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Abstract

A unicyclic map is a rooted planar map such that there is only one cycle
which is the boundary of the unique inner face (the inner face contains no
trees) and the root-vertex is on the cycle. In this paper we investigate
the number of unicyclic maps and present some formulae for such maps
with up to three parameters: the number of edges and the valencies of the
root-vertex and the root-face.
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1. Introduction

Throughout this paper we consider the rooted maps on the plane. Def-
initions of terms not given here may be found in [14].

The concept of a rooted map was first introduced by W.T. Tutte. His
series of census papers [19-22] laid the foundation for the theory. Since
then, the theory has becn developed by many scholars such as Arques [1],
Brown (7,8], Mullin et al. [18], Tutte [23], Bender et al. [2-6], Liskovets et
al. [12,13], Gao [9,10] and Liu [14-17].

In this paper we investigate the number of unicyclic maps and also
present explicit formulac for such maps with up to three parameters: the
number of edges and the valencies of the root-vertex and the root-face.
Furthermore, all of them are summation-free. Before stating our main
results we have to define some basic concepts and terms.

A map is a connected graph cellularly embedded on a surface. A map
is Tooted if an cdge, a dircction along the edge, and a side of the edge are
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all distinguished. If the root is the distinguished edge from u to v, then
u is the root-vertex while the face on the distinguished side of the edge is
defined as the root-face. A unicyclic map is a rooted planar map such that
there is only onc cycle which is the boundary of the unique inner face (the
inner face contains no trees) and the root-vertex is on the cycle. Although
the enumeration of unicyclic maps had been investigated by some scholars
such as Liu [14], the case of unicyclic maps with the root-vertex being on
the cycle has not been solved. In addition, the problem is also motivated
by the classification of Belyi functions, which are in correspondence with
planar (hyper) maps.

For any map M € M, let M — e,.(M) and M e e,.(M) be the maps
obtained by deleting e.(M), the root-edge, from M and contracting e, (M)
into a vertex as the new root-vertex, respectively.

Given two maps M, and My with roots 7, = r(M;) and ro = r(My),
respectively, we define M = M, + M to be the map obtained by identifying
the root-vertices and the root-faces of M; and M; and rooting M at r;.
The operation for getting M from M; and M; is called the lv-addition.
Further, for two sets of maps M; and My, the set of maps

MiOMo={M + M| M; € M;,i =1,2}

is said to be the 1v-production of M, and Ma.

For a set of some maps .#, the enumerating function discussed in this
paper is defined as

fa(zy,z)= ) amMyndD 00, (1)
Mes

where m{M),n(M) and l(M) are, respectively, the root-vertex valency, the
number of edges and the root-face valency of M and we write that

g,,g(:l:, y) = f_,{((.’B, Y, l)a h'.ll(ya Z) = f./((l’y) Z),
Hy4(y) = f./((l,y, 1) = .q./((l)y) = h-/((ys 1) (2)

In addition, for the power series f(z), f(z,y) and f(z,y, 2), we employ
the following notations:

orf(z), OV f(z,y) and O f(z,y,2)

to represent the coefficients of z™ in f(z), ™y" in f(z,y) and z™y"2! in
f(z,v, z), respectively.
Let .7 be the set of all rooted plane trees. Obviously, Z can be divided

into two parts as
T =N+% 3)

such that Z) consists of a one-vertex map 9.
Lemma 1 (Liu [14]). Let <25 = {T — e-(T) | T € Z}. Then,

9<2>=.?X.7, (4)



where X is the Cartesian product.
Proof. Because any T € Z, the root-edge e.(T) of T is a cut edge,
T-e(T)=Th +T,T1,T2o € J. Sothat, T —e.(T) € I x Z. Thus,
9<2> Cc T x 7,

Conversely, for T € 9 x F wehave T =Ty +T5,T1,T5 € . The map
T’ obtained by adding an edge o connecting the two root-vertices v,(T})
and v,(T3) is a member of 9. Hence, T =T — a € J<a>. This means
that 9 X g g 9<2>. (]
Lemma 2. The enumerating function fo = fo(z,y, 2) satisfies the fol-
lowing equation: .

