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Abstract. A family G of connected graphs is said to be a family
with constant metric dimension if dim(G) does not depend upon
the choice of G in G.

In this paper we study the metric dimension of some plane graphs
which are obtained from some convex polytopes by attaching a pen-
dant edge to each vertex of the outer cycle in a plane representation
of these convex polytopes. We prove that the metric dimension of
these plane graphs is constant and only three vertices appropriately
chosen suffice to resolve all the vertices of these classes of graphs.
It is natural to ask for the characterization of graphs G which are
plane representations of convex polytopes having the property that
dim(G) = dim(G"), where G’ is obtained from G by attaching a
pendant edge to each vertex of the outer cycle of G.
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1 Notation and preliminary results

A basic problem in chemistry is to provide mathematical representations
for a set of chemical compounds in a way that gives distinct representations
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to distinct compounds. As described in [6], the structure of a chemical com-
pound can be represented by a labeled graph whose vertex and edge labels
specify the atom and bond types, respectively. Thus, a graph-theoretic in-
terpretation of this problem is to provide representations for the vertices of
a graph in such a way that distinct vertices have distinct representations.
This is the subject of the papers (3,6,17,19, 20].

If G is a connected graph, the distance d(u,v) between two vertices u,v €
V(G) is the length of a shortest path between them. Let W = {wy, ws, ...., wi}
be an ordered set of vertices of G and let v be a vertex of G. The representa-
tion r(v|W) of v with respect to W is the k-tuple (d(v, w1), d(v, wg), ....., d(v, ws)).
If distinct vertices of G have distinct representations with respect to W,
then W is called a resolving set or locating set for G [3]. A resolving set of
minimum cardinality is called a metric basis for G and this cardinality is
the metric dimension of G, denoted by dim(G). The concepts of resolving
set and metric basis have previously appeared in the literature (see [3-7,
10-22)).

For a given ordered set of vertices W = {wy,ws, ....,wi} of a graph G, the
ith component of r(v|W) is 0 if and only if v = w;. Thus, to show that W
is a resolving set it suffices to verify that r(z|W) # r(y|W) for each pair of
distinct vertices z,y € V(G)\W.

A useful property in finding dim(G) is the following lemma [21]:

Lemma 1. Let W be a resolving set for a connected graph G and u,v €
V(G). If d(u,w) = d(v,w) for all vertices w € V(G)\ {u,v}, then {u,v}Nn
W #0.

Motivated by the problem of uniquely determining the location of an in-
truder in a network, the concept of metric dimension was introduced by
Slater in [19,20] and studied independently by Harary and Melter in [10].
Applications of this invariant to the navigation of robots in networks are
discussed in [16] and applications to chemistry in [6] while applications to
problem of pattern recognition and image processing, some of which involve
the use of hierarchical data structures are given in [17].

By denoting G + H the join of G and H, a wheel W,, is defined as
W, =K +C,, forn >3, a fanis f, = K; + P, for n > 1 and the
gear graph Jon,(n > 2) is obtained from a wheel Wy, by alternately
deleting n spokes. Buczkowski et al. [3] determined the metric dimension
of the wheel W,,, Caceres et al. [5] the metric dimension of a fan f, and
Tomescu and Javaid (22] the metric dimension of the gear graph Js,,.

Theorem 1. ({3], [5], [22]) We have
(i) dim(W,) = | 2222 | forn > 7;

(i) dim(fn) = |22E2| forn > 7;
(i) dim(Jzn) = | ] forn > 4.
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The metric dimension of all these plane graphs depends upon the number
of vertices in the graph.

