On the extremal Merrifield-Simmons index of quasi-unicyclic graphs

Shan Duan, Zhongxun Zhu*

Faculty of Mathematics and Statistics, South Central University for Nationalities, Wuhan 430074, P.R. China

Abstract. The Merrifield-Simmons index i(G) of a graph G is defined as the total number of the independent sets of G. A connected graph G = (V, E) is called a quasi-unicyclic graph if there is a vertex $u_0 \in V$ such that $G - u_0$ is a unicyclic graph. Denote by $\mathcal{U}(n, d_0)$ the set of quasi-unicyclic graphs of order n with $G - u_0$ being a unicyclic graph and $d_G(u_0) = d_0$. In this paper, we characterize the quasi-unicyclic graphs with the smallest, the second-smallest, the largest and the second-largest Merrifield-Simmons indices, respectively, in $\mathcal{U}(n, d_0)$.

Keywords: independent set; Merrifield-Simmons index; quasi-unicyclic graph AMS subject classification: 05C69, 05C05

1. Introduction

Let G = (V, E) be a connected graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set $E(G) = \{e_1, e_2, \ldots, e_m\}$. If m = n - 1 + c, then G is called a c-cyclic graph. If c = 0, 1 and 2, then G is a tree, unicyclic graph, and bicyclic graph, respectively. A connected graph G = (V, E) is called a quasi-c-cyclic graph if there is a vertex $u_0 \in V$ such that $G - u_0$ is a c-cyclic graph. If c = 0 and 1, then G is a quasi-tree and qasi-unicyclic graph, respectively. Let $\mathscr{U}(n, d_0)$ denote the set of quasi-unicyclic graphs of order n with $G - u_0$ being a unicyclic graph and $d_G(u_0) = d_0$. We denote by K_n, P_n, C_n and S_n the complete graph, the path, the cycle and the star on n vertices, respectively.

Let $d_G(v)$ be the degree of the vertex v of G. let $N(v) = \{u|uv \in E(G)\}$, $N[v] = N(v) \cup \{v\}$. Two vertices of G are said to be independent if they are not adjacent in G. An independent k-set is a set of k vertices, no two of which are adjacent. Denote by i(G,k) the number of k-independent sets of G. For convenience, we regard the empty set(denote by \emptyset) as an

The Project was Supported by the Special Fund for Basic Scientic Research of Central Colleges, South-Central University for Nationalities(ZZZ10005). * Corresponding author (E-mail: zzxun73@mail.scuec.edu.cn)

independent set. Then i(G,0) = 1 for any graph G. The Merrifield-Simmons index, denoted by i(G), is defined to be the total number of independent sets of G, that is, $i(G) = \sum_{k=0}^{n} i(G,k)$. It was introduced in 1982 in a paper of Prodinger and Tichy [9], although it is called Fibonacci number of a graph there.

Since then, many researchers have investigated this graph invariant. An important direction is to determine the graphs with maximal or minimal indices in a given class of graphs. As for n-vertex general graphs, the complete graph is the one that has the smallest Merrifield-Simmons index. Generally, it is clear that removing edges increases the Merrifield-Simmons index. Things become more interesting but more difficult if one imposes further restrictions. As for n-vertex trees, Prodinger and Tichy [9] showed that the path P_n has the minimal Merrifield-Simmons index and the star S_n has the maximal Merrifield-Simmons index, respectively. In [10], Liu et al. studied trees with a prescribed diameter with respect to the Merrifield-Simmons index. As for n-vertex unicyclic graphs, Li and Zhu [6] attained the upper bounds for the Merrifield-Simmons index of unicyclic graphs with a given diameter. For n-vertex bicyclic graphs, Deng and coauthors [3, 4] obtained the lower and the upper bounds for the Merrifield-Simmons index.

