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Abstract

Brualdi and Massey in 1993 posed two conjectures regarding the
upper bound for incidence coloring number of graphs in terms of
maximum degree. In this paper among some results, we prove these
conjectures for some classes of graphs with maximum degree 4.
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1 Introduction

Throughout the paper, G = (V, E) is a finite, undirected and simple graph of
order n(G). The minimum and maximum degree of G are denoted by §(G) and
A(G), respectively. For the definitions and notations, we follow [4].

Suppose that v is an arbitrary vertex in G and e is an edge incident to v. The
pair (v, e) is called an incidence in G. The set of all of incidences in G is denoted
by I(G);

I{G) = {(v,e) € V(G) x E(G) : edge ¢ is incident to v}.

Two incidences (v, e) and (w, f) are said to be adjacent in G if one of the following
conditions holds:

i) v =w;
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ii)e=f;
iit) the edge vw equals to e or f.

The incidence coloring of G is a mapping o : I(G) =+ S (S is the color set)
in which adjacent incidences receive different colors. If |S| = k, then G is said
k-incidence colorable. The minimum k for which G is k-incidence colorable, is
the incidence coloring number of G denoted by x:(G). For a subgraph H of G,
we mean by S(H) the colors used for the incidences of H in coloring o.

In what follows, for convenience “coloring” means “incidence coloring”. For
an arbitrary vertex u of V(G), we denote the set of all incidences of form (u, uv)
by I (u) and the set of all incidences of form (v, vu) by I~ () and we show each
incidence (u, uv) by (uv). If o(uv) = i, then the phrase “affected incidences from
color 4", refers to all of the incidences which are adjacent to the incidence (uv).
For a subgraph H of G, Iz (u) means the set of incidences of I~ () which belong
to I(H). Also, Ny (u) means the set of neighbors of u in H.

The concept of incidence coloring was introduced by Brualdi and Massey in
1993 [5]. They proved that in general:

A(G) +1 £ xi(G) £ 24(G) ¢

The lower bound for some graphs such as complete graphs and trees; also the up-
per bound for cycles of order not divisible by 3 are attained. Among some other
results in (5], the following two conjectures, which are equivalent for A(G) < 3,
are posed.

Conjecture 1. The upper bound is never attained for graphs with A(G) > 2.

Conjecture 2. For every graph G, xi(G) < A(G) + 2.

Conjecture 2 is known as the incidence coloring conjecture (ICC).

The ICC is proved for some graphs such as complete graphs, trees, com-
plete bipartite graphs [5], graphs with A(G) = 3 [9], Ks-minor free graphs [8],
outerplanar 2-connected graphs [11].
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In [7] Guiduli showed that the concept of incidence coloring is a special case of
directed star arboricity introduced by Alon and Algor in [1]. Following their work,
he showed that the Paley graph of order p with p =1 (mod 4) is an example
to prove that ICC is false. Moreover, he proved that x:(G) > A + Q(log(4)),
where Q = 1/8 — o(1). However this asymptotic bound left open the possibility
of the truth of ICC for graphs with small maximum degree. The ICC for the
cases A(G) = 1 and 2 is straightforward. In [10] Shiu et al, proved the ICC
for cubic Hamiltonian graphs and some other cubic graphs and they conjectured
truth of ICC in general case for cubic graphs. In [9] Maydanskiy proved ICC for
all graphs with maximum degree 3. He conjectured that ICC would be true for

the graphs of maximum degree 4.

In this paper, we will investigate the incidence coloring of some graphs of max-
imum degree 4. According to the upper bound in (1), for such graphs, x:(G) < 8.
Regarding to prove the first conjecture, we decrease this bound to 7 for some 4-
regular graphs. Also, we prove the ICC for some classes of graphs with maximum

degree 4.

The following proposition is easy and its proof is omitted.

Proposition 1. If G is an edge disjoint union of two subgraphs G1 and G2, then
xi(G) £ xi(G1) + xi(G2).

In [6] it is proved that for every cycle Cr of order divisible by 3, x:(C») = 3
and for the other cycles, x;(Crn) = 4. Also it is proved that for every path P,
xi(Pn) = 3. For convenience in our expressions because of the repetition, we give
a coloring of cycles and paths and fix this coloring throughout the paper.

