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Abstract

A generalized 8-graph is composed of at least three internal dis-
joint paths (at most one of them is with length 1) which have the
same initial vertex and the same terminal vertex. If the initial vertex
and the terminal vertex are the same in a generalized 8-graph, then
the generalized f-graph is called a degenerated 8-graph or a petal
graph. In this paper, two graft transformations that increase or de-
crease Q-spectral radius of a graph are represented. With them, for
the generalized 6-graphs and petal graphs with order n, the extremal
graphs with the maximal Q-spectral radius and the extremal graphs
with the minimal Q-spectral radius are characterized respectively.
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1 Introduction

Throughout this article, all graphs considered are simple, connected and
undirected. Let G = G|V(G), E(G)] be a graph with vertex set V(G) =
{v1,v2,--,vn} and edge set E(G), where |V(G)| = n is the order and
|E(G)| = m is the size of G. In a graph G, if vertex v; is adjacent to v;, we
denote by v; ~ v;. We denote by Ng(v) or N(v) the neighbor set of vertex
v in graph G. The degree of vertex v in G, denoted by dg(v) or d(v), is
equal to |[Ng(v)|. In this paper, we denote by K, P,, C, for a complete
graph, a path and a cycle with order n respectively.

Let A = (aij)nxn be the (0,1)-adjacency matrix of G, and let D be
the diagonal matrix diag(di,dz, - -,dn). The matrix L(G) = D — A is the
Laplacian of G, while Q(G) = D + A is called the signless Laplacian of
G. If M is the n x m vertex-edge incidence matrix of the (n, m)-graph G,
then Q(G) = MMT. Thus, if G is connected, then Q(G) is positive semi-
definite, and its eigenvalues can be arranged as: g=¢1 =2 g2 = -+ 2 g 2 0.
q is called the signless Laplacian spectral radius or Q-spectral radius of G.
By the Perron-Frobenius theorem [7], for a connected graph G, we know
that there exists a unit positive vector corresponding to ¢(G) which is called
Q-Perron eigenvector.

Within spectral graph theory, studying the properties of a graph using
its signless Laplacian became recently the most dynamic area of research.
Cvetkovié¢ and Simié [1)-[4] recently investigated the theory of Q-spectra of
graphs, and they gave some reasons for studying graphs by using Q-spectra
being more efficient than studying them using their A-spectra (adjacency
spectra) or L-spectra (Laplacian spectra). For some recent results on Q-
spectra of graphs, the reader can be referred to [1]-[4], [9, 12, 13].

Definition 1.1 A generalized §-graph is composed of internal disjoint paths
Pn;-{»-l; Png-f-l; RN Pn,+1 (8 > 3), where Pn1+1, Pn2+1, AN fn_+1 have the

same initial vertex and the same terminal vertez, denoted by 8(ny,n2, -+, n;)
or O,(n1,ng,-++,n,) ifny +ng+---+n, — s+ 2 =mn (at most one of n,,

ng, -+, Ng i8 1). Each Py, 41 is called a meridian line; the common ini-

tial verter is called the head, denoted by vo; the common terminal vertex
is called the tail, denoted by ug. If s = 3, On(n1, na, n3) is the general
0-graph, denoted by 8,(n1, na, n3) usually.



Flg 1.1 y(nl, ng, - ns)

A s-petal graph is obtained by attaching s independent cycles Ch,, C,,

-+, Cp, to a vertex, denoted by P(n,, ny, -+, n,) (see Fig. 1.1). In fact,

a s-petal graph is a degenerated generalized 6-graph, namely, vo = up in
this 8-graph.

The study about #-graphs are always interesting. For example, in [5],
Y. Feng and Q. Huang considered the consecutive edge-coloring of the gen-
eralized f-graphs; in [6], J. Fialaa, J. Kratochvla and Attila Par considered
the the computational complexity of partial covers of -graphs; in [10), F.
Ramezani, N. Broojerdian and B. Tayfeh-Rezaie considered the spectral
characterization of #-graphs; in [11), for generalized #-graphs, the relation-
ship between the structure and the spectral radius was discussed. In this
paper, two graft transformations that increase or decrease Q-spectral radius
of a graph are represented. With them, for generalized §-graphs and petal
graphs with order n, the extremal graphs with the maximal Q-spectral
radius and the extremal graphs with the minimal Q-spectral radius are
characterized respectively. This paper is organized as follows: Section 1
introduces the basic ideas and their supports; Section 2 gives two graft
transformnations; Section 3 introduces some applications of the two graft
transformations.



