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Abstract

It is well known that the properties about the power sequences
of different classes of sign pattern matrices may be very different.
In this paper, we consider the base of primitive nonpowerful zero-
symmetric square sign pattern matrices without nonzero diagonal
entry. The base set is shown to be {2,3,---,2n — 1}; the extremal
sign pattern matrices with base 2n — 1 are characterized. As well,
for the sign patterns with order 3, the sign patterns with bases 3, 4,
5 are characterized, respectively.
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1 Introduction

We adopt the standard conventions, notations and definitions for sign
patterns and generalized sign patterns, their entries, arithmetics and pow-
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ers, and in particular, for walks in the corresponding signed digraphs. The
reader who is not familiar with these matters is referred to 5], [9] or [12].

The sign pattern of a real matrix A, denoted by sgn(A), is the (0,1, —1)-
matrix obtained from A by replacing each entry by its sign. Notice that in
the computation of the entries of the power A*, an “ambiguous sign” may
arise when we add a positive sign to a negative sign. So a new symbol “#”
has been introduced to denote the ambiguous sign.

For convenience, we call the set I' = {0, 1, —1, #} the generalized
sign set and define the addition and multiplication involving the symbol
# as follows (the addition and multiplication which do not involve # are
obvious):

() +1=14+(-1)=#,a+#=#+a=# (forallael),

O-#=#-0=0, b-#=4# b= # (for all b T'\{0}).

It is straightforward to check that the addition and multiplication in I’
defined in this way are commutative and associative, and the multiplication
is distributive with respect to addition. It is easy to see that a (0, 1)-Boolean
matrix is a nonnegative sign pattern matrix.

Definition 1.1 Let A be a square sign pattern matriz of order n with power
sequence A, A% -... Because there are only 4 different generalized sign
pattern matrices of order n, there must be repetitions in the power sequence
of A. Suppose A' = AP is the first pair of powers that are repeated in the
sequence. Then | is called the generalized base (or simply base) of A, and
is denoted by I(A). The least positive integer p such that A' = AP holds
for L =1(A) is called the generalized period (or simply period) of A, and is
denoted by p(A). For a square (0, 1)-Boolean matriz A, I(A) is also known
as the convergence index of A, denoted by k(A).

In 1994, Z. Li, F. Hall and C. Eschenbach [5] extended the concept of the
base (or convergence index) and period from nonnegative matrices to sign
pattern matrices. They defined powerful and nonpowerful for sign pattern
matrices, gave a sufficient and necessary condition that an irreducible sign
pattern matrix is powerful and also gave a condition for the nonpowerful
case.

Definition 1.2 A square sign pattern matric A (whose entries are +1,
—1 or 0) is powerful if all the powers A, A%, A3, ... are unambiguously
defined, namely there is no # in A* (k =1,2,-..). Otherwise, A is called
nonpowerful.
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In this paper, for a sign pattern matrix A, we denote by |A| the non-
negative matrix obtained from A by replacing a;; with |a;]|.

Definition 1.3 An irreducible (0,1)-Boolean matriz A is primitive if there
ezists a positive integer k such that all the entries of A* are nonzero; the
least such k is called the primitive index of A, denoted by exp(A) = k. A
square sign pattern matriz A is called primitive if |A| is primitive and the
primitive index of A, denoted by exp(A), equals exp(JA|).

It is well known that graph theoretical methods are often useful in the
study of the powers of square matrices, so we now introduce some graph
theoretical concepts.

Definition 1.4 Let A be a square sign pattern matriz of order n. The
associated digraph of A, denoted by D(A), has vertez set V = {1, 2, -+,
n} and arc set E = {(i, j)lai; # 0}. The associated signed digraph of
A, denoted by S(A), is obtained from D(A) by assigning the sign of ai;
to arc (i,7) for all i and j. Let S be a signed digraph of order n and let
A be a square sign pattern matriz of order n; A is called associated sign
pattern matriz of S if S(A)=S. The associated sign pattern matriz of a
signed digraph S is always denoted by A(S). Note that D(A) = D(|A}), so
D(A) is also called the underlying digraph of the associated signed digraph
of A or is simply called the underlying digraph of A. We always denote by
D(A(S)) or |S| the underlying digraph of a signed digraph S. Sometimes,
|A(S)| is called the associated or underlying matriz of signed digraph S.

In this paper, we permit no loop and no multiple arcs in a signed di-
graph. Denote by V(S) the vertex set and denoted by E(S) the arc set for
a signed digraph S. For T' C V(S), the (vertex) induced subgraph S([T] is
the subgraph induced by T. Let W = wpejvies - -exvr (e; = (vi-1, v3),
1 < i < k) be a directed walk of signed digraph S. The sign of W, denoted

k

by sgn(W), is [] sgn(e;). Sometimes a directed walk can be denoted sim-

i=1
ply by W = vovy - v, W = (vo, v1, -+, Uk) or W = ejez - - - e if there is
no ambiguity. Positive integer k is called the length of the directed walk W,
denoted by L{W). The length of the shortest directed path form v; to v; is
called the distance from v; to v; in signed digraph S, denoted by d(v;, v;).
A cycle with length k is always called a k-cycle, a cycle with even length is
called a even cycle and a odd cycle is similarly defined. When there is no
ambiguity, a directed walk, a directed path, a direct circuit or a directed
cycle will be called a walk, a path, a circuit or a cycle. A walk is called a
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positive walk if its sign is positive, and a walk is called a negative walk if
its sign is negative. The union of digraphs H and G is the digraph G|y H
with vertex set V(G) |JV(H) and arc set E(G)|J E(H). The intersection
G H of digraphs H and G is defined analogously. If p is a positive integer
and if C is a cycle, then pC denotes the walk obtained by traversing C p
times. If a cycle C passes through the end vertex of W, W (JpC denotes
the the walk obtained by going along W and then going around the cycle
C p times; pC|JW is similarly defined.

Definition 1.5 Assume that Wy, W2 are two directed walks in signed di-
graph S. They are called a pair of SSSD walks if they have the same initial
vertez, the same terminal vertez and and the same length, but they have
different sign.

From [5] or [9], we know that a signed digraph S is powerful if and only
if there is no pair of SSSD walks in S. Otherwise, S is nonpowerful.

