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Abstract

For a simple undirected graph G = (V, F), a subset I of V(G) is said
to be an independent set of G if any two vertices in I are not adjacent in
G. A merimal independent set is an independent set that is not a proper
subset of any other independent set. In this paper we survey on the
largest to fourth largest numbers of maximal independent sets among
all trees and forests. In addition, we further look into the problem of
determining the fifth largest number of maximal independent sets among
all trees and forests. Extremal graphs achieving these values are also
given.

1 Introduction and preliminary

In general we use the standard terminology and notations of graph theory,
see [1). Let G = (V, E) be a simple undirected graph, the neighborhood and
closed neighborhood of v are Ng(v) = {u € V(G)|uwv € E(G)} and Ng[v] =
{v} U Ng(v), respectively. Two distinct vertices u and v are called duplicated
vertices if Ng(u) = Ng(v). For a set A C V(G), the deletion of A from G
is the graph G — A obtained from G by removing all vertices in A and their
incident edges. A subset I C V(G) is independent if there is no edge of G
between any two vertices of I. A maximal independent set is an independent
set that is not a proper subset of any other independent set. The set of all
maximal independent sets of G is denoted by MI(G) and its cardinality by
mi(G). For a vertex z € V(G), let MI(G) = {I € MI(G) : z € I} and
MI_.(G) = {I € MI(G) : z € I}. The cardinalities of MI, .(G) and MI_.(G)
are denoted by mi  -(G) and mi_.(G), respectively.

Erdés and Moser raised the problem of determining the maximum value of
mi(G) among all graphs of order n and extremal graphs achieving this value.
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Shortly after, Moon and Moser [12] solved the problem. It was then studied
for various families of graphs, including trees, forests, (connected) graphs with
at most one cycle, (connected) triangle-free graphs, (k-)connected graphs, bi-
partite graphs; for a survey see [7]. Recently, Jin and Li [4] investigated the
second largest number of mi(G) among all graphs of order n; Hua and Hou [2]
determined the third largest number of mi(G) among all graphs of order n.
More recently, Jou and Lin [9, 11] investigated the second largest number and
the fourth largest number of mi(G) among all trees and forests of order n,
respecitvely. Jin and Yan [5] solved the third largest number of mi(G) among
all trees of order n.

In the second section of this paper, we survey on the largest to fourth largest
numbers of maximal independent sets among all trees and forests. In the
third section, we further look into the problem of determining the fifth largest
number of maximal independent sets among all trees and forests. Extremal
graphs achieving these values are also given.

2 Survey on the numbers of maximal indepen-
dent sets among all trees and forests

For integers ¢ > 1, jo = j1 2 0, a baton B(3; j1,72) is the graph obtained
from the basic path P of i vertices by attaching j; paths of length two to one
endpoint of P and j; paths of length two to the other endpoint of P. See
Figure 1. When ¢ = 1, we write B(1; j) for B(1;0, j). From simple calculation,

we have B(2;0,j2) = 272 + 1, B(3;0, j2) = 272+ and B(4;0, jo) = 272*! + 1.

[

1 J2
Figure 1: The baton B(3; 1, j2)
Lemma 2.1. ([3, 6]) If G is a graph in which x is a leaf adjacent to the vertez
y, then mi(G) = mi(G — Nglz]) + mi(G — Ngly]).

Lemma 2.2. For integers i > 5 J2 25 20, mi(B(%; 1, j2)) = mi(B(i ~
3;0,2)) + mi(B(i - 2;0,32)) + (2* — 1) - mi(B(i - 1,0, j2)).

Proof. For the case of j; = 0, by Lemina 2.1, it is easy to see that mi(B(¢;0,
J2)) = mi(B(i — 2;0,72)) + mi(B(i — 3;0,72)). We assume that j, > 1, by
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repeatedlty applying Lemma 2.1 to the leaves of B(; jy, j2), we have
mi(B(i; j1, 2)) = mi(B(i; 1 — 1,52)) + 27~ - mi(B(i - 1,0, j2))
= mi(B(4; j1 — 2, j2))
+ (29172 4+ 2971 . mi(B(i — 1,0, 72))
= mi(B(3; j1 — 3, j2))
+ (2173 42012 4 2111) . mi(B(i - 1;0, 2))

= mi(B(3; 0, 2))
+ (2042 - 420172 L 21y L B(i - 1;0, 72))
= mi(B(i - 3;0, j2))
+mi(B(i - 2,0, 52)) + (27 — 1) - mi(B(i - 1,0, j2)).
This completes the proof. O

The results of the largest numbers of maximal independent sets among all
trees and forests are described in Theorems 2.3 and 2.4, respectively. Through-
out this paper, r denotes V2.