-1 — zyz2hg’

fa (5)
where hg = ho(y,2z) = f7(1,y, 2).
Proof. By (3) and (4), we have

fg =1+zyfohg

which is equivalent to Eq. (5). m]
If z=1, then we have:

Lemma 3. The enumerating function g = g (z,y) satisfies the following

equation:

1
97 = m, (6)
where Hy = Hg(y) = 97 (1,y).
Let z =1 in (5). Then we have
1
hg = 1—-yz2hg’
Now, let yz =7n(1—17) and z = ﬂ%ﬂl Then we get
1
hg = m

Again let z = ﬁ_%ﬁ Then one may find that Eq. (5) has a parametric
solution as follows:

3 A(1 = An)
r=——, yz=9(l-7) z2=——;
THen yz=n(1-mn) =7 -
hop = —— = .
7= T fo=1+¢&nA
Further, by (7) one may find a parametric solution to Eq. (6) as follows:
£
T = —_—, 3 1 —_— ;
i n(1-mn) ®

Hy = — = :
g=1=y 97 1+&n
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2. The case of the root-edge on the cycle

In this section we will discuss the enumeration of unicyclic maps having
the root-edge on the cycle.

Let % be the set of all unicyclic maps having the root-edge on the cycle.
The set % can be partitioned into two parts as

U =U + U, (9)

where %, = {M € % | e.(M) is a loop}.
Lemma 4. Let 1> = {M — e,(M) | M € % }. Then,

U1> =T (10)

Proof. First, it is clear that any M € %> is a tree. Then, any tree
can be seen as resulting from deleting the root-edge which is a loop in the
map obtained by adding a loop which is chosen to be the root-edge at the
Eoo;—vertex of the tree, and hence an element of the set on the left side of

10). 0
Lemma 5. For M € %, let M(; ;m(m)-i+2) be the map obtained by split-
ting the root-vertex into a root-edge < 0;,02 > so that the valency of o, is
i and the valency of oz is m(M) —i+2 for 1 < ¢ < m(M) + 1. Then, we

have
% = Z {MmM)-ir2) | 2 < T S m(M)}. (11)
Me%

Proof. Because for any M € %, among all the maps resulting from
splitting the root-vertex of M, only those for 2 < ¢ < m(M) are members

of %. This proves the lemma. m]
By Lemma 4, the enumerating function of %4 is
for, = 2%y2fg. (12)

Further, by Lemma 5, the enumerating function of %5 is

zyz(zhey —
fo, = y_(_l%;_i‘?/_), (13)
where hey = ha (y, 2) = far (L9, 2).
Combining (9) with (12-13) yields

zyz(zhey — fo)

1—-=z (14)

fo =yzfo +

After rearranging the items in the above equation, we have our first
main result.

Theorem 1. The enumerating function fg = fo(z,y, z) satisfies the
following equation:

(1 -z +zyz)for = (1 — 2)2%yzf 7 + z2yzhey, (15)
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where he = ha(y,2) = fa(1,y,2).

If z =1, then we have:
Corollary 1. The enumerating function go = go (z,y) satisfies the fol-
lowing equation:

(1 -2z + zy)ger = (1 — z)z%ygo + z°yHy, (16)

where Hyy = Ho/(y) = g (1,9).
Let @ be the root of characteristic equation of (16). Then we get

1-0+0y=0; a7
(1-6)0°yga(8,y) + 6*yHa = 0.

By (17) we have

y="22, Ha =(0-1g5(0.) (18)

Further, let 8 = ﬁ;; Then (18) becomes

n(1-mn) 1
=n(l - Hy = ,9)- 19
y=n(l-n), Ha 1_17“7293?(1_77_'_7’2 y) (19)

By (8) and (19), one may find the parametric expression of Hy =
Hy (y) as follows:
n

y=n(l-9), Hy= s (20)

Applying Lagrangian inversion [14] to (20), we obtain

yn dn—l —(n
Hey(y) = ﬁdnTl-{(l_n) ( +2)}
n21

n=0

_ (2n)! o
—fg n!(T+l—)!y ) (21)

which proves
Theorem 2. The number of unicyclic maps having the root-edge on the
cycle with n edges is

(2n)!

al(n + 1)1

forn> 1. O
By substituting (8) and (20) into Eq. (16) and regrouping the terms, we
may find the following parametric expression of the function gos = gy (z, y):

(22)

-_¢ - 2,1 _1+¢&n
T=1re ¥=0 n), Ty g =3 (23)
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from which we obtain

1

e 1-2
Dy = |7 1 S| = e l—. 24
@n =10 £~ T+én-n) 34

By employing Lagrangian theorem with two parameters [14], from (23)
and (24) one may find that

1+ &n)™(1 -2 i}
g ($, y) —_ Z a((;nnf)l) ( 57’) ("+2 "7) m+2y +1
g0 (1-m)

_ Z Z a(m—Z n—1) (1 + 577)"'-2(1 — 277) ™"
= () (1~ ¥l y
m22n21

n+1l

_Z Z 8n—m+l = ?ZH z™y"

n>1m=2

n+1
@n-m(m—1) mn
_ZZ nl(n —m+ 1)! v

n>1m=2

which proves
Theorem 3. The number of unicyclic maps having the root-edge on the
cycle with n edges and the root-vertex valency being m is

