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Abstract. The Merrifield-Simmons index i(G) of a graph G is defined
as the total number of the independent sets of G. A connected graph
G = (V,E) is called a quasi-unicyclic graph if there is a vertex ug € V
such that G — ug is a unicyclic graph. Denote by % (n,do) the set of
quasi-unicyclic graphs of order n with G — up being a unicyclic graph and
de(uo) = dp. In this paper, we characterize the quasi-unicyclic graphs
with the smallest, the second-smallest, the largest and the second-largest
Merrifield-Simmons indices, respectively, in % (n, dp).
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1. Introduction

Let G = (V, E) be a connected graph with vertex set V(G) = {v1,vs,...,
vn} and edge set E(G) = {e1,e2,...,em}. If m = n—1+c, then G is called
a c-cyclic graph. If ¢ = 0,1 and 2, then G is a tree, unicyclic graph, and
bicyclic graph, respectively. A connected graph G = (V,E) is called a
quasi-c-cyclic graph if there is a vertex up € V such that G — ug is a c¢-
cyclic graph. If c = 0 and 1, then G is a quasi-tree and qasi-unicyclic graph,
respectively. Let % (n,dp) denote the set of quasi-unicyclic graphs of order
n with G — ug being a unicyclic graph and dg(up) = do. We denote by
K,, P,,C, and S, the complete graph, the path, the cycle and the star on
n vertices, respectively.

Let dg(v) be the degree of the vertex v of G. let N(v) = {u|uv € E(G)},
N[v] = N(v) U {v}. Two vertices of G are said to be independent if they
are not adjacent in G. An independent k-set is a set of k vertices, no two
of which are adjacent. Denote by i(G, k) the number of k-independent
sets of G. For convenience, we regard the empty set(denote by @) as an
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independent set. Then i(G,0) = 1 for any graph G. The Merrifield-
Simmons inder, denoted by i(G), is defined to be the total number of
independent sets of G, that is, i(G) = Y ;_, (G, k). It was introduced in
1982 in a paper of Prodinger and Tichy [9], although it is called Fibonacci
number of a graph there.

Since then, many researchers have investigated this graph invariant. An
important direction is to determine the graphs with maximal or minimal
indices in a given class of graphs. As for n-vertex general graphs, the
complete graph is the one that has the smallest Merrifield-Simmons index.
Generally, it is clear that removing edges increases the Merrifield-Simmons
index. Things become more interesting but more difficult if one imposes
further restrictions. As for n-vertex trees, Prodinger and Tichy [9] showed
that the path P, has the minimal Merrifield-Simmons index and the star
S, has the maximal Merrifield-Simmons index, respectively. In [10], Liu et
al. studied trees with a prescribed diameter with respect to the Merrifield-
Simmons index. As for n-vertex unicyclic graphs, Li and Zhu [6] attained
the upper bounds for the Merrifield-Simmons index of unicyclic graphs with
a given diameter. For n-vertex bicyclic graphs, Deng and coauthors [3, 4]
obtained the lower and the upper bounds for the Merrifield-Simmons index.

In light of the information available for Merrifield-Simmons index on
trees, unicyclic graphs and bicyclic graphs, it is natural that the quasi-tree
graphs are an other reasonable starting point for such an investigation. In
(7], Li et al. studied the lower and the upper bounds for the Merrifield-
Simmons index of n-vertex quasi-tree graphs. In this paper, we character-
ize the quasi-unicyclic graphs with the smallest, the second-smallest, the
largest and the second-largest Merrifield-Simmons index, respectively, in
%(Tl, do)

In order to state our results, we introduce some notation and terminol-
ogy. For other undefined notation we refer to Bollobés [1}. If W C V(G),
we denote by G — W the subgraph of G obtained by deleting the vertices
of W and the edges incident with them. Similarly, if £ C E(G), we de-
note by G — E the subgraph of G obtained by deleting the edges of E. If
W = {v} and E = {zy}, we write G —v and G —zy instead of G — {v} and
G — {zy}, respectively. For any two graphs G; and Gz, let G; U G2 denote
the disjoint union of G; and Gz, and for any nonnegative integer s, let sG
stand for the disjoint union of s copies of G. We obtain the join G + H
from G U H by adding all edges between G and H. If H,, H, are graphs
with V(H,) NV (Hz) = v, then G = H jvH; is defined as a new graph with
V(G) = V(H,) UV (H;) and E(G) = E(H,) U E(Hz). We always assume



that in graph GuvSj, v is identified with the center of the star S; in GvS;.
Denote by F,, the nth Fibonacci number. Recall that F,, = F,_; +
Fn_2,n > 2 with initial conditions Fy = F; = 1. Theni(P,) = Fny1,2(Pp) =
F,. Note that F, ., = FFin+ Fo_1 F—1. For convenience, we let Fy, =0
forn < 0.
Now we give some lemmas that will be used in the proof of our main
results.