Theorem 2.3. ([6, 8]) If T is a tree with n > 1 vertices, then mi(T) < t1(n),
where

_f ™ 2+1, ifnis even;
tin) = { -l if n is odd.
Furthermore, mi(T) = t1(n) if and only if T = T1(n), where
B(2;51,52),51 + j2 = 252
Ti(n) = or B(4; 3, ja), js + ja = 25, if n is even;
B(1; 251), if n is odd.
For any two graphs G and H, let GU H denote the disjoint union of G and

H, and for any integer n > 2, let nG stand for the disjoint union of n copies
of G. Denote by P, a path with n vertices.

Theorem 2.4. ([6, 8]) If F is a forest with n > 1 vertices, then mi(F) <
fl(n): where

fu(n) = { ™, if n is even;

™1 ifn is odd.
Furthermore, mi(F') = fi(n) if and only if F = F\(n), where

Fi(n) = -’%Pg, if n is even;
1 B(1; ""—12'"2i)UsP2 for some s with0 < s < -",:,—1 , ifnis odd.
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The results of the second largest numbers of maximal independent sets
among all trees and forests are described in Theorems 2.5 and 2.6, respectively.

Theorem 2.5. ([9]) If T is e tree with n > 4 vertices having T # T\(n), then
mi(T) < ta(n), where

2 if n is even;
tz2(n) =< 3, ifn=>5;
3r"=5 41, ifn is odd.

Furthermore, mi(T) = ta(n) if and only if T = T,(8),T,(8), P, or To(n),
where To(n) and T}(8), T4 (8) are shown in Figures 2 and 3, respectively.

AT T

Toe(n), n > 4 is even T2(5) Too(n), n>T7is odd

Figure 2: The trees T(n)

T3(8) 7 (8)
Figure 3: The trees T;(8) and T3/ (8)

Theorem 2.68. ([9]) If F is a forest with n > 4 vertices having F # Fy(n),
then mi(F) < fa(n), where

3r"~4, ifn is even;
fo(r) ={ 3, ifn=>5;
7r™=7, if n is odd.

Furthermore, mi(F) = fa(n) if and only if F = Fa(n), where

P4U"T“'P2, if n > 4 is even;
Fo(n) = Ta(5) or P,UP,, ifn=35;
Pru 1‘-—,;—7P2, ifn>7 is odd.

The results of the third largest numnbers of maximal independent sets among
all trees and forests are described in Theorems 2.7 and 2.8, respectively.
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Theorem 2.7. ([5]) If T is a tree with n > 7 vertices having T # Ti(n),
i =1,2, then mi(T) < ta(n), where

3r-5, ifn>71s odd;
_J T ifn=_8;
ta(n) =1 15, ifn=10;

"8 42, ifn > 12 is even.

Furthermore, mi(T) = t3(n) if and only if T = T3(8), T3(10), T3'(10), or T3(n),
where T3(n) and T3(8),T3(10), T4'(10) are shown in Figures 4 and 5, respec-

tively.

Tse(n), n > 12 is even Tso(n), n > 7 is odd

Figure 4: The trees T3(n)

e

i ——o—o
T3(8) 3(10) T3(10)

Figure 5: The trees T3(8),73(10) and T3'(10)

Theorem 2.8. ([10]) If F is a forest with n > 8 vertices having F # Fi(n),
i = 1,2, then mi(F) < f3(n), where

5076 if n > 8 is even;
fa(n) = { 13r"=° ifn >0 is odd.

