On matrices over roots of unity
with vanishing permanent *
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Abstract

For any integer m > 2, let u,n be the group of mth roots of unity. Let
p be a prime and a a positive integer. For m = p%, it is shown that there
is no n X n matrix over gm with vanishing permanent if n < p.

INTRODUCTION

The permanents of (0,1)-matrices have been studied extensively in the lit-
erature for their combinatorial interpretation and significance. Recall that for
any n X n matrix A = [a;;] over a field the permanent of A is defined by
per(A) := 3" cs. Qin(1) " * - Gnn(n). For any integer m > 2, let (m € C* = C\{0}
denote a primitive mth root of unity and let g, = ({m) be the cyclic group of
all mth roots of unity. For any n > 1, let M,,(u,,) denote the set of all n x n
matrices A = [a;;] with all a;; € prm,.

In 1983 Krauter and Seifter [6], and independently Simion and Schmidt (9],
showed that there is no n x n, (1, —1)-square matrix with vanishing permanent
if n = 2% — 1 for some positive integer a. In [1] we generalized this result to
matrices over roots of unity. More precisely, suppose that p is a prime and « is
a positive integer. Then we showed that:

If n = p* — 1, then there is no matrix A € My(x,), with per(A) = 0.

In this note, by a similar argument we prove a more general result in this
direction and show that:

If n = p*—kp>~1—1 with 0 < k < p—2, then there is no matrix A € Mn (1),
with per(A) = 0.

Also with the same method we show that:

If n < p and m = p*, then there is no matrix A € M, (um), with per(4) = 0.

Actually this result is known and two different proofs of it are given in [3] (see
Theorem 2, Lemma 6 and 7 of [3]), where the authors used this non-vanishing
permanent result to give a stronger version of a theorem proved earlier by Alon
in [2] concerning a conjecture of Snevily (see [10]) about transversals of additive
Latin squares. We used these techniques in [4] to obtain some existence results.

We recall some facts from algebraic number theory. Let m = p® be a prime
power. It is well known that the cyclotomic field Q(¢x) is of degree ¢(m) =
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p*~1(p— 1) over Q and the ring of integers of Q(¢m) is Z[¢m] (see [7]). Also the
principal ideal (1 = {m)Z[{m] is a prime ideal of Z[(,,], and the ideal generated
by p in Z[(,,) factorizes as

P Z{Gm] = (1 = ()P ™Z[Cm]-
PRrRoOOFs

We give the proofs of our theorems in this section. For the first one, just by
a similar argument given in the proof of Theorem 2 (Part (ii)) of [1], one can
show that:

Theorem 1. Let p be a prime and a a positive integer. If n =p* —kp>~1 -1
with 0 < k < p — 2, then there is no matriz A € M, (pp), with per(A) =0.

Actually the proof is almost the same and under the notations of the proof
of Theorem 2 (Part (ii)) of [1] which we present below, we have again S, > S;
under our assumption and this is the key point in the proof. Here we give the
techniques used in the above mentioned proof to show our second result:

Theorem 2. Let m = p* be a prime power. Then there is no matriz A €
Mn(ptm), with per(A) =0 if n < p.

Proof. Assume A € M,(um). As the difference between any two mth roots of
unity is divisible by the element (1 — (., ), there exists a matrix B € M, (Z[(n]),
such that A = J — (1 —¢»)B, where J is the n X n matrix with all entries equal
to one. By Theorem 1.4 of [8, p.18], we have the following equality

per(4) = Y (—1)(n = §)!(1 = ¢m) per;(B)
j=0 )

where per;(B) denotes the sum of permanents of all submatrices of order j of B
(we set perg(B) = 1). For any § € C*, let ord(;_¢,,)0 be the largest 8 > 0 such
that (1-¢m)?lé. Now if per;(B) # 0 we find a lower bound for ord(; _..,P;(B),
where we have set P;j(B) = (-1)i(n - j)I(1 — {m)iper;(B) for 1 < j < n.
Recall that for m = p* and § € C* we have ord(;¢,.)0 = ¢(m) ord,é. So for
1< j < n, we have

ord(1-¢,.)P;(B) 2 p*~1(p — 1) ordp(n — j)! + j.

k- ik, where Sy, is

It is well known that for any natural number k, ord,(k!) =

the sum of the digits of k£ written to the base p (see [5, p.7]). Hence we obtain
ord(1—¢n) Pj(B) 2 p*7(n ~ j ~ Sa—j) + 5.

On the other hand, we have ord(;_¢,,.)(n!) = p*~(p—1)ordy(n!) = p>~1(n-S,).
Now, as n < p, it is clear that for any 1 < j < n we have S; = j. Therefore
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ord(y¢,.)(n!) = 0 while for any j, 1 < j < n, ordy_¢,)P;(B) 2 7 > 0. As
per(A) = n! + 37, P;(B), we cannot have per(4) = 0. This completes the
proof of Theorem 2.
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