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ABSTRACT. Let G be a simple graph with edge ideal J(G). In this article
we study the number of pairwise 3-disjoint edges of cycles and complement
of triangle-free graphs. Using that, we determine the Castelnuovo-Mumford
regularity of R/I(G) for the above classes of graphs according to the number
of pairwise 3-disjoint edges.

1. INTRODUCTION

Let G be a finite simple undirected graph over the vertex set V = {zy,...,zn}
and let R = k[z,,...,z,] denote the polynomial ring in n variables over the field k.
The edge ideal of G is the ideal I(G) of R generated by those square-free quadratic
monomials z;z; such that {z;, z;} is an edge of G. Edge ideals were first introduced
by Villarreal [22]. Froberg in [6] showed that Stanley-Reisner rings with 2-linear
resolutions can be characterized graph-theoretically. Then the edge ideals were
studied by many authors in order to examine their algebraic properties in terms
of the combinatorial data of graphs, and vice versa. Among the many papers that
have studied the properties of edge ideals, we mention [1, 2, 6, 7, 8, 9, 10, 12, 16,
20, 22, 23, 24].

Two edges {z,y} and {u,v} of a graph G are called $-disjoint (or disconnected)
if the induced subgraph of G on {z,y, u, v} consists of exactly two disjoint edges. A
set I" of edges of G is called pairwise 3-disjoint if any two edges of I are 3-disjoint.
The maximum cardinality of all pairwise 3-disjoint sets of edges in G is denoted by
a(G).

The Castelnuovo- Mumford regularity of a graded R-module M denoted by reg (M)
is defined as follows:

reg (M) = max{j — i | Bi,;(M) # 0}.

Katzman in [14] showed that for any graph G one has reg (R/I(G)) = a(G) ([14,
Lemma. 2.2]). There have been several attempts to determine the classes of graphs
for which the above inequality is an equality. Zheng [24] proved the equality for
trees. Francisco, Ha and Van Tuyl [5] proved equality holds for Cohen-Macaulay
bipartite graphs. Van Tuyl [21] generalized this to the family of sequentially Cohen-
Macaulay bipartite graphs. Kummini [16] proved equality holds also for unmixed
bipartite graphs. In addition, the authors in [17] generalized Kummini's result to
the class of very well-covered graphs.

Our first topic in this paper is about the regularity of cycles. In Section 3 we
study the regularity of cycles in terms of the number of pairwise 3-disjoint edges.
Let C, denotes the cycle of length n, ie. V(C,) = {zi,...,z.} and E(C,) =
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{{z1,z2}, .., {Zn-1,2n}, {Zn,21}}. We show that reg(R/I(C,)) = a(Cy) = (3]
provided n = 3k or n = 3k+1 for some k € N, otherwise reg (R/I(C,)) = a(C,)+1 =
(2] + 1. Our result is not surprising for C3 and C4 because the first is chordal and
the other is unmixed bipartite but this is an affirmative answer to the Van Tuyl’s
question [21, Question 3.5] on the regularity of a bipartite graph that is neither
unmixed nor sequentially Cohen-Macaulay, namely for cycles of even length. In
addition, we show that if P, denotes the line graph on n + 1 vertices, i.e. V(P,) =
{21,.sZns1} and E(Pn) = {{z1,22}, ..., {Tn-1,2n}, {Tn, Tn+1}}, then a(P1) =
[42]. Combining this together with [24, Theorem 2.18] implies that reg (R/I(P)) =
142
]

[-‘5'—I‘he second topic in this paper is about the regularity of the complement of a
triangle-free graph. The claw graph is the complete bipartite graph ;3. A graph
G is called claw-free if it has no 4 vertices on which the induced graph is a claw. It
is easy to see that the complement of a triangle-free graph is claw-free (recall that
the complement of a graph G is the graph @ over the same vertex set of G whose
edges are non-edges of G). Note that A graph G is claw-free if the complement of
GN(v) (the induced subgraph of G on N(v)) is triangle-free for all v € V(G), where
N(v) is the set of vertices which are adjacent to v. Independence complexes of
claw-free graphs has been the subject of [3] where Engstrém gave good bounds on
the connectivity of these complexes. Nevo in [18, Theorem 5.1) showed that if G is
claw-free without induced C, in its complement, then reg (R/I(G)) < 2. This does
not clarify the regularity of the complement of a triangle-free graph with induced
4-cycle such as the graph obtained by attaching an edge to Cj.

