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Abstract

Hyperdomination in hypergraphs was defined by J. John Arul
Singh and R. Kala in [3]. Let X = {z1,z2,...,zo} be a finite
set and let & = (E;/1 < i < m) be a family of subsets of X .
H = (X, &) is said to be a hypergraph if 1) E; # ¢, 1 £ ¢ < m and
2) Uz, B: = X . Theelements z,,Z2,...,2, are called the vertices
and the sets E;, Es,...,E,, are called the edges. Aset DC X is
called a hyperdominating set if for each v € X — D there exist some
edge E containing v with |E| > 2 such that E—~v C D. The
hyperdomination number is the minimum cardinality of all hyper-
dominating sets.

In this paper, a finite group is viewed as a hypergraph with ver-
tex set as the elements of the group and edge set as the set of all
subgroups of the group. We obtain several bounds for hyperdomina-
tion number of finite groups and characterise the extremal graphs in
some cases.
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1 Introduction

Algebraic Graph theory has developed in various dimensions in the past
two decades. In this paper, we relate a group with a hypergraph and study
hyperdomination on that hypergraph. Throughout this paper, G denotes
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either a group or a hypergraph, which is evident from the context. Terms
not defined here are used in the sense of Herstein (2] and Berge [1].

Let X = {z;,22,...,2,} be a finite set and let & = (E;/1 <i < m) be
a family of subsets of X. H = (X,&) is said to be a hypergraph if 1)
Ei#¢,1<i<m and2) U, E; = X. The elements z,,z3,...,7, are
called the vertices and the sets E), E,,...,E,, are called the edges.

A set §C X is called stable if it contains no edge F with |E| > 1. The
stability number a(H) of H is the maximum cardinality of a stable set
of H. A strongly stable set is a set S C X such that |[SNE| <1 for
every edge E € &(H) . The strong stability number &@(H) is the maximum
cardinality of a strongly stable set of H. Aset T C X is a transversal of H
if it meets all the edges. The transversal number is the smallest cardinality
of a transversal. A k -coloring is a partition of the set of vertices X into k
classes such that every edge which is not a loop meets at least two classes
of the partition. The chromatic number x(H) is the smallest integer k
for which H admits a k-coloring. A set D C X is called a dominating
set of H if for every vertex y € X — D there exists an edge E containing
y such that END # ¢. The domination number v(H) is the minimum
cardinality of a dominating set. The undirected powergraph ¥(G) of a
group G is an undirected graph whose vertex set is G and two vertices
a,b € G are adjacent ifand only if a # b and a™ =b or b™ = a for some
positive integer m .

2 Main Results

Definition 2.1. Let H = (X, &) be a hypergraph. A set D C X is called
a hyperdominating set if for each v € X — D there exist some edge E
containing v with |E| > 2 such that E —v C D. The hyperdomination
number yp(H) is the minimum cardinality of all hyperdominating sets.

A finite group G can be viewed as a hypergraph, considering the vertex
set as the elements of the group and edge set as the set of all subgroups of
G . We calculate various hypergraph parameters for finite groups.

Remark 2.2. The following are some immediate observations :

1. As the identity element e lies in every subgroup, for any finite group
G, G —e is a stable set and so the stability number o(G)=n—-1.
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2. As <z,y > is an edge of G for every z,y € G, singleton set is the
only strongly stable set and so the strong stability number &(G) =1.

3. As ({e},{G —¢€}) is a partition of G into stable sets, the chromatic
number x(G)=2.

4. As the singleton set containing the identity itself is a dominating set,
the domination number v(G) =1.

We now calculate the hyperdomination number for finite groups.

Theorem 2.3. v4(G) =1 if and only if G Zon for some n>1.

Proof. As the identity element e should lie in any hyperdominating set,
it is easy to observe that v,(G) =1 if and only if {e} is a hyperdominating
set of G if and only if every element of G lies in a subgroup of order 2. So
it is now enough to prove that every element is of order two if and only if
G = Zy» for some n > 1. When G = Zsn , that every element is of order
two is obvious. For the other case, when each element is of order two, each
element is self inverse and so ab = (ab)~! = b~la~! = ba which says G
is abelian. Hence the result follows since the only abelian group in which
every element is of order two is Zgn . (]

Theorem 2.4. Let p be the smallest prime divisor of |G|. If p > 2,
Y(G)=p—1ifandonlyif GXZ,.