Furthermore, mi(F) = f3(n) if and only if F = F3(n), where

_J Th(6)U nT-GPQ, if n > 8 is even;
Fan) = { T2(9)U252Ps, ifn>9 is odd.
The results of the fourth largest numbers of maximal independent sets
among all trees and forests are described in Theorems 2.9 and 2.10, respectively.

Theorem 2.9. ([11]) If T is a tree with n > 11 vertices having T # Ti(n),
i=1,2,3, then mi(T) < t4(n), where

ta(n) = 5r"~7 43, ifn> 11 is odd;
A= 78 41, ifn > 12 is even.
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Furthermore, mi(T) = t4(n) if and only if T = Ty(n), where Ty(n) is shoun
in Figure 6.

Tye(n), n > 12 is even T4o(n), n > 11 is odd

Figure 6: The trees Ty(n)

Theorem 2.10. ([11]) If F is a forest with n > 10 vertices having F # Fi(n),
i=1,2,3, then mi(F) < fa(n), where

faln) = 9r"~8  ifn > 10 is even;
4(M) =9 25r-11 ifn > 11 is odd.

Furthermore, mi(F) = f4(n) if and only if F = Fy(n), where

Fu(n) = 2P,V 1‘-;—8-1’2 or T1(8)Ul§§P2, ifn > 10 is even;
A= (U sslip, ifn > 11 is odd.

3 The fifth largest number of maximal indepen-
dent sets among all trees and forests

Lemma 3.1. ([6]) If G is the union of two disjoint graphs Gy and G, then
mz(G) = mz(Gl)mz(Gg)

Lemma 3.2. ([6]) If a graph G has duplicated leaves z1 and x5, then mi(G) =
mz(G - xg).

A vertex v of a graph G is a support vertez if it is adjacent to a leaf in
G. For an even integer n > 14, Ts.(n) is the tree obtained from B(1; "T‘a)
by adding a P; and a new edge joining the only vertex in the basic path of
B(1;258) and the support vertex of Py. For an odd integer n > 15, Ts,(n) is
the tree obtained from B(l; "T"') by adding a Ps and a new edge joining the
only vertex in the basic path of B(1;257) and the leaf of P, see Figure 7.

Lemma 8.8. If T is a tree of even order n > 14 having T # Ti(n), ¢ =
1,2,3,4, then mi(T) < Tr*~8. Furthermore, the equality holds if and only if
T = Ts.(n) or B(6;2,2).
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Tse(n), n > 14 is even Ts0(n), n > 15 is odd

Figure 7: The trees T5(n)

Proof. 1t is straightforward to check that mi(Ts.(n)) = 7r"~8. In addition,
by Lemma 2.2, B(6;2,2) = 56. Let T be a tree of even order n > 14 having
T # Ti(n), i = 1,2, 3, 4 such that mi(T) is as large as possible. By Theorem 2.9,
7r""8 <mi(T) < ty(n) — 1= (7r"~2 + 1) — 1 = 7r"~8, hence mi(T) = 7r"~2.
Let z be a leaf lying on a longest path P of T, say P = z,y, 2, w,... and H the
component of T' — Np(y] containing some vertices of P. Since P is a longest
path of T, it follows that every component of T — (Nr[y|U V(H)) is P, or P,.
Thus we have that T — Nr[y] = aP, U (b—1)P U H for integers a, b. Suppose
that T has duplicated leaves z; and z2, then T = T — z, is a tree of odd order
n — 1. Since T # T3(n), this implies that T’ # Ty(n — 1). By Theorem 2.5, we
have that 7r"~8 = mi(T) = mi(T') < ta(n—1) = 3r"~® 4 1 < 7r"~8, which is
a contradiction. Thus T has no duplicated leaves, it follows that a =0 or 1.

Suppose that a = 1. Since T # Tj(n), this implies that H is a tree of
even order n — 2b— 2 > 4. Thus 2 < 2b < n — 6. By Theorems 2.3 and
2.4, mi(T) = miy.(T) + mi_,(T) < mi(H — w) + r2® - mi(H) < r*~20-4 4
r2 . (rnm%-4 4 1) = o204 4 -4 1 125 Note that r"~20=4 4 72 has a
maximum value at 2b = 2 or 2b = n — 6. Hence, we have that 7r"~8 =
mi(T) <4 + "6 42 =6r""8 4+ 2 < 7r"~8. This is a contradiction, hence
a = 0. It follows that H is a tree of odd order n — 2b — 1.