Definition 1.6 A strongly connected digraph S is primitive if there exists
a positive integer k such that for all vertices vi,v; € V(S) (not necessarily
distinct), there exists a directed walk of length k from v; to v;j. The least
such k is called the primitive index of S, and is denoted by exp(S). Let
S be a primitive digraph. The least | such that there is a directed walk of
length t from v; to v; for any integer t > | is called the local primitive
indez from v; to vj, denoted by expgs(vi,v;) = l. Similarly, expg(v;) =

m&ics){exps(vi,vj)} is called the local primitive index at v;, so exp(S) =
v; €

omax {exps(vi)}.

For a square sign pattern A, let W(%,) denote the set of walks of
length k from vertex ¢ to vertex j in S(A4). Notice that the entry (AF); of

AF satisfies (AF);; = Z sgn(W); then we have

(1) (A*)i; = 0 if and only if there is no walk of length k from i to j in
S(4) (i-e., Wi(i, 5) = ¢);

(2) (A%);; = 1 (or —1) if and only if Wi(i,7) # ¢ and all walks in
Wi(i, 5) have the same sign 1 (or —1);

(3) (A¥);; = # if and only if there is a pair of SSSD walks of length k
from ¢ to j.

412



So the associated signed digraph can be used to study the properties
of the power sequence of a sign pattern matrix, and the signed digraph
is taken as the tool in this paper. In matrix theory, a primitive matrix
must be a nonnegative real matrix. From the relation between sign pattern
matrices and signed digraphs, for a primitive signed digraph S, we have
exp(S) = exp(JA(S)|). Hence it is logical to define a sign pattern A to be
primitive if |A| is primitive, and to define exp(A) = exp(D(A)) = exp(|A[)
if A is primitive.

Definition 1.7 A signed digraph S is primitive and nonpowerful if there
exists a positive integer I such that for any integer t > I, there is a pair of
SSSD walks of length t from any vertez v; to any vertez v; (vi,v; € V(S)).
The least such [ is called the base of S, denoted by l(S). Let S be a primitive
nonpowerful signed digraph of order n. For u,v € V(S), the local base from
u to v, denoted by ls(u,v), is defined to be the least integer k such that
there are SSSD walks of length t from u to v for any integer t > k. The

local base at a vertex u € V(S) is defined to be ls(u) = ren‘ja,().cg){ls(u,v)}.
So

(S) = ulen\?'().{s) ls(u) = u.t{g%}fS) ls(u,v).

Therefore, a sign pattern A is primitive nonpowerful if and only if S(A)
is primitive nonpowerful, and the base [(4) = [(S(A)) is the least positive
integer ! such that every entry of A' is #.

Definition 1.8 A sign patiern matriz A is called zero-symmetric if |A| is
symmetric. A signed digraph S is called zero-symmetric if A(S) is zero-
symmetric. So, for a zero-symmetric digraph S, (vj,vi) € E(S) if (vi,v;) €
E(S).

In a primitive nonpowerful signed zero-symmetric digraph S, we denote
by W~ = vpvk_y - - - vov; for directed walk W = v1vs - - - vg_y vk if no edge
is a loop in W, and denote by C~! = (vk, vg_1, * - -, V2, v1, v) for directed
cycle C = (v, vg, -+, Uk—1, Uk, v1) if C is not a loop.

Primitivity, base, local base, extremal patterns and other properties of
power sequence of a square sign pattern matrix are of great significance.
The bases of sign patterns are closely related to many other problems in
various areas of pure and applied mathematics (see [2], [4], [6], (7], [10],

[12]).

In 2008, B. Cheng [1] studied the base set of the primitive nonpowerful
zero-symmetric sign pattern matrices. Some interesting questions are that
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what about the base set of the primitive nonpowerful zero-symmetric sign
pattern natrices with or without nonzero diagonal entry, whether there
is gap in the base set and what about the extremal sign patterns with
the maximum base. Motivated by this and that the properties about the
power sequences of different classes of sign pattern matrices may be very
different, in this paper, we consider the base of primitive nonpowerful zero-
symmetric square sign pattern matrices without nonzero diagonal entry.
The base set is shown to be {2,3,---,2n — 1} which is different from the
base set of zero-symmetric sign pattern matrices obtained by B. Cheng in
[1]; the extremal sign pattern matrices with base 2n — 1 are characterized.
As well, for the sign patterns with order 3, the sign patterns with base 3,
4, 5 are characterized, respectively.

2 Preliminaries

Lemma 2.1 ([3]), ([6]) Let A be an irreducible matriz, then A is cogre-
dient to a matriz of the form

0 4 0 ... 0

0 0 A - 0
A= P

0 0 0 .- Ap,

A, 0 0 --. 0

where the zero blocks along the main diagonal are square, there is no zero
row or zero column in A; (1 =1,2,---,h) and H'l' A; is a primitive matriz.

Such h in Lemma 2.1 is called the imprimitivity index of irreducible
matrix A, denoted by h(A) (h(A) is equal to the period of |A|, see [5]).

Let S be a strongly connected digraph of order n and C(S) denote the
set of all cycle lengths in S. For a strongly connected digraph S of order
n, suppose C(S) = {p1, p2, - .., pu} and ged(py, p2, - -+, pu) = p. From [6],
we know that p = h(JA(S)]).

Lemma 2.2 ([5]) An irreducible sign pattern matriz A with imprimitivity
index h is powerful if and only if all cycles of S(A) with lengths odd mul-
tiples of h have the same sign and all cycles (if any) of S(A) with length
even multiples of h are positive.
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Definition 2.3 Let {s1, s2, -+, sa} be a set of distinct positive integers
with ged(sy, sz, ---, 8p) = 1. The Frobenius number of s1, S2, -+, 8x,
denoted by ¢(s1,52,+--,52), is the smallest positive integer m such that
for all positive integers k > m, there are nonnegative integers a; (i =

2
1,2,---,)) such thatk = ) ais;.
i=1

It is well known that
Lemma 2.4 ([6]) If gcd(s1, s2) = 1, then ¢(sy, s2) = (51 — 1)(s2 — 1).

From Definition 2.3, it is easy to see that ¢(s1,s2,+-,5x) < ¢(ss,55)
if there exist s;,s; € {s1, S2, -+, Sa} such that ged(si,s;) = 1. So if
min{s; : 1 <i < A} =1, then ¢(sy,82,---,52) =0.

Lemma 2.5 ([4]) Boolean matriz A is primitive if and only if D(A) is
strongly connected and gcd(py, p2, * -+, pt) = 1 where C(D(A)) = {p1, P2,
e, Pt}-

Lemma 2.6 ([9]) Let S be a primitive nonpowerful signed digraph. Then
S must contain a p;-cycle C, and a pa-cycle Cy satisfying one of the fol-
lowing two conditions:

(1) p; is odd, p; is even and sgnC; = —1 (i,5 =1,2; i # j).
(2) ;1 and py are both odd and sgnCy = —sgnCs.
Definition 2.7 In a primitive nonpowerful signed digraph, a pair of cycles

C,, C, satisfying conditions (1) or (2) of Lemma 2.6 are called a distin-
guished cycle pair.