(2n —m)l(m — 1)

nl(n —m+1)! (25)

for2<m<n+1. (m}
Similarly, by (15) one may also find the parametric expression of hg =
ha (y, z) as follows:

AL = M) - 1
=n(l-q), z=20"21 hoy =— . (26
yz=n(l-mn), = T (y2)™ ha e p——— (26)
According to (26), we get
=2 9 (1-2n)(1-2xn)
A =" - = . 27
A 220" -1 - ) 30

Theorem 4. The enumerating function hg, = ha (y, z) has the following
explicit expression:

s0.0=Y Y (l_n.l&'# : (28)
121 paf i
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Proof. (26) and (27) allow us to employ Lagrangian theorem with two
variables [14] for finding

_ (ny) (1—29)(1 - 2)n) A+l i+l
bl D)= 2 S T =P N

_ JRR (1 — 2n)(1 = 2Xp)
ZZ )" (1 =n)2n=H(1 = Mp)t=n+[1 — (1 - ’7+)‘)]y !

n,l>0

121 n=1
gn=1i- n) (1 —2n)(1 - 2)n) y
=2 E (CY) 2n—1(] — Ap)i-n+2(] — I=ny 7 °
>1 n=1 77) (1 77) ( 1__)3,_,77)
_ Zii grmk-timm _ (1=)(1-2m) o,
S55 {(n,A) (1 — n)2n—l-k(1 - ,\n)l—n+k+2

1 2n—-l-1

Z Z Z 2l -2n+ k) (k+1) g2n—i—k- liy ,
121 paflflyy k= =n)ll=-n+k+1)17 (1 = p)2n-i-k

1
—1Y2n —
3D ((—-1)42n-1) )
nl(l —n)!
21 n=r4y
This completes the proof of Theorem 4. m]

In what follows we present a useful corollary of Theorem 4.

Corollary 2. The number of unicyclic maps having the root-edge on the
cycle with g edges on the cycle and p edges not on it is

(2p+4q—1)lg
pl(p+q)!

(29)

forp>0,¢g> 1.
Proof. It follows immediately from (28) withn =p+qandl=2p+q. 0

By substituting (7) and (26) into Eq. (15) and regrouping the terms,
;ne( may gind the following parametric expression of the function fg =
% \2,Y,2

__¢ o _AM1-M)
_1+£"7’\, yz"'n(l 77)1 z= 1_77 )
1 — M) (1 +&nr
=2 (yz) " far = (1 - ;’(1) (_ ;"’f’f\)). (30)
y (30) we have
1
s (1= 2n)(1 — 2\m)
Dean=| 0 F2 o0 |= 0 . (31)
7 0 1*" 11-_2,\7’3 (L+ &)1 —n)(1 - M)
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Theorem 5. The enumerating function fo = fe (z,y, 2) has the following
explicit expression:

l-n+42

. (-m)l@n+m—-1-8) . .,
(z,9,2) = DZ%_%_] ﬂ; m-)W(-n-m+on ¥°
+:r2yz. (32)

Proof. By using Lagrangian theorem with three parameters [14], from
(30) and (31) one may find that

gt (L= 201 = D)1t grAmam i
@A) 1= (1 =+ )1 - )11 - An)

Ju(z,y,2) =

m,n,i>0

_ gm-zn=ti-m_(1=2m)(1 = 23)(1 + €N 2amyn !
2.2 Z (€mA) [1 =701 -n+X)1-n)2 =1 - Iy)t-n

m>2 121 n=1
! min{n+1,l-n+2}

_ (n—=m+1,l—-n-m+2) (1—277)
aP 3D DED DR (A e T ESY)

(1 - 2)"7) m,n,l
A= Y
! min{n+1,l-n+2} (e Ll nem2) (1 _ 217)
=a'yz + Z Z Z Btn) (1- 1_—11_,7)
i>2n=2 m=2
(1 —2An)
(1 - n)2"-‘(1 —_ ,\n)l—n+1

x ™ yn zl

{ min{n+1,l-n+2} n—m+1

- —n— 1-2
=2z + Z Z Z Z 68;,,\;” Frbimnomed) a .(_ n)z——n"l)l—-k

1>2 n=2 m=2 k=0

(1 - 2)‘17) n !
§ _)\n)z—n+k+1 z"y" 2

l—-n+22n—-1-1
2-2n—-m+k+Dl(m+k-2)
=alyz+ ) Z IS I-n-m+2)(l—n+k)

l>2n—|'.:£'..'| m=2 k=0

1-29
2n—l—k— !
x 8, ' 1- n)2n—l-k$mynz
3 l-n+2
_ l-m2n+m—-1-3) myn 1
Pyz ), D D m—D(i-n-m+2) . %