Let Cn : v1v2...0n11 be a cycle of order n, v; € V(Cs) and u € Ng, (v;). We
define the incidence colorings oo, 01 and o2 as follows.

I) If n = 3k, let g0 : I(C.) — {1,2,3}, where for every i, 1 < i < n, oo(uv:) =
3 i=0 (mod3)

{ 2 i=1 (mod3)
1 i=2 (mod3)

M Ifn=3k+1,let o1 : I(Cn) = {1,2,3,4}, where 01(I " (v1)) = 4 and for every

i,2<i<n,
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3 i=0 (mod3)
o{uvi)=< 2 i=1 (mod3)
1 i=2 (mod3)
III) If n = 3k + 2, let 02 : I(Cr) — {1,2,3,4}, where o2(v2v1) = 2, g2(vav1) = 3,

02(Vn-1va) =1, 02(n1vn) =4, and for i, 2<i<n—1,

3 i=0 (mod3)
o2(uvi) =< 2 i=1 (mod3)

1 i=2 (mod3)
Note that if Pn : v1v2...vn be a path, then the restriction of go on I(P,) is an
incidence coloring of P, by 3 colors. Later on, we denote this coloring by o'.

2 The truth of Conjecture 1 for some graphs
with A =4

In this section, we prove that Conjecture 1 is true for some classes of 4-regular
graphs. A 2-factor in a graph G is a 2-regular spanning subgraph of G. It is
known that every 4-regular graph is 2-factorable, that means E(G) is disjoint
union of two 2-factors [4].

Theorem 1. Suppose that G is a 4-regular graph with a cycle decomposition into
two 2-factors F| and F3.

I) If the orders of all components of Fy are divisible by 3 ezcept ezactly one cycle
which is of order 3k + 1 and F» is Ca-free, then xi(G) < 7.

II) If the orders of all components of Fy are divisible by 3 ezcept ezactly one cycle
which is of order 3k + 2, then x:(G) < 7.

Proof. I) Let F; = C1 UC2 U ... U Cy, where C; : niv2..uyvy, n(C1) = 3k + 1
and n(C;) =0 (mod 3), 2 < i < t. First we color the cycles C;, 2 < i < t,
as coloring oo and the cycle Ci as coloring 01. Then, we color 2-factor F2 as
follows. First set o(I, (v1)) = 4. Now, we color the affected incidences from
color 4. Clearly afterwards, we can color the remaining incidence of F> by four
colors {4,5,6,7}.

Let Np,(v2) = {vk,,vk,} and Np,(v) = {vks,vr,}. We call the sections

Uk, V2Uk, and vk, Uik, as subpaths. Since by assumption F; is Cy-free, vertices vz
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and v; have at most one common neighbor. If Nr, (v2) N Nr,(v) = @, then the
subpaths vi, v2vr, and v vive, are colorable as o’ separately using the colors
{5,6,7}. If [Npy(v2) N Ny (v1)] = 1, say vk, = vkg € Np,(v2) N Npy(wt), then the
subpath vy, vavk, vivk, is colorable as o’ using the colors {5,6,7}. Obviously after

this, the affected incidences from color 4 on the vertices v; and v are colored.

Let Nk (v1) = {vi,,vi,}. We assign o(I5, (vi,)) = 5§ and o(Ig,(vi;)) =
6. Now we consider the incidences affected from 4 by the vertices v;, and v;,.
Suppose N, (vi;) = {v1,v:,} and Ng,(vi,) = {v1,ve,} (since F is Cy-free, t1 #
t2). According to described coloring until now, to obtain a coloring, we must
have o(vi,v:,) € {6,7} and o(vi, ;) € {5, 7).

Now the remaining uncolored incidences of F» are union of some paths. To
complete the coloring, we can color these incidences using the colors {4, 5,6, 7}.
Since these incidences are not affected by incidences with color 4 and the colors
used on incidences in F are {1, 2,3}, such a coloring is possible (in Figure 1(I)
an example of such coloring is illustrated. 2-factor F is shown by black lines and

2-factor F; is shown by dash lines).