Lemma 1.1 ([5]). Let G = (V, E) be a graph.

(i) If wv € E(G), then i(G) = i(G — wv) — i(G — {N[u]U N[v]}));
(i) Ifv e V(G), then i(G) = i(G —v) +i(G — N[v]);
(iii) If G1,Gs,...,G, are the components of the graph G, then i(G) =
H;:l z(C"J)'
Lemma 1.2 ([5]). Let G = (V, E) be a graph.

(i) If wv € E(G), then 2(G) = z(G — wv) + (G — {u,v}));
(ii) If ve V(G), then 2(G) = 2(C — v) + X en(w) 2(G — {w,v});
(iii) If G1,Ga,...,G¢ are the components of the graph G, then z(G) =
ITj=1 2(G;).
Lemma 1.3 ([10]). Let G be a connected graph and T; be a tree of order
L +1 with V(G)NV(Ty) = {v}. Then i(GvT}) < i(GvSi4+1).

Lemma 1.4 ([11]). Let H, X,Y be three connected graphs disjoint in pair.
Suppose that u,v are two vertices of H, v' is a vertex of X, u' is a vertex
of Y. Let G be the graph obtained from H,X,Y by identifying v with v’
and u with v, respectively. Let G} be the graph obtained from H,X,Y by
identifying vertices v,v',u’ and G} be the graph obtained from H,X,Y by
identifying vertices u,v',u’. Then

i(GY) > i(G) or i(G3) > (G).

Lemma 1.5 ([8]). Let n = 4s + r, where n,s and r are integers with

0<r<as.

(i) Ifre {0, 1}, then FoF, > FoF,_ o> - > F23F23+,- > Fog 1 Fogprp1 >
Fos 3Fpsqry3 > - > F3F 3> F\Fy_y;

(ii) Ifre {2,3}, then FoFy, > FoF 0> - > FoFogyr > Fogp1Fogyry >
Fos 1Fogpry1 >+ > FaFy_3 > F1Fy_ .

Lemma 1.6. [2]/ Among all unicyclic graphs of order n, the mazimum
of the Merrifield-Simmons index (which is 3-2"~3 4+ 1) is attained for
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the graph G2 that results from attaching n — 3 leaves to a triangle (the
only exception being n = 4, in which case the cycle Cy also mazimizes
the Merrifield-Simmons indez). On the other hand, the minimum of the
Merrifield-Simmons index (F, + F,, o) is attained for the cycle C,, and the
graph [, that results from attaching a path to a triangle.

2. The Merrifield-Simmons index of quasi- uni-
cyclic graphs
Lemma 2.1. Let G be a graph of order n. Then

(i) [7]i(G) < 2™, the equality holds if and only if G = nP;.
(i) If G 2 nPy, i(G) < 3-272, the equality holds if and only if G =
(n=2)P,UPs.

Proof. By Lemma 1.1(i), we have i(G—uv) = i(G)+i(G-{N[u]JuN[v]})) >

i(G). Then i(G) < i(G—¢) < - <i(G—e€ —€ — - —€m_1) =
((n—2)PLUP) <i(G—e, —ey— - —ey) =i(nPy). This complete the
proof. 0O

Let G}, G3 and G** be the graphs as shown in Figure 1, where G} =
K;1+Cp1,G3 = K1+ A,—, and G** is obtained by attaching n—4 pendent
vertices to one of the two vertices of degree 3 of the unique 4-vertex bicyclic

graph.

Uyl

G;
Figure 1: The graphs G}, G** and G}
Lemma 2.2. Let G € %(n,dp) with dy > 2, then F_y + Fp_3+1 <

i(G) <5-2""4 + 1. The equality holds on the left if and only if G = G} or
G5. The equality holds on the right if and only if G = G**.

Proof. By Lemma 1.1 and Lemma 1.6, we have

{G) = (G —uo)+1i(G—Nlug]) 2 Famr + Faz + 11,



the equality holds if and only if G — up = Cp—q or Ap_y, G — N{ug] = 9,
which implies that ug is adjacent to each vertex of C,_; or Ap,—1. Then
the equality holds if and only if G = G7 or Gj.