In Section 4 we study the regularity of the complement of a triangle-free graph.
Note that the intersection of the set of triangle-free graphs and the set of chordal
graphs is precisely the set of forests. The set of triangle-free graphs can be parti-
tioned into two disjoint sets; Those that contain C; as induced subgraph and the
other comprises of all graphs without induced 4-cycle. According to these two fam-
ilies, we determine the regularity of the complement of triangle-free graphs in terms
of their combinatorial data. More precisely, we show that (see Theorem 4.4) for a
triangle-free graph the following hold:

(i) If G is forest, then reg (R/I(G)) = a(G) = 1.
(ii) If G has induced 4-cycle, then reg (R/I(G)) = a(G) = 2.
(iii) If G is not forest and has no induced 4-cycle, then reg (R/I(G)) = 2 =
a(G) + 1.

2. TERMINOLOGY AND PRELIMINARIES

For the convenience of the reader we include in this short section the standard
terminology and the basic facts which we will use throughout the paper.
Let M be an arbitrary graded R-module, and let

0— @R(_j)ﬁt.j(M) - @R(_j)ﬂc-x.j(M) Y @R(_j)ﬂo.;(M) SM=S0
3 J J

be a minimal graded free resolution of M over R, where R(—j) is a graded free

R-module whose nth graded component is given by R,_;j. The number g; ;(M)

is called the ijth graded Betti number of M and equals the number of generators
of degree j in the ith syzygy module. The Castelnuovo-Mumford regularity of M

76



denoted by reg (M) is defined as follows:
reg (M) = max{j —i | Bi ;(M) # 0}.
Recall that the projective dimension of an R-module M, denoted by pd (M), is the
length of the minimal free resolution of M, i.e.
pd (M) = max{i | B; ;(M) # 0 for some j}.

There is a strong connection between the topology of the simplicial complex
A and the structure of the free resolution of k[A]. Let §; ;(A) denotes the graded
Betti numbers of the Stanley-Reisner ring k[A]. One of the most well-known results

is the Hochster’s formula ([11, Theorem 5.1]), which is a principal tool to study
Betti numbers of square-free monomial ideals.

Theorem 2.1. For i > 0 the graded Betti numbers B; ; of a simplicial complez A
are given by
Bii(A)= > dimeH,_iy(Aw;k).
WEV(a)
IWi=j

Let G be a simple graph and S € V(G). Also let Gs denotes the induced
subgraph of G over S and suppose A(G) be the simplicial complex whose faces
correspond to the complete subgraphs of G. By specializing the Hochster’s formula,
to edge ideals we obtain the following proposition ([19, Proposition 1.2]).

Proposition 2.2. Let G be a simple graph with edge ideal I{(G). Then
Bis(RII@) = Y dimeH;_ia(A@s); k)

SCV(G)
IS|=3j
foralli,j>0.

One of the useful invariant of a graph that relates to the regularity is the number
of pairwise 3-disjoint edges of G as defined below.

Definition 2.3. Two edges {z,y} and {u,v} of a graph G are called 3-disjoint if
the induced subgraph of G on {z,y,u,v} consists of exactly two disjoint edges. A
set I of edges of G is called Pairwise 3-disjoint set of edges if any two edges of T"
are 3-disjoint. The maximum cardinality of all Pairwise 3-disjoint sets of edges in
G is denoted by a(G).