2 Graft transformations

Fig. 2.1. )

Lemma 2.1 Let X = (Tu,, Tu,, *+-)T denote the Q-Perron vector of a
generalized 8-graph 0,(ny,n2,---,ns) in which x, corresponds to vertex v.
Denote by q the Q-spectral radius of 0,(n1,ng, -+, n,). For a meridian line
Pn;-f-l:

(1) if Pp,41 = voT172 " Ta—1TaSa—1" - S1uo (see Fig. 2.1 51), then
(i) Trooy = Lsa_ys Tra_g =Lsa_zr *° % Try = Tsys Tug = Tugs
9y 1 1
(i) let fy = E(q —2)and fiyrn=q—2— -fj Then xr,_, = fiZr,_; 1
fori<i<aand fi>1 foranyi>1;
(2) if P41 = VoT172 * *Ta—1TaSaSa—1 " - S1Uo (See Fig. 2.1 52), then

(") Ty, = Tg,y Try_y = Tsayy Trog = Tsq_gy '** Ty = Tsyy Tyg = Tug,s

. 1
(ii) let g1 = q— 3 and giy1 = q— 2~ —. Then z,,_;, = 9iTr,_,,, for
i

1<i<aandg;>1 foranyi>1.

(3) for fi, g:, we have f; < g; < fiy1 for anyi > 1.

Proof. By symmetry, (i) of (1), (2) follows.

For (1), it is easy to check that z,,_, = fiz,,, and by induction, z,,_, =
fi%r,_iy, for 1 €4 < a. Because On(ny,n2, -y ns) # Cp, s0 ¢ > 4, and it
is easy to check that f; > 1. Suppose that f; > 1 holds for ¢ < N, then

fn=q-2- > g—3 > 1. By induction, f; > 1 holds for ¢ > 1. Thus

N-1
(ii) of (1) is proved. (ii) of (2) can be proved in a same way.




It is easy to see that f; < g1 < f2 because ¢ > 4 and f; > 1. Suppose

that f; < g; < fi+1 holds for i < N, then ¢ — 2 — <qg-2- <
N-1 gN-1

1
q— 2 — —, namely, fv < gy < fn41. By induction, f; < ¢; < fiy1 holds
N
for < > 1. This complete the proof of (3). O
Ck

(S

Fig. 2.2. G.(k,l)

Remark 1 Let G.(k,!) denote the graph obtained by attaching two
independent cycles to a vertex of G (see Fig. 2.2). In a same way as
Lemma 2.1, for the Perron vector of G(k,!), there is the same lemma
indicating the relations among the coordinates corresponding to the cycles
Ck or C[.

Theorem 2.2 In 5n(n1, ng, -+, Ng), if there exist 2 < n; < n;, then
Q(on(nl; na, - ns)) < q(gn(nly ng, - Ny — 1; Yy nj + 1) et ans))'
Proof.
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Fig. 2.3. g(nl, Ng, -+, Ng)

Let X1 = (Zug, Tup, *+-)T denote the Q-Perron vector of gn(nl, Ng, « -,
ng) in which z, corresponds to vertex v.

Case 1 Meridian line P, 41 = YoT172 - Ta—17aSa—1" - S1Uo in 8,(ny,
ng, ---, ny) (see Fig. 2.3). For meridian line Py, 41, there are just two
subcases as follows.



Subcase 1.1 Pn].+1 = vptita - tp—1tp2p—1 -+ Z1Up in 5,,(111, Ny, ***,
ng).

Subcase 1.2 Pnj+l = vptilp - tp—1tp2p2p-1 - Z1Ug in 5,,(1’&1, Mg, *
ng).

Whenever for Subcase 1.1 or 1.2, then z, > z,, by Lemma 2.1. There
must be z,, € [T, ,z:,_,] (1 <o <Dh).

Let 0% = on(nl;nZa te ;ns) — 84_1T¢ — TaTa—1 — tolo—1 + Sa—1Ta—1 +
te—17a + te7Tq. Then

XTQB}) X1 — XTQ(Bn(ma,na, -+, ne)) Xa

= (Zt, + 20, )2 + @y + T )P F (Brasy + Touy)? — (T, +22,_,)°
—2(zr,_, +2r)? = 2(ze, T, +Tr Ts,_, +:z:3“_l — Ty Ty, _, ~2Tr,_,Tr,)
=2((Try = Tt,)Ttoy + Tra(Tt, = Trasy) + Tra_y (Tra_y — Zra))
2 2((2r, = %e,)Tt,_y + Tr (Te, = Trasy) + Tr (Trooy — Z5,))
=2((zr, — Tt,)2t,_, +2Zr, (T2, —Zr,)) = 2(2r, ~2t, )(Tt,_, —2r,)) 2 0.