Since T # T1(n) and T # T(n), these imply that H # Ti(n — 2b — 1) and
H —w # Fi(n — 2b - 2). Thus mi(H) < t2(n - 2b— 1) and mi(H — w) <
fa(n — 2b - 2). We consider the following two cases.

Case 1. b=1.

Since a = 0 and T # Ti(n), these imply that T — Nr[z] # Ti(n — 2).
Suppose that T' — Nr[z] = To(n ~ 2), then mi(H) = mi(T — Nr[y]) = mi(T) -
mi(T — Nr[z]) = 778 — r"=4 = 3r"~8 = t3(n - 3). By Theorem 2.7, then
T — Nt[y} = T3(n — 3). This means that T = Ts.(n). On the other hand, if
T — Nt(z] # T2(n — 2), then mi(T — Nr[z]) € 7r*~1° + 2. By Lemma 2.1 and
Theorem 2.5, we have that 7r"~® < mi(T) = mi(T - Nr[z]) +mi(T — Nr[y]) <
7r7=10 4+ 24+ 37778 + 1= 1377710 4+ 3 < 7r"~8, which is a contradiction.
Case 2. b> 2.

Note that |V(H)| =n—2b-1 > 5 is odd. Suppose that |V (H)| = 5. Since
T # T1(n) and T # T(n), these imply that H % Ps. On the other hand, since
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T has no duplicated leaves, this implies that H = T3(5) and z is adjacent to
one of the duplicated leaves of T5(5). See Figure 8.

H

m‘,_/
b

Figure 8: The tree T

By simple calculation, we have that mi(T) = 37"~ + 2 < 7r"~8, which is a
contradiction. Hence |[V(H)|=n—-2b—-1>7and 4<2b<n-8.

Since b > 2 and T # Ti(n) for ¢ = 1,2, these imply that T — Np[z] is a
tree having T — Nr(z] # Ti(n — 2) for i« = 1,2. By Theorem 2.7, we have
that 7r"~% = mi(T) = mi(T — Nr[z]) + mi(T — Nrly)) < t3(n — 2) + r?>-2.
mz(H) < 7pn—10 +2+ r25—2 . (3rn—2b—6 + 1) = 710 +24+ 3pn—8 + r26-2
13r7-10 4 2 4 r22=2 Thus we obtain that 72¢=2 4 2 > r"*~10, For the case
of 2b = n — 10, then b = 2 and n = 14. It follows that T' — Nr|z] = T3(12)
and T — Nr[y] = P, UT2(9). In conclusion, T = B(6;2,2). For the other
case of 2b > n — 8, then 2b = n — 8, |V(H)| = 7 and mi(H) < (7)) = 7.
Since 2b = n — 8 > 6, this implies that T — Np[z] # Ti(n — 2) for i = 3,4 and
mi(T— Nr[z]) < ta(n-2)—1=7r""10 Thus r"~10.mi(H) = mi(T-Nr[y]) =
mi(T) — mi(T — Nrlz]) > 7r"~8 — 7r"~10 = 7r=10 then mi(H) > 7. Hence
mi(H) = 7, by Theorem 2.5, H = T5(7) = P;. Since T # T3(n) and T # Ty(n),
this implies that T = Ts(n). O

Lemma 3.4. If T is a tree of odd order n > 15 having T # T;(n), i = 1,2,3,4,
then mi(T) < 5r™~7 + 2. Furthermore, the equality holds if and only if T =
Tso(‘n).

Proof. 1t is straightforward to check that mi(Ts,(n)) = 57 + 2. Let T
be a tree of odd order n > 15 having T # T;(n), 1 = 1,2,3,4, such that
mi(T) is as large as possible. Then mi(T) > 577 + 2. Let = be a leaf
lying on a longest path P of T, say P = z,y,2,... and H the component
of T — Nr[y] containing some vertices of P. Since P is a longest path of T,
it follows that every component of T — (Np[y) U V(H)) is P, or P;. Thus
we have that T — Nr[y] = aP, U (b — 1)P, U H for integers a, b. Suppose
that T has duplicated leaves z; and z2, by Lemma 3.2 and Theorem 2.3,
5077 + 2 < mi(T) = mi(T —z2) < ti(n— 1) = r*~3 + 1 < 577 + 2, which
is a contradiction. Thus T has no duplicated leaves, it follows that a =0 or 1.