It is easy to prove that W = poC; and Wy = p; C; have the same length
p1p2 but different sign if p;-cycle C; and po-cycle Cy are a distinguished
cycle pair, namely (sgnC)?P? = —((sgnC2)?1).

Lemma 2.8 ([12])Let S be a primitive signed digraph. Then S is non-
powerful if and only if S contains a distinguished cycle pair.

Lemma 2.9 ([9]) Let S be a primitive nonpowerful signed digraph of order

n. If there are SSSD walks of length v from v; to vj;, then ls(v;) <7+
exps(v;).
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Lemma 2.10 ([11]) Let S be a primitive nonpowerful signed digraph of
order n. Thenlg(k) <lg(k—1)+1 for2<k<n.

Lemma 2.11 ([12])Let S be a primitive nonpowerful signed digraph of
order n. Then ls(v;) < d(vi,v;) + ls(v;) for v, v; € V(S).

Lemma 2.12 Let S be a zero-symmetric digraph without loop consisting
of odd length cycle C and C~!. Then exp(S) < L(C) — 1.

Proof. It is easy to see that S is primitive by Lemma 2.5. Note that
L(C) — 1 is even and one of the two paths obtained by going respectively
along C and C~! from v; to v; for v;,v; € V(S) is even and its length
is at most L(C) — 1, so there exists a directed walk of length k (with
k > L(C) - 1) from v; to v;, so expg(v;,v;) < L(C) — 1 by Definition 1.6.
Note that v;, v; are arbitrary, so exp(S) < L(C)—-1. O

Definition 2.13 For a primitive digraph S, suppose C(S) = {pi, pa, ...,
pu}. Let de(sy(vi, v;) denote the length of the shortest walk from v; to v;
which meets at least one p;-cycle for each i,i=1, 2,---,u. Such a short-
est directed walk is called o C(S)-walk from v; to v;. Further, dos)y(vi),
di(C(S)) and d(C(S)) are defined as follows: de(s)(vi) = max{dc(s)(v:,
'Uj).' v; € V(S)}, d(C(S)) = max{dc(s)(v,-, ’Uj).‘ Vi, U; € V(S)}, d,(C(S))
(1 <i < n) is the ith smallest one in {dc(s)(v:)| 1 < i < n}, da(C(S)) =
d(C(S)). In particular, if C(S) = {p,q}, d(C(S)) can be simply denoted
by d{p,q}.

Definition 2.14 Let S be a strongly connected digraph of order n, C* =

{C1.Ca,--+,Cr} be a cycles set, dc- (v, v;) denote the length of the short-

est walk from v; to v; which meets all C; (i = 1,2,---,m). Such shortest

walk is called C*-walk from v; to vj. Define dc-(v;)= . lge.z(s){dc- (vi, v5)}
J

and d(C*)= vmglea.‘)/c(s){dc- (vi,v5)}.

Lemma 2.15 ([12]) Let S be a primitive nonpowerful signed digraph of
order n and C(S) = {p1, p2, ..., Pm}. If the cycles in S with the same
length have the same sign, p)-cycle Cy and pa-cycle Cy are a distinguished
cycle pair, then

(i) ls(vi,v;) < desy(vi,v5) + d(p1,p2, - - ., Pm) + P12, vi,v; € V(S).
(%) ls(vi) < de(s)(vi) + ¢(p1, 02, .., Pm) + P1P2.
(iii) 1(S) < d(C(S)) + ¢(p1,p2, .- .,Pm) + P1p2.
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Lemma 2.16 Let S be a zero-symmetric signed digraph of order n > 3
without loop. C is an odd length cycle of S. If there is a pair of SSSD
walks of length r from u to itself for u € V(C), then lg(u) < v+ L(C) —
1+ én‘%){d(u,v)} and [(S) <r+ L(C) -1+ 2vr€r%,aa(9){d(u,v)}.

Proof. It is easy to see that S is primitive by Lemma 2.5 and nonpowerful
by Definition 1.2. Let C¥ denote a 2-cycle at vertex u(u € V(C3)) and
C* = {C,C3). S0 do-(u) < max {d(w,v)} and exp(u) < $(2,L(C) +
v
de-(u) < L(C) -1+ xer%/a(ng){d(u, v)}. Thus, by Lemma 2.9, ls(u) < 7+
exp(u) < r+ L(C) -1+ énva(')é ){d(u, v)}. Note that S is zero-symmetric,
so én‘?()fg){d(u,v)} = max {d(v,u)}, and by Lemma 2.11, then I(S) <
v v

ev(s)
< - . a
ls(u) + vgl‘;(ag){d(v, u} <r+L(C)-1+ 2039({;){d(u,v)}

Lemma 2.17 ([8])Let S be a primitive nonpowerful signed digraph of or-
der n. If there are SSSD walks of length r from from v; to v;, then

ls(vi) < r+exps(v;).

Lemma 2.18 Let S be a zero-symmetric primitive nonpowerful signed di-
graph of order n > 3 without loop. If there are SSSD walks of length r from
u to itself for u € V(S), then for any v € V(S), ls(u,v) < r + exps(u,v).

Proof. Let W;, W, denote the a pair of SSSD walks of length r from u
to itself and W denote a directed walk with length ¢ (with ¢ > expg(u,v))
from u to v. Then there are SSSD walks of length r + ¢ (with r +¢ >
T + expg(u,v)) from u to v which are Wi |JW and W, |JW. So for any
v € V(9), ls(u,v) <7+ expg(u,v) by Definition 1.7. O

3 The base set

Lemma 3.1 Let E, = {{(A)|A be a primitive nonpowerful zero-symmetric
n X n sign pattern matriz without nonzero diagonal entry }. Then E,_, C
E,.

Proof. Let A, B be zero-symmetric primitive non-powerful sign pattern
matrices without nonzero diagonal entry. We say A ~ B if a;; and b; ;
have the same sign. So A~ A, A+ B~Aand A+ B~Bif A~ B.
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Now, we can construct a map ¢ : A, — A;, +1 by defining ¢(A4) to be
the unique (n + 1) x (n + 1) sign pattern matrix satisfying the following
conditions:

(1) The upper left n x n principal submatrix of ©(A) is A;

(2) The last two rows of ¢(A) are equal and the last two columns of
p(A) are equal.