>2 n_fl+l'| m=2

This completes the proof of Theorem 5. m]
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By (32) the following table of numbers can be obtained:

(m,n,l) (2,3,3) (2,3,4) (3,5,8) (3,6,9)
fo(m,n,l) 1 1 5 ]

With the table above, there are 9 such maps with the root-vertex valency
being 3, 6 edges and the root-face valency being 9 as shown in Fig. 1.

> b b
>y B b
ST

(m,n,l) = (3,6,9)
Fig. 1

Now, we give a useful corollary of Theorem 5.
Corollary 3. The number of unicyclic maps having the root-edge on the
cycle with g edges on the cycle, p edges not on it and the root-vertex valency
being m is
(2p+g-m)!(m+q-3)
p—-m+2)(p+g—1)!
forp>0,g>222<m<p+2;lforp=0,g=1,m=2.
Proof. It follows easily from (32) by puttingn =p+qandi=2p+gq. O

(33)

3. The case of the root-edge not on the cycle

In this section we will concentrate on the enumeration of unicyclic maps
having the root-edge not on the cycle.

Let % be the set of all unicyclic maps having the root-edge not on the
cycle. Then, we obtain the following result:



Lemma 6. For ?7, we have

U=%oU, (34)

where ® denotes the 1v-production.

Proof. For any M € “Z it is clear that there exist two maps T' € %% and
U e % such that M = T+ U. Thus, M is a member of the set on the right
side of (34).

Conversely, For T € %, and U € %, Since M = T + U is a unicyclic
map having the root-edge not on the cycle, we see that M € %.

In consequence, the lemma holds. m]

By Lemma 6, we have

f=,,2) =( > xm(T)yn(T)zl(T))( )3 zm(U)yn(U)zl(U))

Te 2 Ve
=f_g2($, y,z)f%(x, Y, Z). (35)

By (35) one may find that

ga’f(x5 Y) =92, (2, y)g (2, y), hq’;’(ya z) = ha,(y, 2)ha (v, 2),
Ha{y) =Hz,(y)Ha (y). (36)

According to (3), (8), (20) and the last part of (36), one may find the
following parametric expression of the function Hg- = Hz{y):

2

y=n(-n, Hy=qglm (37)

Applying Lagrangian inversion to (37), we get

" dr-l
Hg(y) = Z _:_!dnn—l {(1 _Z)n+3}

n>0

_ 4-Cn-1) .
Z (n=2)(n+ 2)' ’ (38)

n>2

n=0

which proves
Theorem 6. The number of unicyclic maps having the root-edge not on
the cycle with n edges is

4-(2n—1)!
(n—2)(n+2)V

for n > 2. (m]

(39)
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By (3),(8),(23) and the first part of (36), we may find the parametric
expression of gz = gz(z,y) as follows:

__¢£ — _ -2, -1, _ &n(1+&n)
=iy Yo n, Ty =", (40)

from which we get

1 *

1-2q

A =W o= = 41
En =l 2 A+éa-n “

By using Lagrangian theorem with two variables, from (40) and (41)
one may find that

_ (m,n) 577(1 - 277)(1 + f’?)m m n
sg(@y) = 3 9 -z ° Py

m,n>0

xmyn

=Y S e (1—2n)(1 +&m)m2
S5 &n) (1—p)n+!

n+1
- 1-2
_ Z Z(m ~ 28 mH(l_T)rZ-fmmyn

n>2m=3

3 "z*‘:l (2n = m)}(m = H)(m = 2) .,

nl(n —m+ 1)!

’
n>2m=3

which proves
Theorem 7. The number of unicyclic maps having the root-edge not on
the cycle with n edges and the root-vertex valency being m is

(2n —m)l(m — 1)(m - 2)

nl(n—m+ 1)! (42)

for3<m<n+1. D
Combining (3),(7),(26) with the second part of (36), one may find the
parametric expression of hz- = hg(y, z) as follows:

o _ A=)
yz=n(l-n), z= =g
An
“lp = . 43
W) har = T = n =+ 0] )
According to (43), we obtain
== 0 | _ (1-2p)(1—2)\p)

A = 1- — = . 44
1) 22| = AT (#4
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Theorem 8. The enumerating function kg = hg{y, 2) has the following
explicit expression: :