In light of the information available for Merrifield-Simmons index on trees, unicyclic graphs and bicyclic graphs, it is natural that the quasi-tree graphs are an other reasonable starting point for such an investigation. In [7], Li et al. studied the lower and the upper bounds for the Merrifield-Simmons index of n-vertex quasi-tree graphs. In this paper, we characterize the quasi-unicyclic graphs with the smallest, the second-smallest, the largest and the second-largest Merrifield-Simmons index, respectively, in $\mathcal{U}(n,d_0)$.

In order to state our results, we introduce some notation and terminology. For other undefined notation we refer to Bollobás [1]. If $W \subset V(G)$, we denote by G - W the subgraph of G obtained by deleting the vertices of W and the edges incident with them. Similarly, if $E \subset E(G)$, we denote by G - E the subgraph of G obtained by deleting the edges of E. If $W = \{v\}$ and $E = \{xy\}$, we write G - v and G - xy instead of $G - \{v\}$ and $G - \{xy\}$, respectively. For any two graphs G_1 and G_2 , let $G_1 \cup G_2$ denote the disjoint union of G_1 and G_2 , and for any nonnegative integer s, let sG stand for the disjoint union of s copies of s. We obtain the join s of s with s of s defined as a new graph with s with s of s of s defined as a new graph with s of s of s of s of s defined as a new graph with s of s of s of s of s defined as a new graph with s of s of s of s of s of s defined as a new graph with s of s of

that in graph GvS_l , v is identified with the center of the star S_l in GvS_l .

Denote by F_n the *n*th Fibonacci number. Recall that $F_n = F_{n-1} + F_{n-2}$, $n \ge 2$ with initial conditions $F_0 = F_1 = 1$. Then $i(P_n) = F_{n+1}$, $z(P_n) = F_n$. Note that $F_{n+m} = F_n F_m + F_{n-1} F_{m-1}$. For convenience, we let $F_n = 0$ for n < 0.

Now we give some lemmas that will be used in the proof of our main results.

Lemma 1.1 ([5]). Let G = (V, E) be a graph.

- (i) If $uv \in E(G)$, then $i(G) = i(G uv) i(G \{N[u] \cup N[v]\})$;
- (ii) If $v \in V(G)$, then i(G) = i(G v) + i(G N[v]);
- (iii) If G_1, G_2, \ldots, G_t are the components of the graph G, then $i(G) = \prod_{j=1}^{t} i(G_j)$.

Lemma 1.2 ([5]). Let G = (V, E) be a graph.

- (i) If $uv \in E(G)$, then $z(G) = z(G uv) + z(G \{u, v\})$;
- (ii) If $v \in V(G)$, then $z(G) = z(G v) + \sum_{u \in N(v)} z(G \{u, v\})$;
- (iii) If G_1, G_2, \ldots, G_t are the components of the graph G, then $z(G) = \prod_{j=1}^t z(G_j)$.

Lemma 1.3 ([10]). Let G be a connected graph and T_l be a tree of order l+1 with $V(G) \cap V(T_l) = \{v\}$. Then $i(GvT_l) \leq i(GvS_{l+1})$.

Lemma 1.4 ([11]). Let H, X, Y be three connected graphs disjoint in pair. Suppose that u, v are two vertices of H, v' is a vertex of X, u' is a vertex of Y. Let G be the graph obtained from H, X, Y by identifying v with v' and u with u', respectively. Let G_1^* be the graph obtained from H, X, Y by identifying vertices v, v', u' and G_2^* be the graph obtained from H, X, Y by identifying vertices u, v', u'. Then

$$i(G_1^*) > i(G)$$
 or $i(G_2^*) > i(G)$.

Lemma 1.5 ([8]). Let n = 4s + r, where n, s and r are integers with $0 \le r \le 3$.

- (i) If $r \in \{0,1\}$, then $F_0F_n > F_2F_{n-2} > \cdots > F_{2s}F_{2s+r} > F_{2s-1}F_{2s+r+1} > F_{2s-3}F_{2s+r+3} > \cdots > F_3F_{n-3} > F_1F_{n-1}$;
- (ii) If $r \in \{2,3\}$, then $F_0F_n > F_2F_{n-2} > \cdots > F_{2s}F_{2s+r} > F_{2s+1}F_{2s+r-1} > F_{2s-1}F_{2s+r+1} > \cdots > F_3F_{n-3} > F_1F_{n-1}$.