Proof. For G = Z,, it is immediate that v4,(G) = p — 1. Assume
Yh(G) =p—1. Let D be a hyperdominating set of G. Foreach v€ G—D
there exist a subgroup E of order p such that E—v = D. We claim that
G=FE. Hnotlet we G—F. As we G—D, w lies in a subgroup F
of order p such that F —w C D. Now as both E and F are of prime
order p and E # F we have ENF = {e}, which means F —w ¢ D.

This contradiction proves the result.
a

Theorem 2.5. If G is any noncyclic finite group with o(G) = n, then
T (G) <n-3.



Proof. Let £ be the maximum order of an element in G. Clearly ¢t > 2.
Choose a € G such that o(a) = % . Let b be an element of maximum order
in G- <a>. Then o(b) < 2. Now [<a>U<b>| < 22l < nal o
n. So G—-(<a>U<b>)#¢. Choose an element ¢ of maximum
orderin G- (<a>U<b>). By choiceof ¢, c¢<a>U<b>. Also
b¢<a>.If be<c> then < b >C< ¢ > sothat o(b) < o(c). Also
since ¢ €< b > we get o(b) < o(c) , a contradiction to the fact o(c) < o(b) .
Hence b ¢< c > sothat b ¢<a>U<c>. Nowif a €< b > then
< a>C< b> sothat o(a) < o(b). Also since b ¢< a >, o(a) < o(b) a
contradiction to the fact that o(b) < o(a). Hence a ¢< b >. By a similar
argument @ ¢<c >. Hence a ¢<b>U < ¢c>. Thus G — {a,b,c} isa
hyperdominating set of G. Hence y,(G) < n—3. (m]

Theorem 2.6. For any finite group G of order n, Y4(G) =n—1 if and
only if G = Zpo .

Proof. If G 2 Z,., then the only subgroups of G are <1 >,<p >,
<p?P>,...,<p*1>and <e>. Also < p" >C<p* > for k < 7.
Hence y,(G) =n—1. Conversely assume y,(G) =n—1. Then |G| = p*
for some prime p. If not then G has two prime divisors p and q. By
Sylow’s theorem, G has an element a of order p and an element b of
order q. Clearly G—{a,b} is a hyperdominating set, so that 4,(G) < n—2
a contradiction. Hence |G| = p* for some prime p. By theorem 2.5, G
is cyclic. The only cyclic subgroup of order p* is Z,- . Hence G = Z,a .

()

Definition 2.7. Let G be an abelian group. We know that G can be
represented as G = Z, n ®...® Zp, ~ where @ represents direct product
of groups and p; are primes. We denote by Gp a graph with verter set
V(GD) = Z(n,41) X ... X Zin, 41y where X represents cartesian product.
Two tuples (z1,...,zk) and (y1,...,yx) in V(Gp) are adjacent if and
only if either z; > y; forall i or x; <y; forall i.

Definition 2.8. For any hypergraph H = (X, &), we call a collection
9 = {E;} C &(H) as a hyperdominating collection of H if E; & U#i E;,
Vi.
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Proposition 2.9. For any hypergraph H = (X, &), y(H) = n—maz{t/
there erists a hyperdominating collection 2 with |29|=1t}.

Proof. If {E1,Es,...,E;} satisfies E; € U, ; E;, forevery j, 1<j5 <
t then choosing v; € E; — U,.#j E;, 1<j<t weget a hyperdominating
set X — {v;,1 < j <t} with cardinality n-t. Hence yx(H) < min{n —t/
there exists an edge set {Ey, E», ..., E;} suchthat E; ¢ Uiﬁ E; , for every
H1L5<t}.

On the other hand, if there is a hyperdominating set D with |D| = y.(H),
then by definition, for each v; € X — D, 1 < i < n — vy,(H), there
exist edges E; such that E; —v; € D. {E\,E,,...,E;} satisfies E; ¢
Uiz; Ei» 1 £ 5 < n—(H). Hence min{n —t/ there exists an edge
set { E1, Ey, ..., Ei} such that E; ¢ U, E:, for every 5,1 < j <t} <
(H). o

Theorem 2.10. For any abelian group G of order n, y4(G) < n —
Bo(Gp) . Moreover y4(G) =n — fo(Gp) whenever G is cyclic.