For any G € % (n,dp) with dp > 2, G — ug is a unicyclic graph and
V(G — N[ug])] £ n — 3. By Lemma 1.1 and Lemma 1.6, we have

iG) = G —uo)+i(G - Nluo]) <i(G}_;) +i((n - 3)P1),

the equality holds if and only if G —uo = G_, and G — N[ug) = (n—3)P;.
Then the right equality holds if and only if G & G**. By direct calculation,
i(GS_1)=3-2""*+1 and i((n — 3)P;) = 2*"3, then i(G) < 5-2"* +1.
This complete the proof. O

By Lemma 1.6 and Lemma 2.2, the following result is immediate.

Theorem 2.3. Let G € % (n,dp) with dg 2 1 then Fpq1 + Fr_3+1 <
i(G) £ 3-2"3 + 1. The equality holds on the left if and only if G = G} or
G3. The eguality holds on the right if and only if G = G2.

To obtain the graphs in % (n,dp) with the second-smallest Merrifield-
Simmons index, we first recall two transformations that decrease the Merrifield-
Simmons index.

Transformation I[12, 3] Let G % P, be a connected graph and choose
u € V(G), G, denotes the graph that results from identifying u with the
vertex vy of a simple path P, : v1 —va—--+—v,, 1 < k < n; Gy is obtained
from G by deleting vk—1vr and adding vyv,. Then i(Gy) > i(Gz).

Figure 2: The graphs in remark 1

Remark 1: By repeating Transformation I, any tree T attached to a
graph Go can be changed iteratively into a path (as shown in Figure 2).
The Merrifield-Sinmons index decreases at each iteration.

Transformation II{3] Let P = uujus,---,uw be an internal path in
G, the degrees of u;,ug,--- ,u; in G are 2 and G % P, let A; denotes the
graph that results from identifying u with the vertex v; of a simple path
Py vy — vy — -+ - — v and identifying v with the vertex vy, of a simple

67



path Py_k : Ug41 —Vk42 — <+ —Vn, 1 <k <n—1; Ay is obtained from A;
by deleting vx—jvr and adding v;v,, A3 is obtained from A; by deleting
Uk+1Vk+2 and adding vyv,. Then i(A;) > i(A2) or i(A4;) > i(43).

/\A. - ° : T

D,

Figure 3: The graphs A,, B, and D,

Lemma 2.4. Let G be a connected unicyclic graph of order n and G 2
Cn’ Anr
(i) if n =35, i(G) > 3Fa—2 + 2F,_4;
(i) if n 2 6, i(G) > 3Fh_2 + 2F,_4, the equality holds if and only if
G = A,, B, or D, (as shown in Figure 3).

Proof. Since G 2 C,,, Ay, then n > 5. For any unicyclic graph G, it can
be obtained from a cycle by planting trees to some vertices of the cycle.
Let k be the length of the unique cycle in G.

W, W, 4

Figure 4: The unicyclic graphs of order 5 except Cs, As

(i) if n = 5, by direct calculation, we have i{(W;) = i(Ws) = 12,i(W3) =
13. Then i(G) > 3F5_o + 2F5_4 = 11.

(i) n > 6.

Case 1. k > 4.

Let G; be the graph obtained by replacing each planted subtree of G by
a pendant path of same order. By Remark 1, we have that i(G) > i(G),).
Repeatedly by Transformation II, we can obtained a graph G that results
fromn attaching a path P,_r41 to a vertex of the cycle Cx and i{(G) >
i(G1) > i(G2). The equality holds if and only if G = G; = G;. By Lemma
1.1, we have

i(G2) = FrFa_rsr+ FrooFpn = Foy1 — Fe_3Fnk.
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Since G % Cy,, then4 < k < n—1. By Lemma 1.5, we have Fo F(5,_3)_2 >
Fy_3F,_k, then i(G2) > Fp1 — FoFn_3)~2 = 3F,_2+2F,_4. The equal-
ity holds if and only if kK —~3 = 2 or n — k = 2, that is, G & B, or
D,.

Case 2. k = 3. Let C3 = vivqv3.

If at least two of dg(v1),dg(vz) and de(v3) are larger than 3, replacing
each tree by a pendant path P; = vauiu} - - uj (i = 1,2, 3) of the same order
gives the graph G;, by Remark 1, i(G) > #(G,). If all of ly, I3, 3 are larger
than 1, let G| be the graph which is obtained from G; by deleting v;u} and
adding ufzu} or by deleting vou? and adding u,ll u?. By Transformation II,
we have i(G) > i(G1) = i(G}). Let one of the pendant paths of G} be F,.
By Lemma 1.1, we have

?,(Gll) = Fn +F’an_1_l.