II) Let F =CiuCU...U Ct, where C, = U1v203...U101, n(Cl) =3k + 2 and
n(Ci) =0 (mod 3), 2 < ¢ < ¢t. First we color the cycles C; as coloring oo and

the cycle C) as coloring o2. Now we provide a coloring on the incidences of Fs.

For this purpose, first we color the affected incidences by color 4 and af-
terwards color the remaining incidences using colors {4,5,6,7}. Suppose that
NFry(v1) = {vk,, %, } and Nr,(v1) = {vks, v} If Nry(v1) () Nry(v) = @, then
color the subpaths vy, vyvx, and vggmvr, by {5,6,7} such that o(Ig,(n)) =
o(Ig,(w)) =7 . If |[Np, (1) () Ny ()| = 1, say vk, = vkg € Npy(v1) () Nry(wi),
then color the subpath vy, vive,vivk, by {5,6,7}. If [Np(v1)[Nry(w)] = 2,
then v, v1vk, vivr, forms a 4-cycle C’. To obtain a coloring, set:

o(Ig,(n1)) = 7,0(I5,(w)) = 4,0(Ig,(vk,)) = 6,0(IF,(vx,)) = 5

The assignment ¢ yields a coloring of C’.

So far, we have colored all of the incidences affected by color 4. Similar to the
previous part, the remaining incidences in F; are affected by three colors {1,2,3}
and those can be colored using four colors {4, 5,6, 7} (Figure 1(II) is an example
of such coloring. 2-factor Fi is shown by black lines and 2-factor F, is shown by
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dash lines). ]
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Figure 1: An example for Theorem 1.

Theorem 2. If G is a 4-regular graph decomposed into two Hamiltonian cycles,
then xi(G) < 1.

P Py
J—— [P — .
Proof. Suppose that C) : v1 V2...va'v; and C2 : v1 V505, .05, _, 1,3 £ j < n—1,

are two Hamiltonian cycles of G.

We proceed to give a coloring of G. We color the subpath P as coloring o',
such that S(P;) = {1,2,3}. Similarly, we color the subpath P as coloring o’,
such that S(P;) = {4,5,6}. Let v € V(G) — ({v1} U N(wn1}), Ne, (v) = {1, 22}
and Nc¢,(v) = {y1,y2}. According to the coloring, for colored incidences, we
have o' (vz;) # o' (vz;) # o'(ziv) € {1,2,3} and o' (vyi) # o' (vy;) # o' (yiv) €
{4,5,6}, for i,j = 1,2. Also, o'(vz:) # o'(vy:) and o'(z:v) # o'(vy:). Hence,
the affected incidences in an arbitrary vertex v have received different colors.

To complete the coloring of G it suffices to offer proper colors for the inci-
dences in I*(v;) and I~ (v1). For this sake, first we color the incidences of I*(v,).
Since o(v2vs) = 1, choose a; € {2,3} and a2 € {1,2,3} — {a1,0'(Uavn-1)} and
assign o(v1v2) = a1 and o(v1v) = a2. Similarly, there are two permitted colors

in {4, 5,6} to be assigned for the incidences (v1v;) and (v1v;,_,)-
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To complete the coloring of G and according to this fact that the incidences in
I~ (v1) are not adjacent, we assign o(v2v1) = o(vav1) = o(vjn1) = 0(vj,_,01) =
7. Therefore, xi(G) < 7 (in Figure 2 an example of such coloring is illustrated.

Two Hamiltonian cycles are discriminated by black and dash lines). ]
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Figure 2: An example for Theorem 2.

The existence of two edge disjoint Hamiltonian cycles in some 4-regular graphs
has been proved. In the following, we introduce some classes of such graphs and
conclude that Conjecture 1 is true for these graphs.

Definition 1. [4] Let T be o finite abelian group and S be a set of elements of
' not including the identity element. Suppose, furthermore, that the inverse of
every element of S also belongs to S. The Cayley graph of T’ with respect to S is
the graph CG(T, S) with vertez set I' in which two vertices z and y are adjacent
if and only ifzy~' € S.

Theorem 3. [3] Every 4-regular Cayley graph contains two edge disjoint Hamil-

tonian cycles.
Corollary 1. If G is a 4-regular Cayley graph, then x:(G) < 7.