Proof. Let G=Z, ~ ®...Q®Zy, , where p;'s are primes. Consider the
collection €(G) = {<p' >® <P > ®...® < p* >: 0 < r; <n; Vi}.
Define f: €(G) — V(G) by f(<p' >®<pp* >®..0 <pf >) =
(r1,72,...,7%) . Then f is a bijection. Let 2 C &(H).

Claim 2 is a hyperdominating collection of the partial hypergraph of G
say H generated by ¥(G) if and only if f(2) is an independent set of
Gp.

Assume 9 is a hyperdominating collection of H. Let < It > ® <
P > ®..0 <pt > and <p' > @ <pP? > ®...Q0 < pi* > be
any two elements in 2. If r; > s; Vi=1, 2, ..., k then < p* >
®<Py>®.9<pF> C <pI' >Q@<pP >Q...0 < pp* >,
which is not possible in a hyperdominating collection. In the same way,
r; < 8V i is also not possible. Thus f(< p! > @ < p* > ®...® <
P >) = (r1,72,...,7%) and f(<pI' > @ <p? > ®...0 < pi* >) =
(s1,82,---,8k) are non adjacent. Hence f(2) is independent.
Conversely assume 2 C ¥(G) and f(9) is an independent set. Let (I3, 1o,
...,k) beanyelement in f(2). Then as f(2) is independent, (I3,15,...,
lx) is not adjacent to any other vertex in f(2). Then for each (r1,72,...,
Tk) € f(2D) there exists j € {1,2,...,k} such that I; < r;, so that
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p;j ¢< p; >. Now (p,...,p}) does not lie in any edge of 2, so
that < p! > ® < p? > ®...® < pi* > is not contained in union of
all other edges. Hence 2 is a hyperdominating collection of H. Hence
Bo(Gp) = maz|?| where maximum is taken over all hyperdominating
collections of H . By proposition 2.9, we have y,(H) = n—8(Gp) . Since
every hyperdominating collection of H is also a hyperdominating collection
of G, W(G) £ v(H) =n— Bo(Gp). When G is cyclic, every subgroup
of G liesin % and so in this case G = H. Thus v.(G) = n — Bo(Gp)
when G is cyclic. m]

Lemma 2.11. For any abelian group G = Zp n1 ® ... ® Zp,nx , p;S are
primes, the sets S; = {(z1,T2,...,%k) € Z(n,41) X -+ - X Z(npt1) : 2 Ti = 1}
for 0 <1 <3 n; are independent in Gp .

Proof. Let z = (z1,%2,...,zx) and ¥y = (y1,Y2,...,Yk) be any two
arbitrary points in Sy € Z(n,41) X ... X Z(n,4+1) - As z and y are distinct,
there is an integer i such that z; # y;; without loss of generality assume
x; < y;. Then as )" z; = )y, there exists some j such that z; > y; .
Hence z and y are non adjacent. This proves the independency of S;.
(=]

Theorem 2.12. For any group G of order n with G = Z;» ® ... ®
Zperx , W(G) £ n— ISL%EJI, where pis are primes and Sl%ﬁij
{(z1,z2,...,2zk) € Gp : 1z = [22"—']} Moreover equality holds if G

is cyclic.

Proof. Let V(Gp) = Z(n,41) X ... X Z(n,+1) - We partition Gp into dis-
joint cliques using the following procedure. In Z,, 11y x {0} x {0}...x {0},
consider the path P, : ((0,0,0,...,0),(1,0,0,...,0),...,(n,0,0,...,0)).
Considering Zn, +1) X Z(n,+1) X {0} x {0} x...x {0} we have ny+1 copies
of such paths. We combine them to create new paths as follows. The new
paths considered are Fy; : ((0,4,0,0,...,0),(1,%,0,0,...,0),(2,%,0,0,...,0),
ey (M1 —14,4,0,0,...,0)U((n1—4,4,0,0,...,0), (n—i,i+1,0,0,...,0), (n1—
i,i+2,0,0,...,0),...,(n1 —4,n2,0,0,...,0)) for 0 <i < min{ni,n2}. In
general, let P be the path in Z,, 41y X Z(ng41) X -+ X Z(n;_,41) X {0} x
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k
{0} x ... x {0}. Suppose that m = min_ {3 z;} and ! =length of
(Z1,-. 1Tk )EP "=