Then i(G) 2 Fpo + FiFp_1-1 > Fo + F3F,_y = 3F, 3+ 2F,_4 > F, +
FF,_s since G % A,,, the second equality holds if and only if G = A,,.

If only one of dg(v;),dg(v2) and dg(vs) is larger than 3, without loss
of generality, let dg(vs) > 3.

If dg(v3) > 4, let G2 be the graph obtained by attaching two pendant
“paths to v3, by Remark 1 and Transformation 11, i(G) 2 i(G2). Let one of
the pendant paths be P;. By Lemma 1.1, we have

i(Gy) = Fn1+2FRF. 1.

Then WG) 2 Fo1+2RF,_1 2 Fao1 +2F3F,_4 > 3F,_2 +2F,_4 >
F,_1+2F F,_5 since G 2 A,.

Figure 5: The graph G}
If dg(v3) = 3, then there exists a vertex v # v3 and dg(v) > 3 since

G % A,. Let G} be the graph as shown in Figure 5, where a,b are the
lengths of the two pendant paths attaching at v, respectively. By Remark
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1 and Transformation II, i(G) > #(G%). By Lemma 1.1, we have
Z(Glz) = 3Fa+lFb+1Fn~3—a-b + FanFn—4—a—b +
Fa+1Fb+1Fn—4—a—b + FanFn—s-—a—bo

But

i(Gy) — BFn—2+2Fn_4) = Fop1FypiFaogg-p+
3Fa+1Fb+lF —5—a-b+ FanFn—4—a—b
—2F, FyF_5—a—b—2Fa—1Fy—1Frn5-a-b

> FopFopiFng—a-b>0.

Hence i(G) > 3F,_2 + 2F,,_4, the equality holds if and only if G =
A,,B, or D,. O

N 2

Figure 6: The graphs G1,G2,G2 and G4

Lemma 2.5. Let G be a connected unicyclic graph of order n. If G % G2,
then i(G) < 5-2"% + 2, the equality holds if and only if G = G or G2.

Proof. By direct calculation, i(Gl) = i(G2) = 5-2"~44-2. For any unicyclic
graph G, it can be obtained from a cycle by planting trees to some vertices
of the cycle. Let k be the length of the unique cycle in G.

Case 1. k > 4.

Replacing each tree of G by a star of the same order gives the graph H;,
by Lemma 1.3, i{(G) < i(H;). Repeatedly by Lemma 1.4, we can attained
a graph H» which is obtained by attaching a star S,_x4) to a vertex of the
cycle Ci, and i(G) < i(H;) < i(H3), the equality holds on the right if and
only if G = Hy & H,. By Lemma 1.1, we have

i(Hy) = 2" FF + Fe_a = f(k),
but for k > 5, we have

f(k—1) — f(k) 2 RHIE )+ Fy3 — (2" *Fy + Fi-2)

2"k Fy_3 — Fr_q >0,
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So i(G) < i(Gl) < i(GY), the equality holds on the right if and only if
G=Gl.

Case 2. k = 3, let Cr = vyvovs.

If at least two of dg(v;), dc(v2) and d¢(vs) are larger than 3, let H; be
the graph obtained by replacing each tree of G by a star of the same order,
by Lemma 1.3, i{(G) < i(H;). By Lemma 1.4, we can obtain the graph
G?, and i(G) < i(H;) < i(G?) < i(GY), the equality holds if and only if
G~ H =G

If only one of dg(v1),de(v2) and dg(vs) is larger than 3, without loss
of generality, let dg(v3) > 3.

If dg(vs) > 4, repeatedly by Lemma 1.3 and Lemma 1.4, we can obtain
the graph G3. By Lemma 1.1, we have

{(G3)=9-2""542<5.2"4 42

If dg(v3) = 3, similar to the procedure of the case of dg(vs) > 4, we
can obtain the graph G2. By direct calculation, we have

i(Ga)=4-2"""+2<5.2""4 12
Hence i(G) < 5-2"~% + 2, the equality holds if and only if G = G2 or

G2
O

v \
W h Y. Vot
£

Figure 7: The graphs A*, B* and D*

Let A be the graph obtained by attaching a pendant path P3 at v3
and P,,_s at vs of C3 = v3v,4vs, respectively. By Cn_1 i denote the graph
constructed by identifying a vertex of Cx with one of the end vertex of
Pa_i. Let A*, B*,D*, E, and Gj ;,G3 ; be the graphs as shown in Figure
7 and Figure 8, where A* = K1 +A,B* = K1+Cp_1n—3,D* = K14+Cr_15
and G} ; = G — uov;, G5 ; = G3 — uov;.