On the other hand, we say that a family G of connected graphs is a fam-
ily with constant metric dimension if dim(G) does not depend upon the
choice of G in G. In [6] it was shown that a graph has metric dimension
1 if and only if it is a path, hence paths on n vertices constitute a family
of graphs with constant metric dimension. Similarly, cycles with n(> 3)
vertices also constitute such a family of graphs as their metric dimension
is 2 and does not depend upon the number n of vertices . A Cartesian
product of two graphs G and H, denoted by GOH, is the graph with vertex
set V(G) x V(H), where two vertices (z,z’) and (y,y’) are adjacent if and
only if £ = y and z'y’ € E(H) or ' = y’ and zy € E(G). The metric
dimension of the Cartesian product of graphs has been studied in [4] and
(18]. In [4] it was proved that

. 2, if n is odd;
dzm(P"‘DC")={ 3, if n is even.
The antiprism A, [1], n > 3, is a 4-regular graph and consists of an outer
n-cycle y1¥2...Yn, an inner n-cycle z1z3...<n, and a set of n spokes z;y; and
Tip1¥i,% = 1,...,n where 2,11 = z,. For n = 3 it is the octahedron.
Also Javaid et al. proved in [12] that the antiprisms A, constitute a family
of regular graphs with constant metric dimension as dim(A,) = 3 for every
n > 5. For more details on convex polytopes, we refer the readers to [9].
It was shown in [11] that some families of plane graphs generated by convex
polytopes constitute families of plane graphs with constant metric dimen-
sion. Note that the problem of determining whether dim(G) < k is an
N P-complete problem [8]. Some bounds for this invariant, in terms of the
diameter of the graph, are given in [16] and it was shown in [6,16-18]
that the metric dimension of trees can be determined efficiently. It appears
unlikely that significant progress can be made in determining the metric
dimension of a graph unless it belongs to a class for which the distances
between vertices can be described in some systematic manner.
A fundamental question in graph theory concerns how the value of a pa-
rameter is affected by making a small change in the graph. If G’ is a graph
obtained by adding a pendant edge to a nontrivial connected graph G, then
it is easy to verify that

dim(G) < dim(G') < dim(G) + 1

A helm H,, n > 3 is a graph obtained from a wheel W, by attaching

a pendant vertex to each rim vertex. Javaid [12] proved that dim(H,) =
dim(W,,). In this paper we extend this study by considering some classes
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of convex polytopes. We prove that the metric dimension of these classes of
plane graphs which are obtained from plane representation of these convex
ploytopes by attaching a pendant edge to each vertex of the outer cycle
is constant and only three vertices appropriately chosen suffice to resolve
all the vertices of these classes of graphs. Consequently, by attaching a
pendant edge to each vertex of the outer cycle of these graphs their metric
dimension is not affected. Thus, it is natural to ask for the characterization
of graphs G which are plane representation of convex polytopes having
the property that dim(G) = dim(G’), where G’ is obtained from G by
attaching a pendant edge to each vertex of the outer cycle of G.

2 Plane graph R?

For n > 5, let RE be the plane graph represented in Fig. 1. By deleting
pendant edges zjw;, ..., z,Wn the resulting graph is denoted by R, and it
is a plane representation of a convex polytope defined in [2].
It follows that

V(RR) =V(R,)U{w;:1<i<n}

and
E(RY) = E(R,)VU{zw;:1<i<n}

The metric dimension of R, has been determined in {11} and it has been

Fig. 1. The plane graph R},

shown that it has metric dimension equal to 3. In the next theorem we
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prove that by attaching a pendant edge at each vertex of the outer cycle of
R, is not affected its metric dimension.

For our purpose, we call the cycle induced by {z; : 1 < ¢ < n}, the inner
cycle, the cycle induced by {y; : 1 < ¢ < n}, the middle cycle, the cycle
induced by {z; : 1 < i < n}, the outer cycle and the set of vertices {w; :
1 < i < n}, the set of outer vertices. Note that the choice of appropriate
metric basis vertices (also refereed to as landmarks in [15]) is the core of
the problem.

Theorem 2. Let RP be the graph defined above; we have dim(RE) = 3 for
every n > 6.

Proof. We will prove the above equality by double inequality.

Case 1. When n is even.