P . By construction, the vertices in P have distinct co-ordinate sums rang-
j=1
ing from m to m+! and Y n;=2m+!l.In Z, 41y X... X Zn,_y41) ¥

i=1
Z(n;41y X {0} x ... x {0}, this path P gives rise to min{n;,{} +1 paths.
These paths are given by P, = {(z1,z2,...,2j-1,5,0,0,...,0)/(z1,%2,-- .,

j—1
z;_1,0,0...,0) € Pand } z; < m+l—s}U{(z1,22,...,2;-1,¢,0,0...,0)
=1

j=1
Yzi=m+l—s,8<t<n;} where 0 <s < min{n;,l}. With n; =6
i=1

and ny = 4, the construction of paths in Zn, 1) X Z(n,41) X {0} x {0} x

...x {0} from paths in Z(,,+1) x {0} x {0} x ... x {0} is given in Fig. 1.

._._...-I.-- ---¢---9 (6,4,0,...,0)
> - T ccc@--2@---9
L g - . R RS
L - - - . .-
0,0,0,...,0) o——e—s . - . (6,0,0,...,0)
Fig. 1.

Thus we obtain a partition of Gp into paths which are all cliques. More-
over by construction, the coordinate sum of the last point in each path is

same as the difference of Ek: n; and the coordinate sum of the zeroth point
in the same path, so that é:éry pathin Gp intersects the set S L - Also
we note that the total number of such paths is same as |SL§P‘ JI as each
point in Sl;’ﬁ | should lie in such a path. As an independent set can have
at most one vertex from a clique, G,(Gp) = lSlzaﬂ J] . By lemma 2.11,
Sl%'-'-"-] itself is an independent set ot Gp. Hence B,(Gp) = ISL%"—iJI .
Theorem now follows from the theorem 2.10. o
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Theorem 2.13. For any group G of order n with G = Zp » ®...®Zp, s,

k=2 k=3
min n;—2 i,k
min{n1,n3} min{ny+n3—2i;,ns} {j§1 7 jgl ? 1}

(k22), W@ Sn— > PSR »
i1=0 i2=0 ik-2=0
k=1 k=2
min{} n;—2 Y i;+1,nc+1}. Moreover, equality holds whenever G is
Jj=1 i=1
cyclic.

min{n; ,ng}

Proof. By theorem 2.12, it is enough to say [Sl;;Li J| =

11 =0
(S n5-2'% im0}
. min nj— 15 Nk—-1
min{n;+ny—2¢;,ns} i= i=1 k-2
> mm{z-n,—22'z,+1nk+
i2=0 ik —2=0

1}. (%) Consider the partition Gp into cllques as in theorem 2.12. We
have |.S’lf‘,’;_.i J| equals the total number of cliques. So it is sufficient to say
that the total number of cliques obtained in the partition of |Gp| equals
the expression in the right side of (x).

k k=1
Claim : The length of the paths obtained in Gp are Y n;—2 Y i;  (%%)
: F=1

i=1
where i; varies from 0 to min{n;,n2}, iz varies from 0 to min{n; +
k—1 k=2
ng — 24;,n3}, ..., ik—1 varies from 0 to min{ 2 n;—2 E 5, Nk} .
j=l1 Jj=1

We prove by induction on k. When k = 1 we get a single path of
length n; and so (**) holds when k& = 1. Assume the result for kK —1.
That is the length of the obtained paths in Z(,,41) X ... X Z(n,_, 41y are

k—1 k=2
2 ni—2 34 (% %)
j=1 j=1
k—2
where i; varies from 0 to min{n;,ns},...,%k—2 varies from 0 to min{ ) n;—
j=1

k=3
23 i,nk-1}. We prove for k. By construction each path of length
i=1

Lin Zgn 41) X ... X Z(n,_,41) give rise to paths of lengths ! 4 ny —
2ip_y where ix_; varies from 0 to min{l,ns}. Replacing value of [