This means that q(§}) > q(an(nl,ng, <oy Tg)). Ifq(a{) = q(§n(n1,n2, <0, mg)),
then ¢(8}) = XTQ(6})X,. From linear algebra, we get Q(81)X; = (81)X,,
but Q(8})r,_, X1 > q(Bn(n1,n2,- -+ 1 7s))Zra_,, Where Q(8}),._, denote the
row in Q(a{) corresponding to vertex r,_j, which contradicts Q(@\{)X 1=
a(8})X1. Hence g(B}) > q(Bu(n1, 2, -+, m0)).

Case 2 Meridian line P, 41 = vgr172 -+ * Tq—1TaSaSa—1 - * * S1¥p in On(ny,
n2, -+, Ns). For meridian line Py, 41, there are just two subcases as follows.

Subcase 1.1 P, 41 = votily- - tp_1tp26—1 - - 21%p in Op(ny, no, -+,
Ng).

Subcase 1.2 Pn,~+1 = vpi1ta - - Lp—1lb2p2p—1 * - 21U In §n(n1, Ng, *
).

Whenever for Subcase 1.1 or 1.2, then z,, > z;, by Lemma 2.1. There
must be z,, € [ry,,2¢,_,] (1 <0 <Dh).

Note that there must be z;, € [z,,,2,,_,] (1 £ 0 < a). Let
5{ = gn(nly Ny, +,Ns) — to—1ls — 2oty — tolo—1 + Zpto—1 + to—1tp + tots.

XTQ@EM) X1 — XTQ@n(n1,n2, -+, 1)) X1



= (x"'o + xtb)2 + (xra-l + xtb)z - (xra' + x‘l‘g-])2 - (xtb + 125)2
= 2(1% - xra)(xrc—l - xtb) 2 0.
As Case 1, we can prove that q(a}) > q(ﬁn(nl,ng, cee,mg)). O

As Theorem 2.2, we can get
Theorem 2.3 If k <, then g(G.(k,1)) < q(Gc(k - 1,1+ 1)).

Remark 2

In [2], D. Cvetkovi¢ and S.K. Simié got that, for graph G(k,!) (k,l > 0)
obtained from a non-trivial connected graph G by attaching pendant paths
of lengths k and ! at some vertex v, if & > I > 1, then q(G(k,1)) >
q(G(k+1,1 - 1)). An interesting is that, for graph G.(k,!), namely, the
two pendant paths in G(k,[) are replaced by two cycles, but the conclusion
for ()-spectral radius is converse.

3 Applications
By Theorem 2.2, we can get the following Theorems 3.1 and 3.2.

Theorem 3.1 Ifn; +na+ - +n, — s+ 2 = n, then q(@,(nl, ng, -+,
n5)) < q(6n(1, 2, 2, -+, 2, n — s+ 1)), with equality if and only if 6n(ny,
ng, -+, Ng) =0,(1,2,2,---,2, n—5+1).

Theorem 3.2 Ifn; +ny+--- +ny — s+ 2 = n, then q(@.(nl, ng, -+,

'n,)) 2 Q(aﬂ(Kh K2, K3, *- ',fs—l: ’CS)) (lni - Kj' § 1 for ivj = 112,"'a3)1
with equality if and only if O,(ny, n2, -+, ns) = Op(k1, Ko, K3, *, Ko,
Ks).

Corollary 3.3 Ifj+k+1—1=n, then ¢(0.(j, k,1)) < q(8.(1,2,n - 2)),
with equality if and only if 0,(j,k,1) = 0,(1,2,n — 2).

Corollary 3.4 Ifj+k+i—1 = n, then q(6.(J, k,1)) = q(0n(x1, K2, K3)) (|ki—
kil < 1for4,j = 1,2,3), with equality if and only if 0,,(j, k,1) = O, (%1, K2, K3).

By Theorem 2.3, we can get the following theorem.



Theorem 3.5 (1) ¢(P(n, ng, -++, ny)) < ¢(P(3, 3, -+, 3, n—25+2)),
with equality if and only if P(n,, na, -+, n,) = (3,3, -+, 3, n—25+2);

(2) Q(g(nl’ ng,- -+ ns)) > 4(9('51, K2, * ns)) (lK'i—K'jl < 1 for 1'1.7 =
1,2,---,8), with equality if and only if P(ny, na, ---, ng) = P(Ky, K2, *+,
Ks).
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