Thus ¢(A)p(B) = ¢(AB + C,(A)R.(B)) where C,(A) is the last col-
umn of A and R,(B) is the last row of B.

Note that 2a; ,bn ; = @inbn j + Ginbn,; = ainbn; in sign pattern ma-
trices computations, so

sgn((AB); ;) = sgn(ai,1b1,j+ + +ain—1bn—1,;+8i nbn ;) = sgn(ai by j+ - +

@in-1bn—1,j + 2ainbn ;) = sgn((AB + Cr(A)Ra(B));;)

and p(AB+Cp(A)Rn(B)) ~ ¢(AB). So p(AB) ~ ‘PSA ©(B) and (p(A))* ~
@(AF) for k € Z*. Furthermore p(A'4)) ~ p(A)!4) E,_, CE,. 0O

Lemma 3.2 Let S be a primitive nonpowerful signed zero-symmetric di-
graph of order n > 3 without loop. If there is no negative 2—cycle in S but
there is negative even length h > 4 cycle, then I(S) < 2n — 2.

Proof. Suppose C) is a shortest negative even cycle with length s; and C,
is a shortest odd cycle with length s;. Then C; and C, form a distinguished
cycle pair by Lemma 2.8, and s; > 4,s2 > 3. Suppose the directions of C;
and Cs are both clockwise.

Case 1 C; and C; have common vertex [see Fig. 3.1].

C-
c 2
4

Cy
2

Fig. 3.1. C; and C; have common vertex

Let V(C1)NV(Cs) = {v§,v§,---,vf} and all the common vertices are
between v{ and vf along C;. Let Sop = C,|JC5!, and we get exp(Sp) <
s2 —1 by Lernma 2.12. Note that any 2-cycle is positive and sgn(C;) = —1,
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so there is a pair of SSSD walks of length s; from v§ (1 < ¢ < t) to itself,
and so lg(vf) < sy +s2— 1+ én‘%){d(v;,v)} for v; € {v,---,v¢}. By
V!

Lemma 2.16, we have

< c c) < _ P
I(S) < vg%,agg){d(v, v5)} +ls(vi) <si+s2 -1+ 202{,%)@(% v)}

s
<s$ +sz——1+2max{n-sl—sz+le,n—sl—sz+[-2—2]}

< max{2n — s — 1,2n — 8; — 2} < max{2n — 4,2n - 6} < 2n — 2.

Case 2 C; and C5 have no common vertex, then s; + sz < n.

Let Q denote the shortest path from C; to C2, QN C1 = va, @ C2 =
vy, C* = {C1,C2}.

Un vy

Fig. 3.2 8; < 82— 1 Flg 33. 81 282+ 1

(i) s1 < s2 — 1 [see Fig. 3.2).

Then d(C*) < 2L(Q) +2- [s—;J +2(n—s8 —s2~(L(Q)—1)) =2n—
2s; — so + 1. Note that there is a pair of SSSD walks of length s; from any

vertex of C} to itself because there is no negative 2-cycle in S and s; > 4,
50 I(S) <d(C*) + ¢(2,82) + 81 < 2n—s1 < 2n—4.

(ii) s1 > s2 + 1 [see Fig. 3.3].
Then d(C*) < 2L(Q)+2-%+2(n—sl—32—(L(Q)—1)) = 2n—s1—282+2.
Note that there is a pair of SSSD walks of length s; from any vertex

of C; to itself because there is no negative 2-cycle in S and s > 3, so
US) < d(C*) +¢(2,52) +51<2n—5,+1<2n - 2.

By (i) and (ii), we get {(S) < 2n — 2 if C} and C; have no common
vertex.

By Case 1 and Case 2, theorem is proved. ]

Lemma 3.3 Let S be a primitive nonpowerful zero-symmetric signed di-
graph of order n > 3 without loop. If there is no negative even cycle in S,
then we have I(S) < 2n — 2.
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Proof. Because S is primitive and nonpowerful, there must exists a dis-
tmgulshed cycle pair 01,02 w1th lengths s;, s, satisfying that s; + s, =
min{L(C") + L(C")|C" and C” form a distinguished cycle pair of S}. Be-
cause there is no negative even cycle in 3, so s;, s; are both odd.

We can suppose that 3 < sy < s5 and the directions of C; and C, are
both clockwise.

Case 1 C; and C; have common vertex. We assert |V (C1) NV (C2)| =
1,

Otherwise, suppose V(C1)(V(C2) = {v§,v5,---,v§} (¢ > 2) and all
the common vertices are between v§{ and v¢ along C;. C, is partitioned
into two paths W) and W3 (Cy = Wy |JW3) by v§ and v§, C; is partitioned
into two paths W, and Wy (C; = W, [JW)) by vf and v§ [see Fig. 3.4).
Suppose L(W2) = min{L(W3), L(Wy)} and L(W3) = min{L(W;), L(W3)},
then L(W2), L(W3) > 1.

Ut
Fig. 3.4. V(C1)NV(C2) = {v§,v5,--,v§} (t = 2)

(i) Z(Wy) + L(W3) is even.

It is clear that L(W;) + L(W3) > 2 and easy to know that L(W;) +
L(W,) is also even. Note that sgnC; = —sgnCs, so sgn(We W) =
—sgn(W; J Wy) now.

Suppose sgn(Wo UWs) = -1, which cause at least two odd cycles C;
and C, in Wy |JWs3 such that sgn(C'l) —sgn(C;) because there is no
negative even cycle in S, so C; and C, form a distinguished cycle pair
whose length sum is smaller than s; + s, which contradicts the choice of
Cy, Cs.

(i) L(W2) + L(W3) is odd.

It is clear that L(W)+L(Wy) is also odd. Note that L(W;)+L(W3) and
L(W,) + L(W,) are both odd, so L(Wl) L(W3) (mod 2) and L(W3) =
L(Wy) (mod 2), and so W, UW2 and W;1{J W, are both even circuits
and Sgn(Wl U W) = —sen(W5 U Wa).
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Suppose sgn(W; |JW; 1) = —1, as the proof of (i), there exists a distin-
guished cycle pair C; and C; whose length sum is smaller than s; + s2 in
Wi |J Wy, which contradicts the choice of Cy, Ca. So L(W;) = 0 (i = 2,3)
and |V(C1)NV(C2)| =1 by (i), (ii), and so our assertion holds.