Suppose that a = 1. Then H is a tree of odd order n — 2 — 2b > 3. By
Theorem 2.3, mi(H) < =320, It follows that mi(T — Nr[y]) < r2*-2.
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rn=8~26 — pn=5_ Since T # Ts(n), this implies that T — Np[z] # Ti(n — 2).
By Lemma 2.1 and Theorem 2.5, we have that 3r"~7 + 1 = t3(n — 2) >
mi(T — Nr[z]) = mi(T) — mi(T — Nrly]) = (5r™ 7 +2) =5 = 3r"7 + 2,
which is a contradiction. Hence we obtain that @ = 0 and H is a tree of even
order n — 2b — 1. We consider the following two cases.

Case 1. b=1.

Since T # Ti(n), this implies that T — N7[z] # T1(n—2). By Theorems 2.3
and 2.5, we have that 57"~7 + 2 < mi(T) = mi(T — Nr[z]) + mi(T — Nrly]) <
t2(n—2)+£t1(n—3) = (3r"~"+1)+ (r"~5 +1) = 5r"~7 4+ 2. Furthermore, the
equalities holding imply that T —~ Nz[z] = To(n~2) and T — Ny[y] = Th(n—-3).
In conclusion, T = Ts,(n).

Case 2. b> 2.

Since T # T;(n) for i = 1,2,3,4 and b > 2, these imply that |V(H)| =
n-~2b-126and T — Np[z] # Ti(n - 2) for i = 1,2,3. By Theorem 2.9, we
have that 5r°~7 + 2 = mi(T") = mi(T — Nr[z]) + mi(T — Nt[y]) < ta(n—2) +
r26-2 mz(H) < (57.11—9_'_3)+7.2b—2‘(1.n—2b—3+l) = 5.’.n—9+3+rn—5 +T.2b—2 -
9r"~9 4 r20~2 1 3. Thus we obtain that r2*~2 4+ 1 > "9 [t follows that
26>n -7 Hence2b =n-7>8, |V(H)| =6 and mi(H) < t;(6) = 5. Since
b > 4, this implies that T — Nr[z] # Ta(n—2) and mi(T ~ Nr[z]) < 579 +2.
Hence we obtain that r*~°-mi(H) = mi(T—Nr[y]) = mi(T)-mi(T - Nr[z]) >
(5r"=7 +2) — (579 + 2) = 5r"~9, this implies that mi(H) > 5. Hence
mi(H) = 5, by Theorem 2.3, H = T1(6). In conclusion, T = T5o(n). O

Lemma 3.5. If F is a forest of even order n > 12 having F # Fy(n), i =
1,2,3,4, then mi(F) < 17r™~10, Furthermore, the equality holds if and only if
F =T1(10)u 2510P,,

Proof. 1t is straightforward to check that mi(T}(10)U 2512 Py) = 177710, Let
F be a forest of even order n > 12 having F # Fi(n), i = 1,2, 8,4, such that
mi(F) is as large as possible. Then mi(F) > 17r"~1°. Suppose that there
exist two odd components Hy and H; of F, where |H;| = n; for i = 1,2. By
Lemma 3.1, Theorems 2.3 and 2.4, we have that 17r*~1° < mi(F) = mi(H,) -
mi(Hz) - mi(F—(V(H,)UV(Hy))) € rm—l.pra=lpn-mi=nz — pn-2 o 17010
which is a contradiction. Hence F has no component of odd order. Since
F # Fy(n), there exists an component H of even order m > 4.