Katzman provided the following result on the regularity of R/I(G).
Lemma 2.4. ([14, Lemma 2.2]) For any graph G, reg(R/I(G)) > a(G).

3. CYCLE AND LINE GRAPHS

In this section we determine the Castelnuovo-Mumford regularity of R/I(C,),
where C,, is the cycle graph on n vertices, and give its relation with a(C,). This
can be done in both viewpoints of topology and homological algebra. Kozlov in
(15, Propositions 4.6 and 5.2] calculated the homotopy type of lines and cycles.
Although the regularity of these families can be determined using Kozlov results,
we use homological methods to do this. Indeed, we apply Jacques’s results on Betti
numbers of cycles which can be found in his thesis [12, Section 7). It should be
mentioned that the thesis has never been published, but some its materials such as
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Betti numbers of forests and characteristic independence of some Betti numbers of
edge ideals are appeared in [13, 14], too.

We begin this section by computing the number a(C,) in terms of the length of
Cp.

Lemma 3.1. Let C, denotes the cycle of length n. Then a(C,) = [§].
Proof. Let V(Cy,) = {z1,...,Zp} withn =3k + t and 0 <t < 2. One can see that

{{z1, 22}, {4, 25}, {7, 28}, ... {T3k—2, Tak-1}}
is a set of pairwise 3-disjoint edges of C, with k edges. It follows that a(C,) > k.
Now assume a(C,) > k and suppose A is a set of pairwise 3-disjoint edges of
C. with k + 1 elements. Also let e; = {x,zi41} be in A and Suppose E; =
{{zi-1,z:}, {zi, xiz1 }s {Tit1, Tiva}}. So EiNA = {z;,Zis1}. It is easy to see that
E; N E; = § for any two distinct elements e;,e; € A. Therefore
IEC) > | |J Eil=)_ |Ei| =3]|A| =3k +3
e€EA e EA
which is impossible. Hence a(C,) = k = [§]. O
Using Lemma 3.1 one can determine the regularity of C,, in terms of the number
of pairwise 3-disjoint edges.
Theorem 3.2. Let C,, denotes the cycle of length n. Then
(i) If n=0mod 3, then reg(R/I(C,)) = a(Cn) = [3]
(ii) If n =1 mod 3, then reg(R/I(C,)) = a(Cn) = [}]
(iii) Ifn =2 mod 3, then reg(R/I(Cx)) =a(Cn) +1=[3] +1.

Proof. First observe that any N-graded Betti number can be written in the form
B4 = Bi+j2i+j, where i = d — 1 and j = 2 — d. Now we have
reg (R/1(Cy)) = max{d — | B1,a(R/I(Cy)) # 0}

= max{2 +j — (¢ + j) | Bi+j2i+i(R/I(Cn)) # 0}

= max{{i | Biy;2i+;(R/1(Cn)) #0, 20+ <n}, n—pd(R/I(Ca))}-
(i) Let n = 3m. It follows from [12, Corollary 7.6.30] that pd (R/I(C,)) = 2m and
hence n — pd (R/I(C,)) = m. Therefore

reg(R/1(Cn)} = max{{i | Bi+;2i+i(R/I(Ca)) #0, 2i +j <n}, m}.

Now we show that for all ¢ with B;;2:i4+;(R/I(Cr)) # 0 and 2 + j < n one has
i < m. Suppose the contrary that ¢ > m. Using [12, Proposition 7.4.23] we get
that B;2i(R/I(C,)) # 0. By [14, Lemma 2.2}, C, has an induced subgraph which
consists of ¢ disjoint edges. This means that C,, contains at least 3m + 2 vertices
which is impossible. Therefore i < m and so

reg (R/1(Ca)) = m =[] = a(Ca).