Suppose V(C1) NV (Cz) = {v1}. Let So = S[V(C1) U V(C2)]. Then So
is also primitive and nonpowerful by Lemmas 2.5, 2.8.

We assert I(Sp) < 2s2 + 81 — 1. Let v;,v; € V(Sp).

Fig. 3.5. V(F) Fig. 3.6. VF Flg 3.7. v; € V(Cy),
ig. vy € (1 ig. vl¢ (1) EVCl),v:,;'-"vz

Subcase 1.1 v;,v; € V(C3). Let C} denote a 2—cycle at vertex v;, Fy
with length ¢; denote the path from v; to 'u_, along C; and F; with length
t2 denote the path from v; to v; along 0’2 Then t; + t3 = sp. Note that
35 is odd, so we can suppose t; is even , then t; < s, — 1 and £ is odd.

If v, € V(F}) [see Fig. 3.5], let By denote the path from v; to v; along

C, and B, denote the path from vy to v; along Cs, then F} = B, U Bs.

Note that the sign of any 2-cycle in S is positive, so there is a pair of SSSD
280 +8;—1—

3 CIUR

walks of length 2s5+s; — 1 from v; to v; which are

—1—% _.
and s—z—lC{,UBlU ¢1UCsU B

If vy ¢ V(F)) [see Fig. 3.6], let D; denote the path from v; to vy
along Cy and Dg denote the path from v; to v; along C5 1 Let A =
RUD,UD;! ,A2 = D,|UD;!UF, then L(D;) = L(Dl) + 1 (mod 2)
because D2 |JD7! = F», and then min{L(A;)| i = 1,2} < s2 — 1. For con-
venience, suppose L(A;) < sp — 1, note that the sign of any 2—cycle in S is
positive, so there is a pair of SSSD walks of length 252+ 5, —1 from v; to v;
259 +81—1-— L(AI)C§UA1 and S2

~1~—L(A)
2= 1M oy RUD,

which are
uaiuc:Ubrt.

Subcase 1.2 v; € V(C2), v; € V(C1),v; # v [see Fig. 3. 7). Let 31
with length ¢; denote the path from v; to v, along C3 and Fy with length t]
denote the path from v; to v; along C;}. Then t, +t; = s and t, = t +1
(mod 2) because s is odd. Suppose t; is even. Then t; < s5 — 1 Let
F, with length p; denote the path from v; to v; along C) and F, with
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length p; denote the path from v; to v; along C{'. Then p, +p; = 5,
and p; = pl + 1 (mod 2) because s; is odd. Suppose p; is even, then
p1 <81 -1 Let Ay = F{UF,, A, = F{|JF;, then sgn(A;) = —sgn(4y).
Note that there is no negative 2-cycle in S, so there is a pair of $5SD walks
of length 2s3 +s; — 1 from v; to v; which are 252+ 51 —21 L{4y) U Ax
289 +81—-1-L(A ;
2 1 5 ( 2) C;U A2-
In a same way, we can prove that there is a pair of §S9D walks of

length 2s5 + 81 — 1 from v; to v; for the case that vi,v; € V(C1) and the
case that v; € V(C4), v; € V(Cy).

and

Because v; and v; are arbitrary, so {(Sp) < 2s3 + 51 — 1 by Definition
1.7. Therefore, our assertion holds.

For any v, v, € V(S), let P, denote the shortest path from v; to Sp
and P;(\So = v, let P, denote the shortest path from v, to Sy and
Py So = vp. Note that there is a pair of SSSD walks of length 25, +s; —1
from v, to vy and

2s2+81—1+L(P)+L(P:) < 2s3+51—142(n—s3—s1+1) = 2n—s,+1 < 2n—2,

so there is a pair of SSSD walks of length 2n — 2 from v; to vx. Because
v, v € V(8S) are arbitrary, so {(S) < 2n — 2 by Definition 1.7.

Case 2 C; and C; have no common vertex.

Let Q denote the shortest path from C; to Cz, Q(C) = va, QNC2 =
vp, C* = {C4,C2} [see Fig. 3.2]. Then d(C*) < 2L(Q)+2- [ J-I-2(n 81—
s2—(L(Q)—1)) =2n—2s; —s2+1. Let C¢ denote a 2—cycle at v,. Note
that any 2-cycle is positive in S, then sgn( 5 1C’;U C1) = —sgn(Cs).
Because s; > 3,50 I(S) < d(C*) + $(2,81) +52 <2n— 5, < 2n— 3.

To sumn up, Lemma is proved. O

Lemma 3.4 Let S be a primitive nonpowerful zero-symmetric signed di-
graph of order n > 3 without loop. If the 2-cycles in S have different sign,
then I(S) < 2n - 2.

Proof. There must exist an odd cycle Cx = (vi,vs,---,v,v;1) in S
because S is primitive. Let d*(v;,v;) denote the length of the shortest
directed walk meeting at least one positive 2-cycle, at least one negative 2-
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cycle and Cy, from vertex v; to vertex v; and let d* = max {d*(v;,v;)}.
v;,v;EV(S)

For convenience, suppose Cy is oriented clockwise.
Case 1 There are at least two negative 2-cycles. Then it is easy to
k—
check that d* < 2(n—-k -1+ 1). So there is a pair of SSSD walks

with length d* + ¢(2, k) +2 from any vertex v; to any vertex v;. Note that
d* + ¢(2,k) + 2 < 2n — 2, s0 I(S) £ 2n — 2 by Definition 1.7.

Case 2 There is only one negative 2—cycle in S. Let So = Cx |UC L

Subcase 2.1 The unique negative 2—cycle is not in Sp, then it is easy
to check that d* <2(n—k -1+ )- So I(S) < 2n — 2 follows as Case
1.

2

Subcase 2.2 The unique negative 2—cycle is in Sp.

It is easy to see that Sy is primitive and nonpowerful by Lemmas 2.5,
2.8.

We assert {(So) < k+ 1.

Let Cy = (Va,Va+1,%a) (Va,Vat+1 € V(So)) denote the unique negative
2-cycle in S. For any vertices v;,v; € V(So), let C§ = (v, vig1,v:) (1 #
a,C¥ = (vk, v, vx)) denote a positive 2-cycle at v;. Let (v, Va—1,v,) denote
a positive 2-cycle at v,, Pj, P2 denote the path from v; to v; along Ci and
C;!. Itiseasy to know L(P;) = L(P2)+1 (mod 2) because L(P,)+L(P;) =
k. For convenience, suppose L(P;) (0 < L(P,) £ k — 1) is even.