Definition 2. (2] The Butterfly graph of dimension n, denoted by BF(n), is
the graph with vertez set Zn x Z3 and with edges defined as follows. Any vertez
(,z), where l € {0,..,n ~ 1}, z = ToZ1...Tn—-1,Ti € Z3,0 < i < n—1, is
adjacent to the vertez (I + 1,z) and to the vertez (I + 1,z(l)), where z(l) =

Z0Z1... Lt—1Z1T141..-Tn—~1.-
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Theorem 4. [2] The Butterfly graph contains two edge disjoint Hamiltonian

cycles.

According to 4-regularity of Butterfly graph, Theorem 2 ensures the truth of
Conjecture 1 for this graph.

Corollary 2. If G is a Butterfly graph, then x:(G) < 7.

3 The truth of ICC for some graphs with
A=4

In this Section, we prove that ICC (Conjecture 2) is true for some classes of

graphs of maximum degree 4.

Theorem 5. Suppose that G is a 4-regular graph decomposed into two 2-factors
F\, and F». If the order of every component of F1 and F» is divisible by 3, then
xi(G) < 6.

Proof. Let F1 = Cn UCn U U Cri and F; = Cy2 U Ca U U Ci2, where
n(Cin) =0 (mod3), n(Cj2) =0 (mod3),1 <i<rl<j<t Since
xi(Cn) = xi(Ci1) = 3,1 £i < r,1 < j <t by Proposition 1 we get, x:(G) <
xi(F1) + xi(F2) = 6 (in Figure 3 an example of such coloring is illustrated). W

Figure 3: An example for Theorem 5.



Corollary 3. Let G be a 4-regular graph of order divisible by 3 which can be
decomposed into two Hamiltonian cycles. Then, xi(G) < 6

Figure 4: An example for Corollary 3.

It is known that a 2k-regular graph consists of k edge disjoint 2-factors [4].
According to this fact, we have the following corollary.

Corollary 4. Let G be o 2k-regular graph. If E(G) = Fi U F2 U ... U F;, where
the order of each component in every 2-factor F; is divisible by 3, then G 1is
3k-incidence colorable.

Proof. Every 2-factor F;, 1 £ i £ k, is colorable with 3 colors (among 3k

colors). Therefore by Proposition 1, x:(G) < 3k. n

Theorem 6. If G is a graph with mazimum degree 4 which has a decomposition

into two Hamiltonian paths, then x:(G) < 6.

Proof. Let G = P, U Pz, where P, and P; are two Hamiltonian paths. We color
Py as coloring o' such that, S(P1) = {1,2,3} and path P: as coloring ¢’ such
that, S(P;) = {4,5,6}. This assignment gives an incidence coloring of G. Thus
by Proposition 1, xi(G) < xi(P1) + xi(P2) = 3+ 3 = 6 (in Figure 5 an example
of such coloring is illustrated). | |

Corollary 5. Let G be a 4-regular graph decomposed into 2-factors Fy and F,
where Fy is a Hamiltonian cycle and every component of F» is a cycle of order
multiple of 3 ezcept one cycle C of order 3k + 2. If e is an edge in C, then
xi(G—e) <6.
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Figure 5: An example for Theorem 6.

Proof. According to coloring o', P = C — e is 3-incidence colorable. If e = uv,
then there exists a € {1,2,3} such that a ¢ I (u) U I; (u). By the assumption
Gisof order n =2 (mod 3). Let Fy : v v2...un—1u. We color Fy as coloring
o2 such that S(F) = {4,5,6,a} and o2(uvn—1) = a. Finally, we color the cycle
components of order 3k in F> as coloring oo by colors {1,2,3}, by a renaming if
necessary, such that I, (va-1) = {a}. [ ]

Theorem 7. Suppose that G is a graph of mazimum degree 4 decomposed into

o Hamiltonian cycle C and o Homiltonian path P.

G,
(I) Let n(G) =3k +1 and C : viv2..v¢ ..uav1. If P : vivavj...vevavr..., where
n(C1) =1 (mod 3), then x:(G) < 6.
(IT) Let n(G) = 3k + 2. If C : vivz..v3vatn and P : v1vj,Yj,...0j, ...u1, where
vj, = Un for some jr =0 (mod 3), then x:i(G) < 6.

