}{2} [|H_1|^2 - 3|H_1| + 4] + |H_1||H_2| - 3|H_2| - 2|H_1| + 7$$

$$\geq {|H_1| - 1 \choose 2} + 1 + 3(n-4) - 3(n-1) + |H_1| + 7$$

$$\geq {|H_1| - 1 \choose 2} + 1$$

Similar $|E(H_2)| \ge {|H_2|-1 \choose 2} + 1$. Hence both H_1, H_2 are 1-rainbow vertex connected. Set c(u) = 1, for all $u \in V(H_1), c(u) = 2$, for all $u \in V(H_2), c(w) = 3$, since $d(w, x) \le 2$ for $x \in V(G)$, then G is 3-rainbow vertex connected.

Subcase 2.2: $N^3(w) \neq \emptyset$.

For every $u \in N^3(w)$, $wu \notin E(G)$ and $N(w) \cap N(u) = \emptyset$, then d(w) + d(u) = n - 2, that is $N(u) = N^2(w) \cup N^3(w) \setminus \{u\}$. Set c(w) = 3, c(u) = 2 for $u \in N(w)$, c(u) = 1 for $u \in N^2(w) \cup N^3(w)$. It's easy to check that G is 3-rianbow vertex connected.

3 Main result for sparse graphs

The following result of this paper is the solution of Problem 1.2 for $n-6 \le k \le n-4$. The proof of this result consists of two parts. Firstly, we prove for 2-connected graph of order n and size at least $\binom{n-k}{2}+k$ that $rvc(G) \le k$, if $n-6 \le k \le n-4$. The same statement for G is not 2-connected is proved in second step.

Theorem 3.1 Let G be a 2-connected graph of order n, if $|E(G)| \ge {n-k \choose 2} + k$, then $rvc(G) \le k$ for $n-6 \le k \le n-4$.

Proof. We may assume that $k \geq 4$.

If k = n - 4, then $n \ge 8$, thus $rvc(G) \le \lceil \frac{n}{2} \rceil \le n - 4$.

If k = n - 5, then $n \ge 9$, thus $rvc(G) \le \lceil \frac{n}{2} \rceil \le n - 5$, for $n \ge 10$. When n = 9, by Theorem 2.3, we know $rvc(G) \le \lceil \frac{n}{2} \rceil - 2 \le n - 5$.

If k = n - 6, then $n \ge 10$, thus $rvc(G) \le \lceil \frac{n}{2} \rceil \le n - 6$, for $n \ge 12$. When n = 10, 11, by Theorem 2.3, we know $rvc(G) \le \lceil \frac{n}{2} \rceil - 1 \le n - 6$.

Theorem 3.2 Let G be a connected graph but not 2-connected graph of order n, if $|E(G)| \ge {n-k \choose 2} + k$, then $rvc(G) \le k$ for $n-6 \le k \le n-4$.

Proof. Let k = n - t, then $g(n, k) = g(n, n - t) = {t \choose 2} + n - t = n + {t-1 \choose 2} - 1$. The proof will be by induction on the order n.

For n = t + 1, $g(t + 1, 1) = {t \choose 2} + 1$. We may assume that the result is true for the graphs with order less n. Let G be the graph of order n + 1 and $|E(G)| = n + 1 + {t-1 \choose 2} - 1$.

If G contains a bridge, say e, then $|E(G/e)| = |E(G)| - 1 = n + {t-1 \choose 2} - 1$. Hence by induction hypothesis, $rvc(G/e) \le n - t$ and therefor $rvc(G) \le n + 1 - t$.

If G contains no bridges, then G has a cut vertex, say w, thus G can be divided into two subgraphs G_1, G_2 such that $V(G_1) \cup V(G_2) = V(G)$ and $V(G_1) \cap V(G_2) = \{w\}$. Let $v(G_i) = n_i$ and $E(G_i) = n_i + s_i$ for i = 1, 2.

Since G has no bridge we conclude that $n_i \geq 3$ and $s_i \geq 0$. For each s_i , there is an integer $t_i \geq 3$ such that $\binom{t_i-1}{2}-1 \leq s_i < \binom{t_i}{2}-1$.

If G_i is 2-connected, then $rvc(G_i) \leq n_i - t_i$ by Theorem 3.1. If G_i is not 2-connected and $4 \leq t_i \leq 6$, by induction hypothesis, we have $rvc(G_i) \leq n_i - t_i$, this is also true for $t_i = 3$ by Theorem 2.5. Hence we have $rvc(G) \leq rvc(G_1) + rvc(G_2) \leq n_1 - t_1 + n_2 - t_2 = n + 2 - (t_1 + t_2)$.

We claimed that $t_1 + t_2 \ge t + 1$. Suppose that $t_1 + t_2 \le t$. From $|E(G)| = n + 1 + {t-1 \choose 2} - 1 = n_1 + s_1 + n_2 + s_2 = n + 2 + (s_1 + s_2)$, we have

$$s_{1} + s_{2} + 2 = {t-1 \choose 2} = \sum_{j=1}^{t-2} j \ge \sum_{j=1}^{t_{1}+t_{2}-2} j$$

$$= \sum_{j=1}^{t_{1}-1} j + \sum_{j=t_{1}}^{t_{1}+t_{2}-2} j > {t_{1} \choose 2} + \sum_{j=1}^{t_{2}-1} j$$

$$= {t_{1} \choose 2} + {t_{2} \choose 2}$$

$$> s_{1} + s_{2} + 2.$$

a contradiction. So we get $rvc(G) \leq n+1-t$, which complete the proof.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
- [2] G. Chartrand, G. L. Johns, K. A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohemica, 133(2008), 85-98.
- [3] A. Kemnitz, I. Schiermeyer, Graphs with rainbow connection number two, Disscuss. Math. Graph Theory 31(2011), 313-320.
- [4] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63(2010), 185-191.
- [5] X. Li, Y.Shi, Y. Sun, Rainbow connections of graphs: A survey, Graphs & Combin. 29(2013), 1-38.
- [6] X. Li, M. Liu, I. Schiermeyer, Rainbow connection number of dense graphs, Discuss. Math. Graph Theory 33(3)(2013), 603-611.
- [7] X. Li, S. Liu, Tight upper bound of the rainbow vertex-connection number for 2-connected graphs, Discrete Appl. Math. 173(2014),62-69