In this case, we can write n = 2k, k > 3,k € Z*. Let W = {z1, %2, Zx41} C
V(RR), we show that W is a resolving set for RE in this case. For this we
give the representation of any vertex of V/(RE)\W with respect to W.
The representation of the vertices on the inner cycle are

L JE-1i-2k—i+1), 3<i<k;
T(x‘|W)_{(2k—i+1,2k—i+2,i—k—1), k+2<i <2k

The representations of the vertices on the middle cycle are

(1,1,%), i=1;
) Gi—1k—i+1), 2<i<k;
r@lW) =1 (&, k1), i=k+1;

(2k —i+1,2%k—i+2,i—k), k+2<i<2k

The representations of the vertices on the outer cycle are

((2,2,k+1), i=1;
L ) G+ L5k —i+2), 2<i<k+1;
m#W) =9 k41,k+1,2), i=k+2

| (2k—i+2,2%k—i+3,i—k+1), k+3<i< 2%k

The representations of the set of outer vertices are

((3,3,k+2), i=1;
) G+2i+Lk—i+3), 2<i<k;
rwilW) =9 (k+2,k+2,3), i=k+1;

| (2k—i+3,2k—i+4,i—k+2), k+2<i < 2k.
We note that there are no two vertices having the same representations

implying that dim(RP) < 3.
On the other hand, we show that dim(RE) > 3. Suppose on contrary that
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dim(RE) = 2, hence there exists a resolving set consisting of two vertices.
If both vertices are in the inner cycle, without loss of generality we sup-
pose that one resolving vertex is z;. Suppose that the second resolving
vertex is z; (2 <t < k+1). Then for 2 <t < k, we have r(znl{z1,2¢}) =
r(ynl{z1,2:}) = (1,¢) and when t = k+1, 7(z2|{z1, k41}) = r(znl{z1, 2k s1}) =
(1,k — 1), a contradiction.

If one vertex is in the inner cycle and the other in the middle cycle, with-
out loss of generality we suppose that one resolving vertex is z;. Suppose
that the second resolving vertex is ¥y (1 < ¢t < k+1). Then for t = 1,
we have r(z2|{z1,11}) = r(¥n|{z1,11}) = (1,1) and when 2 < t < k + 1,
r(z2l{z1,%}) = r(y1l{x1,%:}) = (1,£ — 1), a contradiction. The remaining
cases may be solved in a similar manner.

It follows that there is no resolving set with two vertices for V(RE), imply-
ing that dim(R%) = 3 in this case.

Case 2. When = is odd.

In this case we can write n = 2k+1,k > 3,k € Z+. Let W = {z1,22, 241} C
V(RR), again we show that W is a resolving set for RP in this case also. For
this we give the representations of the vertices of V(RP)\W with respect
to W.

The representations of the vertices on the inner cycle are

(t—-1,i =2,k —i+1), 3<i<k
r(z:|W) = { (k,k, 1), i=k+2;
(2k—i+2,2%k—i+3,i—k—1), k+3<i<2%+1.
The representations of the vertices on the middle cycle are
(1,1,%), i=1;
) Gi—LE—i+1), 2<i<k;
r@lW) =19 (k+1,k,1), i= k1

(2% —i+2,2k—i+3,i—k), k+2<i<2k+1.

The representations of the vertices on the outer cycle are

(2,2,k + 1), i=1
) (15 k—i+2), 2<i<k
rEW) =0 (k1 2,k+1,2), i=k+1;

(2k—i4+3,2k—i+4,i—k+1), k+2<i <2 +1.

The representations of the set of the outer vertices are

(3’3,k+2)a i=1;
v ) i+ 2+ 1,k—i+3), 2<i<k
r(wi|W) = (k+3,k+2,3), i=k+1;

(2k—1+4,2k—i+5,i—k+2), k+2<i<2k+1.
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Again we see that there are no two vertices having the same representations
which implies that dim(RE) < 3.

On the other hand, suppose that dim(RE) = 2, then there are the same
possibilities as in case (1) and a contradiction can be deduced analogously.
This implies that dim(RE) = 3 in this case, which completes the proof.

3 Plane graph D?

For n > 6 we consider the plane graph represented in Fig. 2 which is denoted
by D?P. Deleting pendant edges d;ey, ..., dne, yields the graph denoted by
Dy, which is a plane representation of a convex polytope defined in [1]. We
have

V(DE) = V(D) U{es:1<i <n}

and
E(D?) = E(D;)U {die; :1 <i<n}

The metric dimension of the graph Dj; has been studied in [{11] and it has

Fig. 2. The plane graph Df,

been proved that this graph has metric dimension 3. In the next theorem we
prove that the metric dimension of D}, is the same as the metric dimension
of the graph DP.