Lemma 1.6. [2] Among all unicyclic graphs of order n, the maximum of the Merrifield-Simmons index (which is $3 \cdot 2^{n-3} + 1$) is attained for

the graph G_n^0 that results from attaching n-3 leaves to a triangle (the only exception being n=4, in which case the cycle C_4 also maximizes the Merrifield-Simmons index). On the other hand, the minimum of the Merrifield-Simmons index (F_n+F_{n-2}) is attained for the cycle C_n and the graph Δ_n that results from attaching a path to a triangle.

2. The Merrifield-Simmons index of quasi- unicyclic graphs

Lemma 2.1. Let G be a graph of order n. Then

- (i) $|7| i(G) \leq 2^n$, the equality holds if and only if $G \cong nP_1$.
- (ii) If $G \ncong nP_1$, $i(G) \le 3 \cdot 2^{n-2}$, the equality holds if and only if $G \cong (n-2)P_1 \cup P_2$.

Proof. By Lemma 1.1(i), we have $i(G-uv)=i(G)+i(G-\{N[u]\cup N[v]\}))>i(G)$. Then $i(G)< i(G-e_1)<\dots< i(G-e_1-e_2-\dots-e_{m-1})=i((n-2)P_1\cup P_2)< i(G-e_1-e_2-\dots-e_m)=i(nP_1)$. This complete the proof.

Let G_1^* , G_2^* and G^{**} be the graphs as shown in Figure 1, where $G_1^* = K_1 + C_{n-1}$, $G_2^* = K_1 + \triangle_{n-1}$ and G^{**} is obtained by attaching n-4 pendent vertices to one of the two vertices of degree 3 of the unique 4-vertex bicyclic graph.

Figure 1: The graphs G_1^* , G^{**} and G_2^*

Lemma 2.2. Let $G \in \mathcal{U}(n, d_0)$ with $d_0 \geq 2$, then $F_{n-1} + F_{n-3} + 1 \leq i(G) \leq 5 \cdot 2^{n-4} + 1$. The equality holds on the left if and only if $G \cong G_1^*$ or G_2^* . The equality holds on the right if and only if $G \cong G_1^{**}$.

Proof. By Lemma 1.1 and Lemma 1.6, we have

$$i(G) = i(G - u_0) + i(G - N[u_0]) \ge F_{n-1} + F_{n-3} + 1,$$

the equality holds if and only if $G - u_0 \cong C_{n-1}$ or Δ_{n-1} , $G - N[u_0] = \emptyset$, which implies that u_0 is adjacent to each vertex of C_{n-1} or Δ_{n-1} . Then the equality holds if and only if $G \cong G_1^*$ or G_2^* .

For any $G \in \mathcal{U}(n, d_0)$ with $d_0 \geq 2$, $G - u_0$ is a unicyclic graph and $|V(G - N[u_0])| \leq n - 3$. By Lemma 1.1 and Lemma 1.6, we have

$$i(G) = i(G - u_0) + i(G - N[u_0]) \le i(G_{n-1}^0) + i((n-3)P_1),$$

the equality holds if and only if $G - u_0 \cong G_{n-1}^0$ and $G - N[u_0] = (n-3)P_1$. Then the right equality holds if and only if $G \cong G^{**}$. By direct calculation, $i(G_{n-1}^0) = 3 \cdot 2^{n-4} + 1$ and $i((n-3)P_1) = 2^{n-3}$, then $i(G) \leq 5 \cdot 2^{n-4} + 1$. This complete the proof.

By Lemma 1.6 and Lemma 2.2, the following result is immediate.