from (* * *) we get the obtained paths in Z(,, 41y X ... X Z(n, 4+1) are of
k=1

lengths Z n; —2 Z i; where %, varies from 0 to min{n;,ns},...,%_2
i=1 ij=1
k-2 k=3
varies from 0 to min{) n; — 2 ) ¢;,mk_1}, ix—1 varies from 0 to
j=1 j=1
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k-1 k—2
min{ )" n; —2 > i;,nx}. Hence (**) holds for k. The total number of
=1 =1

paths in Gp is

k=2 k—3 k=1 k-2
min{ )} n;-2 Y} i,-,nk_l}min{ Yy nj—2 Y ijne+}
min{ny,n2} min{ni+nz2—2i;,n3} i=1 i=1 i=1 i=1
1
i1=0 ia=0 ip—2=0 ik1=1
(S ny=2 T f5.mc1)
min nij— 154k —1
min{ni,nz} = TaE k—1 k—2
= > .. > min{ ) n; -2 ) i;+1,ne+1} O
£1=0 ixa2=0 J=1 j=1

Theorem 2.14. Let G be a cyclic group isomorphic to Zp,»: ®...® Zp,nx
k=1

with ng >nVi=1,2,...,k—1. Then nx 2 > n; if and only if vo(G) =
i=1

k=1
|G| = TI (ni +1).
i=1
k-1 k-1
Proof. Assume ng > Y n;.Let t= ) n; and S; = {(z1,%2,...,2k) €
=1 i=1

k=1
V(Gp): Y z; =t}. By lemma 2.11, S, is independent in Gp .
i=1
k=1
Since (z1,Z2,--.,Tk—1,t— ), ;) € 8 forall (z1,72,...,7-1) € Z(n,41) ¥
=1

k=1
o XZ(ny_141) 1 Bo(Gp) 2 |S¢| > il:[l(n,-+1). And since the sets T(z, .. z,—1) =
{(z1,. ., 2k—1,h) : 0 < h < ni} areall cliquesin Gp and UT g, . 7, ) =

V(Gp), Bo < kl:[l(ni + 1). Hence (G) = |G| — kﬁl(ni +1). Con-
i=1 i=1

=

k=1 k
versely assume ,(G) = |G| — [[(ni + 1) .By 3. n; we mean ) n;.

k-1
Then |S’L%ﬁj| = 1_]:[l(n,--i-l) . Since {T{z,,....z\.,)} Partitions V(Gp) into
cliques and Sl Epi is a maximum independent set, one element from each
nzhxz._'_lzk_l) lies in SlL}ﬂJ . Let (0,0,...,0, S) S Sl_-r—‘;'-j . Then s =

k=1
|3 end let (n1,ma,...,ne-1,1) € S g Then I = | 2] - X,
k=1
sothat ng >s—t= Y n;. ]

i=1
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Theorem 2.15. For any finite group G of order n, Y (G) =n -2 if
andonly if G= Zp0e, a>1, p, q are distinct primes.

Proof. If G 2 Z,40, then y4(G) =n —min{2,a + 1} = n — 2. For the
other part, assume y,(G) = n—2. Then by theorem 2.5, G is cyclic and by
theorem 2.4 |G| # p™, p prime. So G has at least two prime divisors. If
|G| has more than two prime divisors say p,q,! then by Sylow’s theorem
there is an element b of order 2 and an element ¢ of order /. Now
G - {a,b,c} is a hyperdominating set, which is a contradiction. Hence
|G] = pP¢*, p,q primes. If both o,8 < 2 then G — {p?,¢% pq} is a
hyperdominating set as < pg > —pg, < ¢ > —¢? and < p? > —p?
are all subsets of G — {p?, ¢% pg}. But now 7,(G) < n —3 and hence
G = Zpqe where p and g are primes. @]

Theorem 2.16. For any finite group G, Yu(G) = yn(H) , where H is the
partial hypergraph of G generated by the collection of all cyclic subgroups
of G.

Proof. As every hyperdominating collection of H is again a hyperdom-
inating collection in G, we have y,(G) < ya(H). Let 2 be a hyper-
dominating collection in G with |2| = n — v4(G). Every subgroup E
in 2 has an element a which does not lie in any other subgroup in 2.
Replace E by < a >. Repeate the process for every noncyeclic subgroup
in 2 until we get a collection 2' containing no noncyclic subgroups. Also
|2'| = |2|. Thus we get a hyperdominating collection 2’ of H having
cardinality n — v,(G) . Hence v4(H) = 7, (G). O

., C,
Theorem 2.17. For any finite group G of order n, Y (G) <n— ) &

plo(G)
p prime

where C, is the number of elements of order p. Moreover equality holds
when every element in G is of prime order.