For our purpose, we call the cycle induced by {a; : 1 < i < n}, the inner
cycle, the cycle induced by {b; : 1 <i <n}U{c; : 1 <4 < n}, the middle
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cycle, the cycle induced by {d; : 1 < i < n}, the outer cycle and the set
of vertices {e; : 1 < i < n}, the set of outer vertices. Again, the choice of
appropriate metric basis vertices is crucial.

Theorem 3. We have dim(D2) = 3 for every n > 6.

Proof. We will prove the above equality by double inequality.

Case 1. When n is even.

In this case, we can write n = 2k, k > 3,k € Z*. Let W = {z1,72,Tk41} C
V(DE), we show that W is a resolving set for D? in this case. For this we
give the representation of any vertex of V(DE)\W with respect to W.
The representations of the vertices on the inner cycle are

gwy={ (i-Li=2k-i+l), 3<i<k;
r@lW) = (k —i+1,2k—i42i—k—1), k+2<i< 2k

The representations of the vertices on the middle cycle are

1,2,k +1), i=1;
r|W) =< (4,i—1,k—i+2), 2<i<k;
(2k—i+2,2%—i+3,i—k), k+2<i< 2k
and
(2,2,k+1), i=1
) G+ k—i+2), 2<i<k;
r(e|W) = (k+1,k+1,2), i=k+1;

(2k—i+2,2k—i+3,i—k+1), k+2<i< 2k

The representations of the vertices on the outer cycle are

(313?’6'*'2)’ =1
o ) ((+2i+1,k—i+3), 2<i<k
rdW) =9 (k+2,k+2,3), i=k+1;

(2k—i+3,2%k—i+4,i—k+2), k+2<i<2k.

The representations of the set of outer vertices are

(4)4$k+3)1 i= 1;
_ ) (+3,i+2,k—i+4), 2<i<k
W)= (k+3,k+3,4), i=k+1;

(2k—i+4,2k—i+5i—k+3), k+2<i< 2k

We note that there are no two vertices having the same representations,
implying that dim(D?) < 3.
On the other hand, we show that dim(DE) > 3. Suppose on contrary that



dim(DF) = 2. It follows that there exists a resolving set containing two
vertices.

If both vertices are in the inner cycle, without loss of generality we sup-
pose that one resolving vertex is a;. Suppose that the second resolving
vertex is a; (2 <t < k+1). Then for 2 <t < k, we have r(an|{a1,a:}) =
r(b1){a1,a:}) = (1,t) and when t = k+1,7(az|{a1, ax41}) = r(anl{ar,ak+1}) =
(1,k — 1), a contradiction.

If one vertex is in the set of vertices {b; : 1 < ¢ < n} and the other
in the set {¢; : 1 < i < n}, we can suppose that one resolving vertex
is by. Suppose that the second resolving vertex is ¢, (2 < t < k +1).
For 2 <t < k — 1, we have r(a1|{b1,c}) = r(cnl{br,c:}) = (1,t +1). If
t =k, r(cn—2|{b1,cx}) = r(dn|{b1,cx}) = (3,k + 1) and when t = k + 1,
r(cn—2|{b1,ck+1}) = r(dn|{b1,ck+1}) = (3,k), a contradiction. The proof
of the remaining cases follows the same lines and are therefore omitted.
We deduce that there is no resolving set with two vertices for V(DZ), im-
plying that dim(D?R) = 3 in this case.

Case 2. When n is odd.

In this case, we can write n = 2k+1,k > 3,k € Zt.Let W = {z1,22,Zx4+1} C
V(DP), again we show that W is a resolving set for D2 in this case. For
this we give the representation of any vertex of V/(DE)\W with respect to
w

The representations of the vertices on the inner cycle are

(i—1,i—2,k—i+1), 3<i<k;
r(a;i|W) = ¢ (k,k, 1), i=k+2
(2k—i+1,2k—i+2,i—k-1), k+3<i<2k+1.
The representations of the vertices on the middle cycle are
1,2,k +1), i=1;
o _ ) (i =1 k—i+2), 2<i<k+1;
rGIW) =3 (k+1,k+1,2), =kt
(2% —i+2,2k—i+3,i—k), k+3<i<2k+1.
and
(272:k+1)1 i=1;
) _ ) G+1,4,k—i+2), 2<i<k
(W) = (k+2,k+1,2), i=k+1;

| (2k—i+3,2k—i+4,i—k+1), k+2<i<2k+1.