1° P, meets Cy [see Fig. 3.8]. Let F} denote the path from v; to v, and
F, denote the path from ve41 to v; along Cx. Then Py = Fy J(va,va+1) U F2.
So there is a pair of SSSD walks of length k 4+ 1 from v; to v; which are
k+l—L(P1) k+l-L(P1)—2

5 CilJ P, and 5 CiUFU ColU(Wa,s Yas1)U Fa.
F, Y F, Y
Va+1 Va+1
. P2 Ck 1

Va ,

v.

P, 1Yy

Fig. 3.8. P, meets Cp Fig. 3.9. P,

dose not meets Cy
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2° P; dose not meets Cj [see Fig. 3.9). Then L(P,) < k — 3.

Let F; denote the path from v; to v, and F, denote the path from Vg 41
to v; along Cx. Then P2 = F3 ' J(Vas1,v) UF7*. Let d' = min{d(v;,
va)ld(vi7va+l)rd(vjr va):d(vj,va+1)}' Then d < mln{L(Fl)sL(F2)}, and

sod < ic_—l__—_L(E For convenience, suppose d = d(vj,va) and let

P, denote the shortest path from v; to v,, namely L(P,) = d'. Note
that the directed walk W = P; |J Py P;* meets Cp and L(W) < L(P)+

2-@—_—1;—L£1—)- = k—1, so there is a pair of SSSD walks of length k+1 from
v; to v; which are M—)C{;UW and ktl- g(W) - 2C§U P
Py U Co U Po-l .

Because v;, v; are arbitrary, so [(So) < k + 1 and our assertion holds.

For any v, v, € V(S), let P; denote the shortest path from v; to Sp
and P,(}So = v, let P, denote the shortest path from v, to Sy and
P, [} So = v.. Note that there is a pair of SSSD walks of length h (with
h > k + 1) from v, to v, then there is a pair of SSSD walks of length !
(with I > k + 1+ L(P;) + L(P,,)) from v; to v,,. Note that

k+1+L(P)+ L(Pn)<k+1+2n—-k)=2n-k+1<2n-2(k>23)
and vy, vm € V(S) are arbitrary, so [(S) < 2n — 2 by Definition 1.7.

To sum up, I(S) < 2n — 2, the theorem is proved. o

Lemma 3.5 Let S be a primitive nonpowerful zero-symmetric signed di-
graph of order n > 3 without loop. If each 2—cycle has negative sign in S,
then I(S) < 2n - 1.

Proof. For any odd directed cycle C in S, there must exist one in {C,C~!}
is positive cycle and the other one is negative because there are L(C) neg-
ative arcs in CJC~L.

Let C be an odd cycle with length s and §; = C|JC~L. It is easy to
see that S; is primitive and nonpowerful by lemmas 2.5, 2.8. By lemma
2.12, we get exp(S1) <s-—1.

For any vertex v in S, let P, denote the shortest path from v to S; and
Pv n S 1 = VYq.

Note that expg(vi,va) < expg, (vi,va) < exp(S1) for any vertex v; €
V'(51) by Definition 1.6, and there exists a pair of SSSD walks of length h
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(with h > s) from v; to itself, then lg(vi,va) < s + expg(vi, v,) by Lemma
2.18. So ls(v;,v) < lg(vi,ve) + L(P,) and

ls(vi) < ls(vi,va) + ufen‘}({(s,){L(Pu)}

<ls(vi,vg)+n—s<s+s—1+n—s=n+s-1
for v; € V(51).

For any vertex v € V(S), let P, denote the shortest path from v to Sy
and P,» () Sy = vp. Then ls(v') < ls(ve)+L(Py) < n+s—1+n—s=2n-1
by Lemma 2.11. So I(S) < 2n —1. 0

Theorem 3.6 Let S be a primitive nonpowerful zero-symmetric signed di-
graph of order n > 3 without loop. Then 2 <I(S) <2n-1.

Proof. There is no pair of SSSD walks of length 1 from v; to itself
because there are no loop in S. So 2 < I(S). By Lemmas 3.2-3.5, theorem
is proved. a

Theorem 3.7 Let S, [see Fig. 3.10] consists of 3-cycles C3 = viesvaeguzeqvs
and Cy ! = viejvsesvaeqvy. Let S be a primitive nonpowerful zero-symmetric
signed digraph of order 3 without loop. Then E3 = {3,4,5} and |S| = 5.

Especially,
(i) there is just one negative 2-cycle in S if and only if I(S) = 3;
(ii) there is just two negative 2—cycles in S if and only if I(S) = 4;

(iii) each 2-cycle have negative sign in S if and only if I(S) = 5.

V2
€5 e
() €3
" e v3
€4
Fig. 3.10. 5;

Proof. By theorem 3.6, we get I(S) < 5.
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Because S is primitive, so there must exist an odd cycle. Because there
is no loop in S, so there must exist a 3-cycle in §. Because S is zero-
symmetric and there is no multiple arcs in S, so |5| = 5.

We assert there must be negative 2-cycle in S. Otherwise, C and C;1
have the same sign if there is no negative 2-cycle. So S is powerful by
Lemma 2.2, which contradicts the condition that S is nonpowerful.

Note that there is no loop in S, so there is no pair of SSSD walks
of length 1 from vertex v; (¢ = 1,2,3) to itself. Note that there is only
directed walk of length 2 eje3 from vertex v; to vertex v, so there is no
pair of SSSD walks of length 1 from vertex v; to vertex vy. So I(S) > 3
by Definition 1.7.

For convenience, suppose |S| = S;.
Case 1 There is just one negative 2-cycle in S.

Clearly, S is primitive and nonpowerful by Lemmas 2.5, 2.8. Suppose
sgney = —1, each of other arcs has positive sign. Then, from vertex v; to
itself, there is a pair of SSSD walks of length 3 obtained by going along
Cs3 and Cy ! respectively. eseses and ejeqes are SSSD walks of length 3
from vertex v; to vs. ejeqe; and esege; are a pair of SSSD walks of length
3 from vertex v; to vs3. So ls(v;) = 3. In a similar way, we get lg(v2) = 3.
From vertex v3 to itself, there is a pair of SSSD walks of length 3 obtained
by going along C3 and C3 ! respectively. eqe;eq and eqesey are a pair of
SSSD walks of length 3 from vertex vz to v;. ezeges and eszeqzes are a
pair of SSSD walks of length 3 from vertex v; to ve. So ls(v3) = 3. So
[(S)=3.

Case 2 There are just two negative 2—cycles in S.