Theorem 2.3. Let $G \in \mathcal{U}(n, d_0)$ with $d_0 \geq 1$ then $F_{n-1} + F_{n-3} + 1 \leq i(G) \leq 3 \cdot 2^{n-3} + 1$. The equality holds on the left if and only if $G \cong G_1^*$ or G_2^* . The equality holds on the right if and only if $G \cong G_n^*$.

To obtain the graphs in $\mathcal{U}(n, d_0)$ with the second-smallest Merrifield-Simmons index, we first recall two transformations that decrease the Merrifield-Simmons index.

Transformation I[12, 3] Let $G \ncong P_1$ be a connected graph and choose $u \in V(G)$, G_1 denotes the graph that results from identifying u with the vertex v_k of a simple path $P_n : v_1 - v_2 - \cdots - v_n$, 1 < k < n; G_2 is obtained from G_1 by deleting $v_{k-1}v_k$ and adding v_1v_n . Then $i(G_1) > i(G_2)$.

Figure 2: The graphs in remark 1

Remark 1: By repeating Transformation I, any tree T attached to a graph G_0 can be changed iteratively into a path (as shown in Figure 2). The Merrifield-Simmons index decreases at each iteration.

Transformation II[3] Let $P = uu_1u_2, \dots, u_tv$ be an internal path in G, the degrees of u_1, u_2, \dots, u_t in G are 2 and $G \ncong P$, let A_1 denotes the graph that results from identifying u with the vertex v_k of a simple path $P_k: v_1 - v_2 - \dots - v_k$ and identifying v with the vertex v_{k+1} of a simple

path $P_{n-k}: v_{k+1} - v_{k+2} - \cdots - v_n$, 1 < k < n-1; A_2 is obtained from A_1 by deleting $v_{k-1}v_k$ and adding v_1v_n , A_3 is obtained from A_1 by deleting $v_{k+1}v_{k+2}$ and adding v_1v_n . Then $i(A_1) > i(A_2)$ or $i(A_1) > i(A_3)$.

Figure 3: The graphs A_n, B_n and D_n

Lemma 2.4. Let G be a connected unicyclic graph of order n and $G \ncong C_n, \triangle_n$,

- (i) if n = 5, $i(G) > 3F_{n-2} + 2F_{n-4}$;
- (ii) if $n \geq 6$, $i(G) \geq 3F_{n-2} + 2F_{n-4}$, the equality holds if and only if $G \cong A_n, B_n$ or D_n (as shown in Figure 3).

Proof. Since $G \ncong C_n, \triangle_n$, then $n \ge 5$. For any unicyclic graph G, it can be obtained from a cycle by planting trees to some vertices of the cycle. Let k be the length of the unique cycle in G.

Figure 4: The unicyclic graphs of order 5 except C_5, Δ_5

- (i) if n = 5, by direct calculation, we have $i(W_1) = i(W_2) = 12$, $i(W_3) = 13$. Then $i(G) > 3F_{5-2} + 2F_{5-4} = 11$.
 - (ii) $n \geq 6$.

Case 1. $k \geq 4$.

Let G_1 be the graph obtained by replacing each planted subtree of G by a pendant path of same order. By Remark 1, we have that $i(G) \geq i(G_1)$. Repeatedly by Transformation II, we can obtained a graph G_2 that results from attaching a path P_{n-k+1} to a vertex of the cycle C_k and $i(G) \geq i(G_1) \geq i(G_2)$. The equality holds if and only if $G \cong G_1 \cong G_2$. By Lemma 1.1, we have

$$i(G_2) = F_k F_{n-k+1} + F_{k-2} F_{n-k} = F_{n+1} - F_{k-3} F_{n-k}.$$

Since $G \ncong C_n$, then $4 \le k \le n-1$. By Lemma 1.5, we have $F_2F_{(n-3)-2} \ge F_{k-3}F_{n-k}$, then $i(G_2) \ge F_{n+1} - F_2F_{(n-3)-2} = 3F_{n-2} + 2F_{n-4}$. The equality holds if and only if k-3=2 or n-k=2, that is, $G_2 \cong B_n$ or D_n .