The representations of the vertices on the outer cycle are

((3,3,k+2), i=1;
) (2t Lk—i+3), 2<i<k;
rdilW) =1 (k+2,k+2,3), iZk+1;

| (2k—i+4,2k—i+5i-k+2), k+2<i<2+1.
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The representations of the set of the outer vertices are

4,4,k + 3), i=1;
o J G+3i+2,k—i+4), 2<i<k;
r(ElW) = (k+4,k+3,4), i=k+1;

(2k—i+52k—i+6i—k+3), k+2<i<2%k+1.

Again we see that there are no two vertices having the same representations,
which implies that dim(D?) < 3.

On the other hand, suppose that dim(DP) = 2, then there are the same
possibilities as in case (1) and a contradiction can be deduced analogously.
This implies that dim(DE) = 3 in this case, which completes the proof.

4 Plane graph Q?

The plane graph denoted by Q,, is defined by using D}, as follows: V(Q,,) =
V(D;) and E(Qr) = E(D};) U {bibi+1 : 1 <i < n} (by convention by, =
b1).

It has 3-,4-,5- and n-sided faces and is a plane representation of a convex
polytope defined in [2].

The plane graph Qf (Fig. 3) is obtained from the graph Q, by attaching
a pendant edge at each vertex of the outer cycle of Q,,. We have

V(QR) =V(@)U{e:1<i<n}

and
E(QF) = E(Qn)U{die; : 1< i< n}

The metric dimension of the graph Q, has been investigated in [11]. In

the next theorem we prove that the metric dimension of Q,, is the same as
the metric dimension of Q5.
For our purpose, we call the cycle induced by {a; : 1 < i < n}, the a-
cycle, the cycle induced by {; : 1 <4 < n}, the b-cycle, the set of vertices
{ci : 1 <4 < n}, the set of inner vertices, the cycle induced by {d; : 1 <
i < n}, the d-cycle and the set of vertices {e; : 1 < i < n}, the set of outer
vertices. Once again, the choice of appropriate metric basis vertices is very
important.

Theorem 4. For every n 2> 6, dim(QZ) = 3 holds.

Proof. We will also prove the above equality by double inequality.

Case 1. When n is even.

In this case, we can writen = 2k, k > 3,k € Z*. Let W = {21, 22, 241} C
V(QF), we show that W is a resolving set for QP in this case. For this we
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Fig. 8. The plane graph Q%

give the representation of any vertex of V(QZ)\W with respect to W.
The representations of the vertices on the a-cycle are

= 1i—-2,k—i+1), 3<igk
T(az|W)—{(2k_i+1,2k—i+2,i—k—1), k+2<i<2k.

The representations of the vertices on the b-cycle are
1,2,k +1), i=1;
r(&:;|W) =< (4,i—1,k—i+2), 2<i<k
(2k—i+2,2k—i+3,i—k), k+2<i< 2k,

The representations of the set of inner vertices are

(2s2$k+1), i=1;
_ _ ) (E+1,4,k—-i42), 2<i<k;
r(alW) = (k+1,k+1,2), i=k+1;

(2 —i+2,2%—i+3,i—k+1), k+2<i <2k

The representations of the vertices on the d-cycle are

3,3,k +2), i=1
un ) (G+25+1,k—i+3), 2<i<k;
MdlW) =9 (k+2,k+2,3), i=k+1;

(2k—i+3,2k—i+4,i—k+2), k+2<i<2k.
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The representations of the set of outer vertices are

(4,4,k+3), i=1;
' _ ) (E43,i+2,k—i+4), 2<i<k;
r(e|W) = (k+3,k+3,4), i=k+1;

(2k~i+4,2k—i+5,i—k+3), k+2<i<2k.

We note that there are no two vertices having the same representations,
implying that dim(Q?F) < 3.