Proof. (I) First we provide a coloring of C' by colors {1,2,3,4}. In this case,
we consider o) as the following:

ai(Ig(m)) = 1, o1(Ig(v2)) = 4, and for every i, 3 < ¢ < n, a1(vwvi) =
{ 2 i=0 (mod3)

3 i=1 (mod3)
1 i=2 (mod3)

Now we color the incidences in P. First, we consider the incidences of P
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affected from color 4 on v, and ws. Since o(I;(vs)) = 2 and o(I}(vs)) =
o(IE(v1)) = {3,4}, we can set o(vsv;) = 1. Similarly, since o(I5(n1)) = 1
and o(IF(v1)) = o(I1&(vs)) = {3, 4}, we set o(vyv3) = 2. Now we color subpath
P, : v3v;...v, starting from the incidence v3v; as coloring o' by renaming color 1 to
5,2 to 6, and 3 to 4. Also, subpath P —v1vsv;...vsv2v; is colorable as o’ by colors
{4,5,6}. Now to complete the coloring it is sufficient to color incidences on vz in P
which are affected from color 4. Note that o(I5 (v2)) = 4 and o (I} (v2)) = {1,2}.
Also, Since n(Ci) = 1 (mod 3), it can easily be checked that o(I5(vt)) = 3.
Thus, we assign o(v2v¢) = 3. Now it suffices to set o(I; (v2)) = 5 and o(v2vy) = 6.
With this assignment the affected incidences of the color 4 on v, have received
different colors and the coloring is completed (Figure 6(I) is an example of such
coloring. The cycle and path are discriminated by black and dash lines).

(II) First we color the cycle C as o2. Now it suffices to color P in such
a way that adjacent incidences receive different colors. Consider the subpath
P, : v1v5,9j,...v5,. We color P; as coloring o', by renaming color 1 to 5, 2 to 6
and 3 to 4. Note that 4 € I;(vs) and due to the assumption n = ji, for some
Jx =0 (mod 3), it is easily checked that 4 ¢ I (va). Hence, 4 € I5(va). With
this assignment, the remaining incidences of P are colorable by colors {4,5,6}
and the coloring of G with 6 colors is completed (Figure 6(II) is an example of
such coloring. The cycle and path are discriminated by black and dash lines). B

Figure 6: An example for Theorem 7.
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4 Conclusion

In Section 2, Conjecture 1 is proved for 4-regular graphs which are decomposed
into two Hamiltonian cycles (Theorem 2). Also, the ICC is proved for graphs
of maximum degree 4 which are decomposed into two Hamiltonian paths (Theo-
rem 6). Thus, if G is a 4-regular graph containing two disjoint Hamiltonian cycles,
then by deleting one edge from each Hamiltonian cycle, we obtain a subgraph
satisfying the ICC. Moreover, in Section 3, with some assumptions for graphs
of maximum degree 4 decomposed into a Hamiltonian cycle and a Hamiltonian
path ICC is proved.

Furthermore, regarding to investigating the truth of ICC, we have considered

an equivalent definition of incidence coloring as follows.

Suppose V(G) = {vi1,...,vn} and E(G) = {es, ...,em}. The incidence matriz
of G is defined to be the n x m matrix B, (each row indicates a vertex and each

column indicates an edge), such that

B=(b;) = { é the ver.tex v; is incident to the edge e;
otherwise
Thus, every entry 1 in B indicates one of the elements of I(G). An incidence
coloring of G is a labeling of the entries 1 in B such that:
i) No two 1’s in the same row receive the same label;
ii) No two 1’s in the same column receive the same label;
iti) If the labels of the entries ij and k! in B are equal, then by # 1 and bg; # 1.

Using this definition, we have provided a computer program to determine the
incidence coloring number of 4-regular graphs. This program for all 4-regular
graphs of order at most 12 gives an incidence coloring by 6 colors.

These results are getting closer to prove ICC in general. Therefore, attempt-
ing to prove ICC for graphs with A = 4 would be worthwhile.
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