Suppose that F' — V(H) # Fi(n — m), it follows that mi(F — V(H)) <
fa(n = m) = 3r"~™"4, Since F # Fy(n) for i = 1,2,3,4, by Lemma 3.1,
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Theorems 2.3, 2.6 and 2.8, we have that

17710 < mi(F) = mi(H) - mi(F - V(H))
< { max{(t1(4) — 1) - fa(n —4),t1(4) - fa(n — 4)} ifm =4,

ti(m) - fa(n —m) if m > 6,
_f 3.5pn"10 ifm=4,
) 364 3r-m4 ifm > 6,
< 17710,

which is a contradiction.
Now we assume that F — V(H) = Fj(n — m). Since F # Fi(n) for i =
1,2,3,4, by Lemma 3.1, Theorems 2.3 and 2.4, we have that
177" 10 < mi(F) = mi(H) - mi(F - V(H))
< { (tl(m) - 1) ' fl(n - m) ifm= 4,6,8,

=1 ta(m): fi(n —m) if m > 10,
_f 2 if m=4,6,8,

Tl 24 ™ ifm > 10,

< 177710,

Furthermore, the equalities holding imply that m = 10, H = T3(10) and
F - V(H) = 2312P,. In conclusion, F = T1(10) U 2312 P, m]

Lemma 3.6. If F is a forest of odd order n > 13 having F # Fi(n), i =
1,2,3,4, then mi(F) < 49r"~'3, PFurthermore, the equality holds if and only if
F=T,(13)u -'%I—SPQ.

Proof. 1t is straightforward to check that mi(T5(13) U 2523 Pp) = 49713,
Let F be a forest of odd order n > 13 having F # Fi(n), i = 1,2,3,4, such
that mi(F) is as large as possible. Then mi(F) > 49r"~13. Suppose that F
has three odd components H;, H; and Hjz, where |H;| = n; for i = 1,2,3.
By Lemma 3.1, Theorems 2.3 and 2.4, we have that 49r"~13 < mi(F) =
(T, mi(Hy)) - mi(F — U, V(H;)) < 77171 - pma=tpma=d . gn=(uaknakng)
r™=3 < 40r"—13 which is a contradiction. Thus we obtain that F has exactly
one component H of odd order m > 1. For the case of F'— V(H) # Fi(n—m),
by Lemma 3.1, Theorems 2.3 and 2.6, then we have that 49r™~13 < mi(F) =
mi(H) - mi(F — V(H)) € ti(m) - fa(n —m) = r™~1 . 3pn-m-4 = 3pn-5 <
49r™~13_ which is a contradiction. For the other case of F—V(H) = Fi(n—-m),
then m > 5. Since F # Fi(n) for i = 1,2,3,4, by Lemma 3.1, Theorems 2.4




and 2.5, we have that

49r" 13 < mi(F) = mi(H) - mi(F - V(H))

ta(5) - f1(n - 5) if m =5,

< ¢ (t2(m)=1): filn—m) ifm=79,11,
ta(m) - fi(n — m) if m > 18,

_f 3m-s if m=5,7,9,11,

T 3™ ifm > 13,

< 49r™13,

Furthermore, the equalities holding imply that m = 13, H = T,(13) and
F - V(H)= 23!3p,. In conclusion, F = Tp(13) U 2312 p,. ]

The results for the fifth largest numbers of maximal independent sets among
all trees and forests, now follow from the above discussion, and they are sum-
marized in the following theorems.

Theorem 3.7. If T is a tree with n > 14 vertices having T # Ti(n), i =
1,2,3,4 then mi(T) < ts(n), where

ts(n) = 78, if n > 14 is even;
YWY 5rm-7 42, ifn > 15 is odd.

Furthermore, mi(T) = ts(n) if and only if T = Ts(n), where

_ | Tse(n) or B(6;2,2), ifn > 14 is even;
Ts(n) = { Tu.(n), if n> 15 is odd.

Theorem 3.8. If F is a tree with n > 12 vertices having F # Fi(n), i =
1,2,3,4 then mi(F) < fs(n), where

fon) = 177710 ifn > 12 is even;
SV 4913 ifn > 13 is odd

Furthermore, mi(F) = fs(n) if and only if F = F5(n), where

_f h(10)u "‘21°P2, if n > 12 is even;
Fs(n) = { Ty(13)U RS8P, ifn> 13 is odd.
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