On the other hand, we show that dim(Q%) > 3. Suppose on contrary that
dim(QF) = 2, i.e., there exists a resolving set including exactly two ver-
tices.

If both vertices are in the a-cycle, without loss of generality we suppose
that one resolving vertex is a;. Suppose that the second resolving ver-
tex is a; (2 <t < k+1). Then for 2 < t < k, we have r(a,|{a),a;}) =
r(bil{a1,.}) = (1,%) and whent = k-+1, 7(az[{a1, ak41}) = (an {a1, axs1}) =
(1,k — 1), a contradiction.

If one vertex is in the a-cycle and the other in the b- cycle, without
loss of generality we can suppose that one resolving vertex is a;. Sup-
pose that the second resolving vertex is by (1 < ¢ < k 4 1). Then for
1 <t <k, r(bal{a1,b:}) = r(cnl{a1,b:}) = (2,t) and when t = k + 1
r(az|{a1,be+1}) = r(an|{a1,bx+1}) = (1,k), a contradiction. The remain-
ing cases can be treated in a similar way.

It follows that there is no resolving set with two vertices for V(Q?), imply-
ing that dim(QR) = 3 in this case.

Case 2. When n is odd.

In this case, we can writen = 2k+1,k > 3,k € Z+. Let W = {z1,22,Tk41} C
V(QR), again we show that W is a resolving set for Q? in this case. For
this we give the representations of the vertices of V(Q2)\W with respect
to W.

The representations of the vertices on the a-cycle are

(i_lti_21k_i+l)a 35151‘:;
r(aiIW) = (ks kvl)a i=k+2;
(2k—i+1,2k—i+2,i—k—1), k+3<i<2k+1.

The representations of the vertices on the b-cycle are

1,2,k +1), i=1;
) Gi-1,k—i+2), 2<i<k+1;
r(b:|W) = (k+1,k+1,2), i=k+2;

(2k —i+2,2k—i+3,i—k), k+3<i<2k+1.



The representations of the set of inner vertices are

2,2,k +1), i=1;
o ) (41,5 k—i+2), 2<i<k;
r(@W) =1 (k+2,k+1,2), ik 1;

(k—i+3,2k—i+di-k+1), k+2<i<2k+1

The representations of the vertices on the d-cycle are

3,3,k +2), i=1;
) G2t Lk—i+3), 2<i<k;
rdilW) =9 (k+2,k+2,3), i=k+1;

(k—i+4,2k—i+54i—k+2), k+2<i<2%+1.

The representations of the set of outer vertices are

(4141k+3)1 i=1
) G35+ 2,k—i+4), 2<i<k
reW) =9 (k+4,k+3,9), i=k+1;

(2k —i+5,2k—i+6,i—k+3), k+2<i<2k+1.

Again we see that there are no two vertices having the same representations
which implies that dim(Q%) < 3.

On the other hand, suppose that dim(QR) = 2, then there are the same
possibilities as in case (1) and a contradiction can be deduced analogously.
This implies that dim(QP) = 3 in this case, which completes the proof.

5 Concluding remarks

In this paper we have studied the metric dimension of some plane graphs
which are obtained from convex polytopes by attaching a pendant edge to
each vertex of the outer cycle in a plane representation of these convex poly-
topes. We proved that the metric dimension of these plane graphs does not
depend upon the number of vertices in these graphs and only three vertices
appropriately chosen suffice to resolve all the vertices of these plane graphs.
It can be proved infact that for these graphs if we attach a path P;(t > 1) at
each vertex of the outer cycle, the metric dimension will not be affected. It
is natural to ask for the characterization of graphs G which are plane repre-
sentation of convex polytopes having the property that dim(G) = dim(G’),
where G’ is obtained from G by attaching a pendant edge to each vertex
of the outer cycle of G.

Note that in {17] Melter and Tomescu gave an example of infinite regular
graphs (namely the digital plane endowed with city-block and chessboard
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distances, respectively) having no finite metric basis. We close this section
by raising a question that naturally arises from the text.

Open Problem: Let G’ be a graph obtained from a plane representation
G of a convez polytope by attaching a pendant edge to each vertez of the
outer cycle of G. Is it the case that dim(G') = dim(G) always holds?
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