Case 2. k = 3. Let $C_3 = v_1 v_2 v_3$.

If at least two of $d_G(v_1)$, $d_G(v_2)$ and $d_G(v_3)$ are larger than 3, replacing each tree by a pendant path $P_i = v_i u_1^i u_2^i \cdots u_{l_i}^i (i=1,2,3)$ of the same order gives the graph G_1 , by Remark 1, $i(G) \geq i(G_1)$. If all of l_1, l_2, l_3 are larger than 1, let G_1' be the graph which is obtained from G_1 by deleting $v_1 u_1^1$ and adding $u_{l_2}^2 u_1^1$ or by deleting $v_2 u_1^2$ and adding $u_{l_1}^1 u_1^2$. By Transformation II, we have $i(G) \geq i(G_1) \geq i(G_1')$. Let one of the pendant paths of G_1' be P_l . By Lemma 1.1, we have

$$i(G_1') = F_n + F_l F_{n-1-l}.$$

Then $i(G) \ge F_n + F_l F_{n-1-l} \ge F_n + F_3 F_{n-4} = 3F_{n-2} + 2F_{n-4} > F_n + F_1 F_{n-2}$ since $G \not\cong \Delta_n$, the second equality holds if and only if $G \cong A_n$.

If only one of $d_G(v_1)$, $d_G(v_2)$ and $d_G(v_3)$ is larger than 3, without loss of generality, let $d_G(v_3) \geq 3$.

If $d_G(v_3) \geq 4$, let G_2 be the graph obtained by attaching two pendant paths to v_3 , by Remark 1 and Transformation II, $i(G) \geq i(G_2)$. Let one of the pendant paths be P_l . By Lemma 1.1, we have

$$i(G_2) = F_{n-1} + 2F_lF_{n-1-l}.$$

Then $i(G) \ge F_{n-1} + 2F_lF_{n-1-l} \ge F_{n-1} + 2F_3F_{n-4} > 3F_{n-2} + 2F_{n-4} > F_{n-1} + 2F_1F_{n-2}$ since $G \not\cong \Delta_n$.

Figure 5: The graph G'_2

If $d_G(v_3) = 3$, then there exists a vertex $v \neq v_3$ and $d_G(v) \geq 3$ since $G \ncong \Delta_n$. Let G'_2 be the graph as shown in Figure 5, where a, b are the lengths of the two pendant paths attaching at v, respectively. By Remark

1 and Transformation II, $i(G) \ge i(G'_2)$. By Lemma 1.1, we have

$$i(G_2') = 3F_{a+1}F_{b+1}F_{n-3-a-b} + F_aF_bF_{n-4-a-b} + F_{a+1}F_{b+1}F_{n-4-a-b} + F_aF_bF_{n-5-a-b}.$$

But

$$\begin{array}{lcl} i(G_2') - (3F_{n-2} + 2F_{n-4}) & = & F_{a+1}F_{b+1}F_{n-4-a-b} + \\ & & 3F_{a+1}F_{b+1}F_{n-5-a-b} + F_aF_bF_{n-4-a-b} \\ & & -2F_aF_bF_{n-5-a-b} - 2F_{a-1}F_{b-1}F_{n-5-a-b} \\ & > & F_{a+1}F_{b+1}F_{n-4-a-b} > 0. \end{array}$$

Hence $i(G) \geq 3F_{n-2} + 2F_{n-4}$, the equality holds if and only if $G \cong A_n, B_n$ or D_n .

Figure 6: The graphs G_n^1, G_n^2, G_n^3 and G_n^4

Lemma 2.5. Let G be a connected unicyclic graph of order n. If $G \ncong G_n^0$, then $i(G) \le 5 \cdot 2^{n-4} + 2$, the equality holds if and only if $G \cong G_n^1$ or G_n^2 .

Proof. By direct calculation, $i(G_n^1) = i(G_n^2) = 5 \cdot 2^{n-4} + 2$. For any unicyclic graph G, it can be obtained from a cycle by planting trees to some vertices of the cycle. Let k be the length of the unique cycle in G.