Clearly, S is primitive and nonpowerful by Lemmas 2.5, 2.8. Suppose
sgn(ejeq) = —1 =sgn(esez), each of other arcs has positive sign. It is easy
to check that sgnCs =sgnC; ! because there are 2 negative arcs in S.

There are no pair of SSSD walks of length 3 from vertex v; (i = 1,2, 3)
to itself because there are just two directed walk of length 3 along C3 and
along Cy ! respectively from vertex v; to itself. So ls(v;) > 4.

elesereq and ejegegey are a pair of SSSD walks of length 4 from vertex
v; to itself. eseseseq and esegeqe; are a pair of SSSD walks of length 4
from vertex v; to v3. ejeseges and ejezezes are a pair of SSSD walks
of length 4 from vertex v; to va. So lg(v1) = 4. eqejeszes and ezegeaes
are a pair of SSSD walks of length 4 from vertex vs to itself. esezeses
and esegezes are a pair of SSSD walks of length 4 from vertex vs to v;.
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eseseges and eseseges are a pair of SSSD walks of length 4 from vertex
vz to vp. So lg(v3) = 4. Similar to proof of Is(vs) = 4, we can prove
Is(ve) =4. So l(S) =4.

Case 3 Each 2-cycle has negative sign in S. Clearly, S is primitive and
nonpowerful by Lemmas 2.5, 2.8.

We assert there is no pair of SSSD walks of length 4 from vertex v;
(i = 1,2, 3) to itself because the directed walk of length 4 from vertex v; to
itself is just composed of two 2-cycles (may repeated). So ls(v;) 2 5.

Cs and C;' have different sign because there are 3 negative arcs in S.
Thus esegesere4 and ejesesese; are a pair of SSSD walks of length 5 from
vertex v to itself. ejeszezejes and ejeszegeses are a pair of SSSD walks
of length 5 from vertex v; to va. eseseseses and esegeszeze; are a pair of
SSSD walks of length 5 from vertex v; to v3. So lg(vsz) = 5. Similar to
the proof of lg(v;) = 5, we can prove ls(v2),ls(vs) = 5. So l(S) = 5.

From Case 1, Case 2, Case 3, it is easy to see that all of (i), (ii), (iii)
hold.

To sumn up, the theorem is proved. a
Theorem 3.8 E, = {2,3,---,2n — 1} for n > 4.

Proof. 1. {3,4,5} C E, by theorem 3.7 and lemma 3.1.

Un-1

Un

Fig. 3.12. S

Fig. 3.11. S

2. 2€ E,.

Let S consist of 3-cycles C3 = (v1, va, v3, v1) , 03'1 = (v1, vs, vz,
v;) and hoth arcs (v;, v4), (v4, v;), ¢ = 1, 2,3 [see Fig. 3.11). sgn(vy,
v3) =sgn(vq, v2) =sgn(vg,vs) =sgn(va,v1) = —1, each of other arcs has
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positive sign. Clearly, S is primitive and nonpowerful by Lemma 2.5, 2.8.
Thus v;v3v;, and vyvpv; are a pair of $SSD walks of length 2 from vertex
vy to itself. v1v3ve and viv4vs are a pair of SSSD walks of length 2 from
vertex vy to va. v1vgvs and vyv4v3 are a pair of SSSD walks of length
2 from vertex v; to vs. vivsvs and vyvavy are a pair of SSSD walks of
length 2 from vertex v; to vs. So lg(v1) = 2. In a same way, we can prove
ls(v2),ls(va),ls(vs) = 2. So l[(S) =2 and 2 € E,, by Lemma 3.1.

3. {6,8,---,2n -2} C E, forn > 4.

Let S consists of paths P = v v3 - - -vp—2, P71, cycle C3 = (vp_2, ¥n_1,
vn) and C;' [see Fig. 3.12]. sgn(vi,v2) = —1 and each of other arcs
has positive sign. Clearly, S is primitive and nonpowerful by Lemmas 2.5,
2.8. Let 02 = (UI,'Uz,‘Ul), Cc* = {02,03} Then d(C*) = de-(v1,1) =
2(n — 3). Note that C] has different sign from other 2-cycle in S, so
I(S)<d(C*)+¢(2,3)+2<2(n-3)+4=2n-2.

Now we prove [(S) = 2n — 2. We prove there is no pair of SSSD walks
of length 2n — 3 from vertex v; to itself. Otherwise, suppose Wy, W, are
a pair of SSSD walks of length 2n — 3 from vertex v; to itself. Then W;
(¢ =1,2) must be composed of P|JP~?, some 2-cycles and some 3-cycles.
So2n—3 = L(W;) = 2(n—3)+a;-2+b;-3 (a;, b; > 0). It is easy to see that
a; > 1 because all 3~cycles have the same sign. So (a; —1)-2+b; -3 =1,
which contradicts that ¢(2,3) = 2. So there is no pair of SSSD walks of
length 2n — 3 from vertex v; to itself. Thus [(S) = 2n — 2.

Because n > 4, so {6,8,---,2n — 2} C E,, by Lemma 3.1.
4. {7,9,---,2n -1} C E, for n > 4.
(i) n is odd.

Let S consists of odd cycle C, = (v1,v2,-+-,v5,v;) and C;1. Each
2-cycle of S has negative sign. Clearly, S is primitive and nonpowerful by
Lemma 2.5, 2.8. By Theorem 3.6, we know I(S) < 2n ~ 1. Now we prove
I(S) = 2n—1. We prove there is no pair of SSSD walks of length 2n—2 from
vertex v to itself. Otherwise, suppose Wy, W, are a pair of SSSD walks of
length 2n — 2 from vertex v; to itself, then W; (i = 1,2) must be composed
of some 2-cycles and some n—cycles. So 2n —2 =L(W;) =a;-24+b;-n
(ai,b; > 0). It is easy to see that b; > 1 because all 2—cycles have the same
sign. So @; - 2+(b; — 1) - n = n — 2, which contradicts that ¢(2,n) =n — 1.
Thus there is no pair of SSSD walks of length 2n — 2 from vertex v; to
itself, and so lg(v1) =2n —1 and I(S) =2n — 1.

(ii) n is even.
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Let S consists of odd cycle C, = (v1,V2,*+,Vn-1,?1), C;! and 2—cycle
(Yn=1,Yn,vn-1). Each 2-cycle of S has negative sign. {(S) < 2n —1 by
theorem 3.6. Same as (i), we can prove ls(v,) =2n —1,s0 [(S) =2n — 1.

Because n > 4, so {7,9,-+,2n — 1} C E,, by Lemma 3.1.