(ii) Let n = 3m+1. It follows from [12, Corollary 7.6.30] that pd (R/I(Cp)) = 2m+1
and hence n — pd (R/I(C,)) = m. The proof of this case is similar to the case (i).
(iii) Let n = 3m + 2. Then pd (R/I(C,)) = 2m + 1 and hence n — pd (R/I(C,)) =
m+ 1. We have

reg(R/1(Cr)) = max{{i | Bix; 2i+5(R/I(Cn)) # 0, 20 +j <n}, m+1}.
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Now we show that for all ¢ with Biy;,2:45(R/I(Cn)) # 0 and 2i + j < n one has
i < m + 1. Suppose the contrary that ¢ > m + 1. A similar argument as in the
proof of (i) implies that C,, contains at least 3m + 3 vertices which is impossible.
Therefore i < m + 1 and so

reg (R/I(Ca)) =m+1= [g] +1=a(Cy) +1.
O

It is known that for any tree T one has reg (R/I(T)) = a(T), cf. [24, Theorem
2.18). In the final result of this section we determine the regularity of a line graph
in terms of its length.

Theorem 3.3. reg(R/1(P1)) = [42].

Proof. Tt is enough to show that a(P)) = [&33] Let V(P) = {z1,....,Z141}. We
prove the assertion in two cases. First suppose [ = 3k. Since

{{z1, 22}, {za, x5}, {Z7, 26}, -, {T3k—2, T3R—1}}

is a set of pairwise 3-disjoint edges of P, of cardinality k, we get that a(P;) > k.
Now suppose a(P;) > k and assume that A is a set of pairwise 3-disjoint edges of P,
of cardinality k + 1. Let e; denotes the edge {z;, z;+1} of P;. A similar argument
as in the proof of Lemma 3.1 shows that

o If |ANn{e1,ei}| =0, then |E(P1)| = 3k + 3,

o If JANn{e), e} =1, then |E(P))] > 3k + 2,

e If [An{e;,er}| =2, then |E(P)| > 3k +1,

which are contradictions. Hence

a(P) = a(Pu) =k = 2 = (122

Now let I = 3k +¢ with 1 < ¢t < 2. Since

{{z1, 22}, {z4, 25}, ..., {Z3k—2, Z3k—1}, {Z3k+1, Taks2}}

is a set of pairwise 3-disjoint edges of P; with k + 1 elements, we get that a(P;) >
k+1. A similar argument as above shows that if a(P;) > k+1, then |E(P;)| > 3k+4,
a contradiction. Therefore

a(P) = a(Porse) = k+1= (ZEEEEZ (122

4. COMPLEMENT OF TRIANGLE-FREE GRAPHS

Let A denotes the simplicial complex whose faces are independent subsets of
the graph G, where a subset is independent if no two vertices in it are adjacent. This
simplicial complex called independence complex and reflects many nice properties
of G. Independence complexes of graphs has been the subject of study in both
combinatorics and topology (see [2, 3, 4, 9, 15, 18]). We begin this section with the
next general lemma that provides an upper bound for the regularity of the edge
ring.

Lemma 4.1. For any graph G, reg(R/I(G)) < dimAg + 1.
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Proof. It is clear that dimA@) > dimA(Gs) for all S C V(G). Note that if
j—i—=1> dimA(G), then H;_;—1(A(Gs);k) = 0 for all S C V(G). 1t follows
from Proposition 2.2 that 8; ;(R/I(G)) = 0 for all j —i > dimA(G) + 1. Now
A(G) = Ag yields that
reg (R/1(G)) = max{j — i | B;;(R/I(G)) # 0} < dimA(G) +1 = dimAg + 1.
0O

In the case where G is triangle-free one has dim Az = 1. Hence we have the
next result.

Corollary 4.2. Let G be a triangle-free graph (not necessary connected). Then
reg(R/I(G)) < 2.

Existence of C4 as induced subgraph in G may affect on a(G) as we can see in
the next remark.