Case 1. $k \geq 4$.

Replacing each tree of G by a star of the same order gives the graph H_1 , by Lemma 1.3, $i(G) \leq i(H_1)$. Repeatedly by Lemma 1.4, we can attained a graph H_2 which is obtained by attaching a star S_{n-k+1} to a vertex of the cycle C_k , and $i(G) \leq i(H_1) \leq i(H_2)$, the equality holds on the right if and only if $G \cong H_1 \cong H_2$. By Lemma 1.1, we have

$$i(H_2) = 2^{n-k}F_k + F_{k-2} = f(k),$$

but for $k \geq 5$, we have

$$f(k-1) - f(k) = 2^{n-k+1}F_{k-1} + F_{k-3} - (2^{n-k}F_k + F_{k-2})$$

= $2^{n-k}F_{k-3} - F_{k-4} > 0$,

So $i(G) \leq i(G_n^1) < i(G_n^0)$, the equality holds on the right if and only if $G \cong G_n^1$.

Case 2. k = 3, let $C_k = v_1 v_2 v_3$.

If at least two of $d_G(v_1)$, $d_G(v_2)$ and $d_G(v_3)$ are larger than 3, let H_1 be the graph obtained by replacing each tree of G by a star of the same order, by Lemma 1.3, $i(G) \leq i(H_1)$. By Lemma 1.4, we can obtain the graph G_n^2 , and $i(G) \leq i(H_1) \leq i(G_n^2) < i(G_n^0)$, the equality holds if and only if $G \cong H_1 \cong G_n^2$.

If only one of $d_G(v_1)$, $d_G(v_2)$ and $d_G(v_3)$ is larger than 3, without loss of generality, let $d_G(v_3) \geq 3$.

If $d_G(v_3) \ge 4$, repeatedly by Lemma 1.3 and Lemma 1.4, we can obtain the graph G_n^3 . By Lemma 1.1, we have

$$i(G_n^3) = 9 \cdot 2^{n-5} + 2 < 5 \cdot 2^{n-4} + 2.$$

If $d_G(v_3) = 3$, similar to the procedure of the case of $d_G(v_3) \ge 4$, we can obtain the graph G_n^4 . By direct calculation, we have

$$i(G_n^4) = 4 \cdot 2^{n-4} + 2 < 5 \cdot 2^{n-4} + 2.$$

Hence $i(G) \leq 5 \cdot 2^{n-4} + 2$, the equality holds if and only if $G \cong G_n^1$ or G_n^2 .

Figure 7: The graphs A^*, B^* and D^*

Let A be the graph obtained by attaching a pendant path P_3 at v_3 and P_{n-5} at v_5 of $C_3 = v_3v_4v_5$, respectively. By $C_{n-1,k}$ denote the graph constructed by identifying a vertex of C_k with one of the end vertex of P_{n-k} . Let A^* , B^* , D^* , E_n and $G_{1,j}^*$, $G_{2,j}^*$ be the graphs as shown in Figure 7 and Figure 8, where $A^* = K_1 + A$, $B^* = K_1 + C_{n-1,n-3}$, $D^* = K_1 + C_{n-1,5}$ and $G_{1,j}^* = G_1^* - u_0v_j$, $G_{2,j}^* = G_2^* - u_0v_j$.

Lemma 2.6. Let $G \in \mathcal{U}(n, d_0)$ with $n \geq 7, d_0 \geq 2$, if $G \ncong G_1^*, G_2^*, G^{**}$.