To sum up, the theorem is proved. o

4 Extremal sign patterns

Definition 4.1 Let S be a strongly connected digraph of order n and C =
(Vig, Vig, * * s Vinn, Viy) be a cycle in S. If there exists an arc (vi,,vi;) (1 <
k,j <m,lk —j| > 2 (mod k)) that v, and v;; are nonconsecutive on cycle
C, arc (vi,,vi;) (1 < k,j < m) is called a chord of C.

Let S consists of cycles Ci = (v1,va,--+,Vk,v1), C}, paths P =
VkUk41 - Un and P~1. The connected digraph S is called a k-lollipop [see
Fig. 4.1, denoted by Ik.

&!
k—1

Fig. 4.1. I

Theorem 4.2 Let S be a primitive nonpowerful signed zero-symmetric di-
graph of order n > 3 without loop. Then I(S) = 2n — 1 if and only if
|S| ¢ 1% where k > 3 is odd and each 2-cycle in S has negative sign.

Proof. By Lemmas 3.2-3.5, it can be known that each 2-cycle in S has
negative sign if /(S) = 2n—1. There must exist an odd cycle in S because §
is primitive. Suppose k—cycle Cj, = (v1,v2,- -+, V,v1) (k = 3) is a shortest
odd cycle in S and Cj is clockwise, then sgn(Cx) = —sgn(Cy ') because
there are just k negative arcs in Sp = Cx|JC;*. We have exp(So) < k-1
by Lemma 2.12.

We assert there is no chord of Cj. Otherwise, there must cause a shorter
odd cycle in Sy, which contradicts the choice of C.

Next we prove |S| 2 1% if I(S) = 2n — 1. Otherwise, suppose |S| 2 5.
Then k < n — 1 because S is a lollipop if £ = n.
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For any vertices v;,v; € V/(S), let P; denote the shortest path from v; to
So, P; denote the shortest path from v; to So, P;(So = v, P; () So = vg4.
Then L(P;),L(P;) <n—k.

(i) v = v;. Now L(P;) = L(F;).
Case 1 L(P)<n—-k-1,

Note that exp(Sp) < k — 1, there is a pair of SSSD walks of length k&
from v, to itself, so there are SSSD walks of length ! (with { > 2k—1) from
Y to itself, and there are SSSD walks of length ¢ (with ¢ > 2k—~1+2L(P;))
from v; to itself. Note that L(P;) <n—-k—1,s02k—1 +2L(P) <2n-3.

Case 2 L(P,) =n — k.

Because |S| l',f, so there are at least two different paths from v; to
So. Denote by P;, P; such two different paths. Then L(P;) = L(P;) and
all the vertices of P;, P; from v; to Sy are the same but the ends. Suppose
P;(So = ve, P;[}So = va (v # v4) and the last common vertex of P, P;
along P; is v, [see Fig. 4.1].

Z
P Ve Ui

Vd
Fig. 4.1. L(P) =n -k

Suppose Cy is parted into Py and P, by v, and vy, namely Cx =
P1UP,. Because k > 3 is odd, so L(P1) = L(P2) + 1 (mod2). Sup-
pose L(Py) is even, then C. = (ve,vc)|JP2U(va, ve) is an odd cycle and
sgn(Ce) = —sgn(C;'). Let 8 = C.|UC 1. Then exp(S;) <L(C.) — 1
by Lemma 2.12. So there is a pair of SSSD walks of length [ (with | >
2L(Ce)—1) from v, to itself by Lemma 2.18. Let P; . denote the path along
P; from v; to v, then L(P;.) =n —k — 1, and so there is a pair of SSSD
walks of length ¢ (with t > 2L(C.) — 1 + 2L(P;.)) from v; to itself. Note
that L(P;) < k — 2 because v, # vg and note that L(C.) = L(P,) + 2 < k,
so 2L(C.) — 1+ 2L(P;.) < 2n - 3.

(ll) Uy sé vj.
Case 1 L(P;) > 0,L(P;) > 0.

Note that exp(So) < k — 1, so there are SSSD walks of length ! (with
l > 2k —1) from v, to vg by Lemma 2.18, and so there are SSSD walks of
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length ¢ (with ¢ > 2k — 1+ L(P;)+ L(P;)) from v; to v;. Note that v; # v;,
SO

L(P;)+L(P;) < n—k+n—k—1 = 2n—2k—1 and 2k—1+L(P;)+L(F;) < 2n-2.

Case 2 L(P;) =0,L(P;) > 0.

Same as the proof of Case 1, we can prove that there is a pair of SSSD
walks of length t (with ¢ > 2k—14L(P;)) from v; to v;. Note that k <n—1
and L(Pj)) <n—k,s02k—1+ L(P;) <2n—-2.

Case 3 L(P;) > 0,L(P;) =0.

Same as the proof of Case 2, we can prove that there is a pair of SSSD
walks of length ¢ (with ¢t > 2k—1+L(P;)) from v; to v;. Note that k <n—1
and L(P)<n—k,s02k—1+L(P) <2n-2.

Case 4 L(P;) =0, L(P;) = 0.

Note that exp(Sp) < k — 1, so there is a pair of SSSD walks of length
l (with [ > 2k — 1) from v; to v; by Lemma 2.18.

By (i), (ii), there are SSSD walks of length 2n — 2 from v; to v; for any
vertices v;,v; € V(S) if [S] & l,’;, so [(S) < 2n — 2 by Definition 1.7, which
contradicts [(S) =2n — 1. So |S| = l: (k >3 is odd) if [(S) =2n — 1.

It is easy to know that I(S) < 2n — 1 if | S| 2 Ik where k > 3 is odd and
there is no positive 2-cycle in S by Theorem 3.6. We prove I(S) =2n —1
next.

We prove there is no pair of SSSD walks of length 2n — 2 from v, to
itself. Otherwise, suppose there is a pair of SSSD walks W;, W; of length
2n — 2 from v, to itself. Let P = (vk, Uk41, ***y Un—1, Un). Then W;
(i = 1,2) must be composed of P, P~!, some 2—cycles and some k-cycles.
So 2n — 2 = L(W;) = 2(n — k) + 2a; + bik (a;,b; > 0). Because all 2-cycles
have the same sign, so b; > 1. Then k—2 = 2a;+(b;—1)k, which contradicts
¢(2,k) = k — 1. So there exists no pair of SSSD walks of length 2n — 2
from v, to itself. Thus lg(vp,v,) =2n—1 and {(S) =2n — 1. O
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