Lemma 2.6. Let G € % (n,do) with n > 7,do > 2, if G % G}, G}, G**.
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G G,

\J 2,j

Figure 8: The graphs E,,Gj ; and G; ;

(i) Ifn=1,8, Fo_1+ F,_3+2 < i(G) £9-2""5+2, The equality on the
left holds if and only if G = A* or B*,D*,G} ;,G5;,j=1,--- ,n—1.
The equality holds on the right if and only if G = E,,.

() Ifn>9 Fooi+Faos +2 <4i(G) £ 9275 4 2. The equality on
the left holds if and only if G = G} ; or G5 ;,j = 1,---,n—1. The
equality holds on the right if and only if G= E,,.

Proof. By Lemma 1.1, we have
i(G) = (G —u)+iG - Nug)),

Case 1. Both i(G — ug) and (G — N[up)) attain the smallest values,
that is, G —up = Cpn_y or Ap_1, and G — N[ug) = 0. Then G = G} or G3,
it is imnpossible.

Case 2. i(G — ug) achieves its smallest value, while i{(G — N[ug))
reaches its second-smallest value. Then G — uy & C,_; or A,_;, and
G — N[ug] = P;. So we have

i(G) = (G —ug)+i(G— Nlug]) > Foo1+ Fa_z +2,

the equality holds if and only if G —up 2 Cp_1 or A,_1, and G — N{uyg] =
Py, thatis, GG ;or G} ;,i=1,--- ,n—1L
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Case 3. i(G — N|ug)) reaches its smallest value, while {(G — up) attains
its second-smallest value. By Lemma 2.5, G — ug = A,_1, Bn_1 or D,,_1,
and G — Nup) = 9. So we have

i(G) = (G —up)+i(G — Nfuo]) > 3Fa_s + 2Fn_s + 1,

the equality holds if and only if G — up & A,_;,Bn_1 or D,_y, and G —
Nug) = 0, that is, G = A*, B* or D*.
But

3Fn—3+2Fn—5+1 - (Fn—l +Fn—3+2) =Fn—5_Fn—6 -1,
then we have the following results:

(i) Un=7,8,4G) > Fao1+F_3+2 =3F,_3+2F,_s +1. The equality
holds if and only if G = A* or B‘,D",G{'j,Ga,j,j =1,.-,n—-1.

(i) Ifn >9,3F,_34+2F,_5+1 > F_14+Fn_3+2and i(G) > Fr_1+Fp_3+
2. The equality holds if and only if G = GljorG;;,i=1,---,n—1

Now, we consider the right inequality. Note that, for any G € % (n,dp)
with dp > 2, G — up is a unicyclic graph and |V(G — N{u))| < n —3.

Case 1. Both i(G — up) and i(G — N[ug]) attain the largest values,
that is, G — uo & G%_,, and G — N[ug} = (n — 3)P,. Then G = G**, it is
impossible.

Case 2. i(G — Nup]) achieves its largest value, while i(G —ug) reaches
its second-largest value. Then G — N[ug] = (n — 3)P; by Lemma 2.1, and
G — up @ GL_, by Lemma 2.5. So we have

iG) = (G ~up)+iG—Nlug]) <5-2"°+2+2"%=9.2"5 12

the equality holds if and only if G—uo 2 G_,, and G— Nug) = (n—-3)P,,
that is, G = FE,,.

Case 3. i(G — up) reaches its largest value, while i(G — Nug]) achieves
its second-largest value. Then G — up & G%_, by Lemma 1.6, and G —
N[uo] = (n — 5)P, U P; by Lemma 2.5. So we have
i(G) = i(G-uo)+i(G~Nlul)<3-2"*+1+3.-2"%=9.27""5 41

< 9-2"7% 42

O

By Lemma 2.5 and 2.6, we have
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Theorem 2.7. Let G € %(n,do) withn > 7,do > 1, G % G},G3,G.

(i) Ifn=17,8, Fac1+Fno_3+2 < i(G) <5-2""* +2. The equality on the
left holds if and only if G = A* or B*,D*,Gj ;,G3 5,5 =1,--- ,n—1.
The equality holds on the right if and only if G = G1.

() Ifn>9, Facp + Froes +2 < i(G) < 5-277% + 2. The equality on
the left holds if and only if G = G} ; or G5 ;,j = 1,--- ,n—1. The
equality holds on the right if and only if G = G}.
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