Figure 8: The graphs $E_n, G_{1,j}^*$ and $G_{2,j}^*$

- (i) If n=7,8, $F_{n-1}+F_{n-3}+2 \leq i(G) \leq 9 \cdot 2^{n-5}+2$. The equality on the left holds if and only if $G \cong A^*$ or $B^*, D^*, G^*_{1,j}, G^*_{2,j}, j=1, \cdots, n-1$. The equality holds on the right if and only if $G \cong E_n$.
- (ii) If $n \geq 9$, $F_{n-1} + F_{n-3} + 2 \leq i(G) \leq 9 \cdot 2^{n-5} + 2$. The equality on the left holds if and only if $G \cong G_{1,j}^*$ or $G_{2,j}^*$, $j = 1, \dots, n-1$. The equality holds on the right if and only if $G \cong E_n$.

Proof. By Lemma 1.1, we have

$$i(G) = i(G - u_0) + i(G - N[u_0]),$$

Case 1. Both $i(G - u_0)$ and $i(G - N[u_0])$ attain the smallest values, that is, $G - u_0 \cong C_{n-1}$ or Δ_{n-1} , and $G - N[u_0] = \emptyset$. Then $G \cong G_1^*$ or G_2^* , it is impossible.

Case 2. $i(G - u_0)$ achieves its smallest value, while $i(G - N[u_0])$ reaches its second-smallest value. Then $G - u_0 \cong C_{n-1}$ or Δ_{n-1} , and $G - N[u_0] = P_1$. So we have

$$i(G) = i(G - u_0) + i(G - N[u_0]) \ge F_{n-1} + F_{n-3} + 2,$$

the equality holds if and only if $G - u_0 \cong C_{n-1}$ or Δ_{n-1} , and $G - N[u_0] = P_1$, that is, $G \cong G_{1,j}^*$ or $G_{2,j}^*$, $j = 1, \dots, n-1$.

Case 3. $i(G-N[u_0])$ reaches its smallest value, while $i(G-u_0)$ attains its second-smallest value. By Lemma 2.5, $G-u_0 \cong A_{n-1}, B_{n-1}$ or D_{n-1} , and $G-N[u_0] = \emptyset$. So we have

$$i(G) = i(G - u_0) + i(G - N[u_0]) \ge 3F_{n-3} + 2F_{n-5} + 1,$$

the equality holds if and only if $G - u_0 \cong A_{n-1}, B_{n-1}$ or D_{n-1} , and $G - N[u_0] = \emptyset$, that is, $G \cong A^*, B^*$ or D^* .

But

$$3F_{n-3} + 2F_{n-5} + 1 - (F_{n-1} + F_{n-3} + 2) = F_{n-5} - F_{n-6} - 1,$$

then we have the following results:

- (i) If n = 7, 8, $i(G) \ge F_{n-1} + F_{n-3} + 2 = 3F_{n-3} + 2F_{n-5} + 1$. The equality holds if and only if $G \cong A^*$ or $B^*, D^*, G^*_{1,j}, G^*_{2,j}, j = 1, \dots, n-1$.
- (ii) If $n \ge 9$, $3F_{n-3} + 2F_{n-5} + 1 > F_{n-1} + F_{n-3} + 2$ and $i(G) \ge F_{n-1} + F_{n-3} + 2$. The equality holds if and only if $G \cong G_{1,j}^*$ or $G_{2,j}^*$, $j = 1, \dots, n-1$.

Now, we consider the right inequality. Note that, for any $G \in \mathcal{U}(n, d_0)$ with $d_0 \geq 2$, $G - u_0$ is a unicyclic graph and $|V(G - N[u_0])| \leq n - 3$.

Case 1. Both $i(G - u_0)$ and $i(G - N[u_0])$ attain the largest values, that is, $G - u_0 \cong G_{n-1}^0$, and $G - N[u_0] = (n-3)P_1$. Then $G \cong G^{**}$, it is impossible.

Case 2. $i(G - N[u_0])$ achieves its largest value, while $i(G - u_0)$ reaches its second-largest value. Then $G - N[u_0] = (n-3)P_1$ by Lemma 2.1, and $G - u_0 \cong G^1_{n-1}$ by Lemma 2.5. So we have

$$i(G) = i(G - u_0) + i(G - N[u_0]) \le 5 \cdot 2^{n-5} + 2 + 2^{n-3} = 9 \cdot 2^{n-5} + 2,$$

the equality holds if and only if $G-u_0 \cong G_{n-1}^1$, and $G-N[u_0] = (n-3)P_1$, that is, $G \cong E_n$.