Remark 4.3. Let G be a triangle-free graph. It follows from Lemma 2.4 and
Corollary 4.2 that a(G) < 2 and the inequality may be strict (see Cg, the cycle
of length 6), but one can determine condition under which the equality holds. In
fact, it is an easy observation that a(G) = 2 if and only if there exist u,v € V(G)
such that |Ng(u) N Ng(v)| 2 2 (Ng(u) denotes the neighbor set of u in G). The
latter condition holds if and only if G contains C4 as induced subgraph. Therefore
a(G) = 1 for all cycles G of even length except C4 and also for any forest G. On
the other hand, it is known that a graph has 2-linear resolution if and only if its
complement is chordal (see {6, Theorem 1]). Therefore reg(R/I(G)) = 1 for any
chordal graph G. In addition, Lemma 4.1 implies that reg(R/I(G)) = 2, where G
is the complement of a triangle-free graph which is not forest.

It is easy to see that the complement of any forest is claw-free without induced
C,4 in its complement. The “complement of a triangle-free graph” without C,; as
induced subgraph in its complement, i.e., the complement of a “triangle-free graph
without induced C,” (which contains the complement of forests) is claw-free with-
out induced C; in its complement. The regularity of this family has recently been
demonstrated in [18, Theorem 5.1]. Also the complement of a triangle-free graph
may contain C4 as the induced subgraph in its complement (this is the complement
of a “triangle-free graph with induced C;”). This family is a subset of the set of
claw-free graphs with C4 as induced subgraph in their complements. Figure 1 clar-
ifies these relations and provides some examples in each part.

The next Theorem determines the relation between the regularity of R/I(G)
and a(G) according to the combinatorial data from G, where G is triangle-free. As
we explained in Remark 4.3, by [6, Theorem 1] and Lemma 4.1, reg (R/I(G)) = 1
for any chordal graph G, and reg (R/I(G)) = 2 where G is the complement of
a triangle-free graph which is not forest. Therefore, in view of Remark 4.3, the
following result is straightforward.

Theorem 4.4. Let G be a triangle-free graph. Then
(i) If G is forest, then reg(R/I(G)) =a(G) =1.
(ii) If G has induced 4-cycle, then reg(R/I(G)) = a(G) = 2. _
(iii) If G is not forest and has no induced 4-cycle, then reg(R/I(G)) = 2 but
a(G) =1.
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claw-free graphs

without induced C4 in complement with induced C4 in complement

complement of triangle-free graphs

complement of forests

—
e J

Figure 1

Example 4.5. Let G be the following graph:

G is the complement of a triangle-free graph that contains C4 as induced subgraph.
It follows from Theorem 4.4.(ii) that reg (R/I(G)) = a(G) = 2.

As explained before, the only part of Figure 1 that we do not know about the
regularity of R/I(G)) is the right side of the Figure that includes the graphs which
are not the complement of triangle-free graphs. If an element of the mentioned
part is forest, the answer is obvious. So it is interesting to know the answer to the
following question:

Question 4.6. Suppose G is a claw-free graph with induced C4 in its comple-
ment that is neither the complement of a triangle-free graph nor forest. What
is reg(R/I1(G))?
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As we mentioned before, there have been several attempts to determine the
classes of graphs for which the regularity of R/I(G) is equal a(G). Zheng [24]
proved the equality for trees. Francisco, Ha and Van Tuyl [5] proved equality holds
for Cohen-Macaulay bipartite graphs. Van Tuy! [21] generalized this to the family
of sequentially Cohen-Macaulay bipartite graphs. Kummini [16] proved equality
holds also for unmixed bipartite graphs. In addition, the authors in [17] generalized
Kummini’s result to the class of very well-covered graphs. So it is natural to ask
the following question:

Question 4.7. Determine the class of bipartite graphs for which the regularity of
R/I(G) is equal a(G)?

In this way, by Theorem 3.2, we know that C,, belongs to this class for the
following two cases:

(i) n = 6k for any positive integer k.

(i) n = 3k + 1 for any odd integer k.
In addition, for any even positive integer k, if n = 3k + 2, then C, is bipartite but
reg (R/I(C,)) = a(Cr) + 1.
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