-1
o (l-—l)'(2n-l+2) o2,
hrln?) -lzzsrm%:i—] (n+ DI—n-1)1Y )

Proof. By employing Lagrangian theorem with two parameters, from (43)
and (44) one may find that

n+1_ n+l4+1
) = 3 S e TR
S DI N Uk L N
123 n=2 7+ N1 = n)2=H(1 - )
-
=>_ Z a((:;;)zl Y a- L—xﬂ.;l)(; 21],)7;;;_-12()1\1? ,\n)z—n+3y
123 n=2
_Z lzi niza(n—k —2,0-n-1) (1-2n)(1-2\n) e
gt (mA) (1- n)2n—l—k(1 _ ,\n)z-n+k+3
-y i Z"X': ' (21— 2n+ k)(k+3)
123 nafil) k=0 (-n-1(l-n+k+2)!
x ggrtmht u_l—)%y 2!

-1
_ (l—l)'(2n—l+2) n
_E Z (n+ DI = 1),1/ 2

This completes the proof of Theorem 8. O
If | = 2p+q and n = p + q, then we have:

Corollary 4. The number of unicyclic maps having the root-edge not on
the cycle with ¢ edges on the cycle and p edges not on it is

(2p+q~-1)(g+2)
- p+q+1)

(46)

forp>1,q21.
By (3),(7),(30) and (35), we may also find the following parametric
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expression of the function fz-= fz{z,y,2):

¢ A(1 = An)
=—_ =n(l- =
Tren VST 2=
2
-1 { "7)\(1 - ’7’\)
| __ En\1-nh) 47
V2 7 = T =+ ) “o
from which we have
o (1 - 27)(1 — 2p)
I B (P DM
T-An

Theorem 9. The enumerating function fz-= f5{(z, y, ) has the following
explicit expression:

=1 l-n42
_ (=m)i@ntm—1-8)(m=2) m ni
fo,y(x,y,Z)—iZZser‘_?] mz=s (r-D(l-n-m+2)! v

(49)

Proof. By using Lagrangian theorem with three variables, from (47) and
(48) one may find that

m—2ndm 1-27)(1-2X\
e = 3 3 o

m22n,l>1

(14 &nA)™- lxm+1 n+ln++1
(l—f\n)'

— (m-3n-2,l-n-1) (l - 27])(1 - 2)\17)
-ZZZ%"% > 1[1_n(1_,7+,\)](1_n)2n—1

m>3 123 n=2
o (Lt énAm—2
== *
{~1 min{n+1,l-n+2}

=22 XY (m-?

ynzl

>3 n=2 m=3
a(n—m+l d—n-m+2) (1 - 277)(1 - 2An)xmynzl
() [1 —n(1 =7+ X)) = n)>-H(1 - Ag)i-"
_ Z I—Zl mm{n-{i,f—n-l—-?}(m 3 2)3((:;;;n+l,l—n—m+2)£—_l%l
1>3 n=2 m=3 ' (1-1Em
(1 - 2’\77) ™y l

(1 _ )2n l(l — )\n)l-n+l y'z
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1—1 min{n+1,l-n+2} n—m+1 (1 — 27’)

= Z Z Z Z (m - 2)8((:;;;11—k+1,l—n-m+2)_—_—
k=0 ’ (1= n)2n—i-k

123 n=2 m=3
(1—2\p)

X (1 = Ap)l—ntk+t
-1 l-n+22n-1-1 2n—m+k+1)!(m+k—2)(m_2)

(2 -
W IDIEDIEDS (-n-m+2I—n+k)

l23n=|'l_-j-rl] m=3 k=0

™ yn zl

1-2
2n—1—k—1 n !
x a;" = z"Y"2

-1 l-n42
_ -m)2n+m—-1-3)(m=-2) .. .
=2 > X m-Dll—n-m+2! y"e.

123 n= f%—l"l m=3

This completes the proof of Theorem 9. m]
By (49) the following table of numbers can be obtained:

mml) | (34,5 | (3,4,6) | (4,6,9 | (58,12
| fz{min,l) 1 2 8 18

From the above table, there are 8 such maps with 6 edges, root-vertex
valency 4 and root-face valency 9, as shown in Fig. 2.

R
S

(mx n) l) = (4$ 61 9)
Fig. 2
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Finally, let { = 2p + ¢ and n = p + g. Then we get the following result:
Corollary 5. The number of unicyclic maps having the root-edge not on
the cycle with ¢ edges on the cycle, p edges not on it and the root-vertex
valency being m is

2p+g-—m)(m+qg—3)(m-2)
(p-m+2)p+g-1)! (50)

forp>1,g21,3<m<p+2
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