Proof. Let 2 be the collection of all subgroups of G of prime order.
Let A, B € 2. If |A| = p, |B| = q where p # ¢, then as p and
g are primes, each element of A other than e is of order p and each
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element of B other than e has order g, so that AN B = {e} in this
case. Let A and B have the same order say p. If AN B # {e} and
z € ANB then as o(z) =p, {ex,2%...,2P"'} C ANB andso A=B.
Therefore ANB = {e} for all A,B € 2 with A# B. Hence 2 is a
hyperdominating collection of G. Therefore v,(G) < n—|2|.

Also |9| = Z number of subgroups of order p

plo(G)
p prime

1
= E 1 x number of elements of order p
plo(G)
p prime

= Z —gp—l,where Cp is the number of elements of order p.
slo@) £
p prime
When every element of G is of prime order, every cyclic subgroup is of
prime order, so that the collection of all cyclic subgroups is same as 2. By

lemma 2.11 y4(G) = vn(H) , where H is the partial hypergraph generated

by 2. We know that y,(H) =n—|2| and so W (G) =n — ,%1‘
i,
in this case. 0

Corollary 2.18. v,(Zpn) = 2= 1 , where p is prime.

Proof. In Z,» every element except identity has order p and so proof
follows from theorem 2.17. ]

Theorem 2.19. v1(D2n) = Ya(Zn) -

Proof. Let D be a hyperdominating set of Dy, with |D| = v4(Dan) .
Then for every v € Z,,—(DNZ,), by hyperdomination of D, there exist a
subgroup E—v C D,sothat <v>—-v C D. Nowsince ve Z,, <v>C
Zy, . Therefore <v > —~v C DN Z,. Hence DN Z, is a hyperdominating
set of Z,, so that y,(D2,) = |D| 2 |DNZ,| > v.(Z,). Conversely let
D’ be a hyperdominating set of Z, with y,(Z,) = |D’|. Then as every
element of Dy, — Z,, is of order two, D’ is again a hyperdominating set
of Don. Thus yx(Zn) = |D'| 2 Ya(Dzn) - o
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Theorem 2.20. For any group G of order n, y(G) = n — B,(¥4(G))
where 9(G) is the undirected power graph of G.

Proof. Let H be a partial hypergraph of G generated by the collection
of all cyclic subgroups of G. By theorem 2.14, y4(G) = ya(H) . We claim
that there is a one-one correspondence between independent sets of ¥(G)
and hyperdominating collections of H. Consider the map f: G — &(H)
defined by f(a) =< a >. Let I be an independent set of ¥4(G). Then
fI)={<a>/a€l}. Fix a€I. Thenforany be I, a and b are
nonadjacent, so that a # b* Vi. Hence a ¢<b>Vbe I and b#a. Then

<a>¢ bLEJI < b >. Hence f(I) is a hyperdominating collection of H .

bs#a
Conversel;(é let us assume that 2 is a hyperdominating collection of H .
For each S; € 2, choose a; € S; such that < e; >=S;. Let I = {a;}.
Let a;,a; € I and i # j. Then by hyperdomination, < a; >¢< a; >
and < a; >Z<a; > sothat a; #a]® and a; # o for all m. Hence a;
and a; are nonadjacent in ¥(G), ie, I is independent with 2 = f(I).
For any independent set I, a,b € [,a #b = a #ba' # i =
<a>#<b> = f(a) # f(b). Hence f/I is one to one. Thus
F/I: I — f(I) is a bijection. So |I| = |f(I)| for all independent sets
of 4(G) and |2| = |f~1(2)| for all hyperdominating collections of H .
Hence B,(4(G)) equals the maximum cardinality of a hyperdominating
collection in H , so that Y4 (G) = ya(H) = |G| = B.(4(G)) . a

References

(1] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.

[2] I N. Herstein, Topics in algebra, Second edition, John Wiley and sons,
2003.

[3] J. John Arul Singh and R. Kala, Hyperdomination in hypergraphs,
submitted to Contributions to discrete mathematics.

108