Case 3. $i(G-u_0)$ reaches its largest value, while $i(G-N[u_0])$ achieves its second-largest value. Then $G-u_0 \cong G_{n-1}^0$ by Lemma 1.6, and $G-N[u_0]=(n-5)P_1 \cup P_2$ by Lemma 2.5. So we have

$$i(G) = i(G - u_0) + i(G - N[u_0]) \le 3 \cdot 2^{n-4} + 1 + 3 \cdot 2^{n-5} = 9 \cdot 2^{n-5} + 1$$

 $< 9 \cdot 2^{n-5} + 2.$

By Lemma 2.5 and 2.6, we have

Theorem 2.7. Let $G \in \mathcal{U}(n, d_0)$ with $n \geq 7, d_0 \geq 1, G \ncong G_1^*, G_2^*, G_n^0$.

- (i) If n=7,8, $F_{n-1}+F_{n-3}+2\leq i(G)\leq 5\cdot 2^{n-4}+2$. The equality on the left holds if and only if $G\cong A^*$ or $B^*,D^*,G^*_{1,j},G^*_{2,j},j=1,\cdots,n-1$. The equality holds on the right if and only if $G\cong G^1_n$.
- (ii) If $n \geq 9$, $F_{n-1} + F_{n-3} + 2 \leq i(G) \leq 5 \cdot 2^{n-4} + 2$. The equality on the left holds if and only if $G \cong G_{1,j}^*$ or $G_{2,j}^*$, $j = 1, \dots, n-1$. The equality holds on the right if and only if $G \cong G_n^*$.

Acknowledgment. The authors are grateful to the referee for his or her valuable comments, corrections and suggestions, which led to an improved version of the original manuscript.

References

- [1] B. Bollobás, Modern Graph Theory, Springer-Verlag, 1998.
- [2] H. Deng, S. Chen, The extremal unicyclic graphs with respect to Hosoya index and Merrifield-Simmons index, MATCH Commun. Math. Comput. Chem. 59 (2008) 171-190.
- [3] H. Deng. The smallest Merrifield-Simmons index of (n, n+1)-graphs. Math. Comput. Modelling, 49(1-2)(2009) 320-326.
- [4] H. Deng, S. Chen, and J. Zhang. The Merrifield-Simmons index in (n, n+1)-graphs. J. Math. Chem., 43(1)(2008) 75-91.
- [5] I. Gutman, O. E. Polansky, Mathatical Concepts in Organic Chemistry, Springer, Berlin, 1986.
- [6] S. Li, Z. Zhu, The number of independent sets in unicyclic graphs with a given diameter, Discrete Appl. Math., 157 (2009) 1387-1395.
- [7] S. Li, X. Li, W. Jing, On the extremal Merrifield-Simmons index and Hosoya index of qusi-tree graphs, Discrete Appl. Math., 157 (2009) 2877-2885.
- [8] X. L. Li, H. X. Zhao, On the Fibonacci numbers of trees, Fibonacci Quart., 44 (2006) 32-38.
- [9] H. Prodinger, R.F. Tichy, Fibonacci numbers of graphs, Fibonacci Quart., 20 (1982) 16-21.
- [10] H. -Q. Liu, X. Yan and Z. Yan, On the Merrifield-Simmons indices and Hosoya indices of trees with a prescribed diameter, MATCH Commun. Math. Comput. Chem. 57 (2007) 371-384.
- [11] H. -Q. Liu and M. Lu, A unified approach to extremal cacti for different indices, MATCH Commun. Math. Comput. Chem. 58 (2007) 193-204.
- [12] S. Wagner, Extremal unicyclic graphs with respect to Hosoya index and Merrifield-Simmons index. MATCH Commun. Math. Comput. Chem. 57 (2007) 221-233.