On matrices over roots of unity with vanishing permanent *

H.-R. Fanaï †

Abstract

For any integer $m \geq 2$, let μ_m be the group of mth roots of unity. Let p be a prime and α a positive integer. For $m = p^{\alpha}$, it is shown that there is no $n \times n$ matrix over μ_m with vanishing permanent if n < p.

INTRODUCTION

The permanents of (0,1)-matrices have been studied extensively in the literature for their combinatorial interpretation and significance. Recall that for any $n \times n$ matrix $A = [a_{ij}]$ over a field the permanent of A is defined by $\operatorname{per}(A) := \sum_{\pi \in S_n} a_{1\pi(1)} \cdots a_{n\pi(n)}$. For any integer $m \geq 2$, let $\zeta_m \in \mathbb{C}^\times = \mathbb{C} \setminus \{0\}$ denote a primitive mth root of unity and let $\mu_m = \langle \zeta_m \rangle$ be the cyclic group of all mth roots of unity. For any $n \geq 1$, let $M_n(\mu_m)$ denote the set of all $n \times n$ matrices $A = [a_{ij}]$ with all $a_{ij} \in \mu_m$.

In 1983 Kräuter and Seifter [6], and independently Simion and Schmidt [9], showed that there is no $n \times n$, (1,-1)-square matrix with vanishing permanent if $n=2^{\alpha}-1$ for some positive integer α . In [1] we generalized this result to matrices over roots of unity. More precisely, suppose that p is a prime and α is a positive integer. Then we showed that:

If $n = p^{\alpha} - 1$, then there is no matrix $A \in M_n(\mu_p)$, with per(A) = 0.

In this note, by a similar argument we prove a more general result in this direction and show that:

If $n = p^{\alpha} - kp^{\alpha-1} - 1$ with $0 \le k \le p-2$, then there is no matrix $A \in M_n(\mu_p)$, with per(A) = 0.

Also with the same method we show that:

If n < p and $m = p^{\alpha}$, then there is no matrix $A \in M_n(\mu_m)$, with per(A) = 0. Actually this result is known and two different proofs of it are given in [3] (see Theorem 2, Lemma 6 and 7 of [3]), where the authors used this non-vanishing permanent result to give a stronger version of a theorem proved earlier by Alon in [2] concerning a conjecture of Snevily (see [10]) about transversals of additive Latin squares. We used these techniques in [4] to obtain some existence results.

We recall some facts from algebraic number theory. Let $m=p^{\alpha}$ be a prime power. It is well known that the cyclotomic field $\mathbb{Q}(\zeta_m)$ is of degree $\varphi(m)=$

^{*}Key words: Permanent, roots of unity.

[†]AMS (2010) Subject Classification: 15A15.

 $p^{\alpha-1}(p-1)$ over \mathbb{Q} and the ring of integers of $\mathbb{Q}(\zeta_m)$ is $\mathbb{Z}[\zeta_m]$ (see [7]). Also the principal ideal $(1-\zeta_m)\mathbb{Z}[\zeta_m]$ is a prime ideal of $\mathbb{Z}[\zeta_m]$, and the ideal generated by p in $\mathbb{Z}[\zeta_m]$ factorizes as

$$p \mathbb{Z}[\zeta_m] = (1 - \zeta_m)^{\varphi(m)} \mathbb{Z}[\zeta_m].$$

Proofs

We give the proofs of our theorems in this section. For the first one, just by a similar argument given in the proof of Theorem 2 (Part (ii)) of [1], one can show that:

Theorem 1. Let p be a prime and α a positive integer. If $n = p^{\alpha} - kp^{\alpha-1} - 1$ with $0 \le k \le p-2$, then there is no matrix $A \in M_n(\mu_p)$, with per(A) = 0.

Actually the proof is almost the same and under the notations of the proof of Theorem 2 (Part (ii)) of [1] which we present below, we have again $S_n > S_j$ under our assumption and this is the key point in the proof. Here we give the techniques used in the above mentioned proof to show our second result:

Theorem 2. Let $m = p^{\alpha}$ be a prime power. Then there is no matrix $A \in M_n(\mu_m)$, with per(A) = 0 if n < p.

Proof. Assume $A \in M_n(\mu_m)$. As the difference between any two mth roots of unity is divisible by the element $(1-\zeta_m)$, there exists a matrix $B \in M_n(\mathbb{Z}[\zeta_m])$, such that $A = J - (1-\zeta_m)B$, where J is the $n \times n$ matrix with all entries equal to one. By Theorem 1.4 of [8, p.18], we have the following equality

$$per(A) = \sum_{j=0}^{n} (-1)^{j} (n-j)! (1-\zeta_{m})^{j} per_{j}(B)$$

where $\operatorname{per}_{j}(B)$ denotes the sum of permanents of all submatrices of order j of B (we set $\operatorname{per}_{0}(B)=1$). For any $\delta\in\mathbb{C}^{\times}$, let $\operatorname{ord}_{(1-\zeta_{m})}\delta$ be the largest $\beta\geq0$ such that $(1-\zeta_{m})^{\beta}|\delta$. Now if $\operatorname{per}_{j}(B)\neq0$ we find a lower bound for $\operatorname{ord}_{(1-\zeta_{m})}P_{j}(B)$, where we have set $P_{j}(B)=(-1)^{j}(n-j)!(1-\zeta_{m})^{j}\operatorname{per}_{j}(B)$ for $1\leq j\leq n$. Recall that for $m=p^{\alpha}$ and $\delta\in\mathbb{C}^{\times}$ we have $\operatorname{ord}_{(1-\zeta_{m})}\delta=\varphi(m)$ ord $_{p}\delta$. So for $1\leq j\leq n$, we have

$$\operatorname{ord}_{(1-\zeta_m)}P_j(B) \ge p^{\alpha-1}(p-1)\operatorname{ord}_p(n-j)! + j.$$

It is well known that for any natural number k, $\operatorname{ord}_p(k!) = \frac{k - S_k}{p - 1}$, where S_k is the sum of the digits of k written to the base p (see [5, p.7]). Hence we obtain

$$\operatorname{ord}_{(1-\ell_n)} P_i(B) \ge p^{\alpha-1}(n-j-S_{n-i}) + j.$$

On the other hand, we have $\operatorname{ord}_{(1-\zeta_m)}(n!) = p^{\alpha-1}(p-1)\operatorname{ord}_p(n!) = p^{\alpha-1}(n-S_n)$. Now, as n < p, it is clear that for any $1 \le j \le n$ we have $S_j = j$. Therefore

 $\operatorname{ord}_{(1-\zeta_m)}(n!)=0$ while for any $j,\ 1\leq j\leq n,\ \operatorname{ord}_{(1-\zeta_m)}P_j(B)\geq j>0$. As $\operatorname{per}(A)=n!+\sum_{j=1}^n P_j(B),$ we cannot have $\operatorname{per}(A)=0$. This completes the proof of Theorem 2.

Acknowledgement. The author is indebted to the Research Council of Sharif University of Technology for support.

References

- [1] S. Akbari, H.-R. Fanaï, K. Mahmoudian, On the matrices with constant determinant and permanent over roots of unity, Lin. Alg. Appl. 375 (2003) 245-249.
- [2] N. Alon, Additive Latin transversals, Israel J. Math. 117 (2000) 125-130.
- [3] S. Dasgupta, G. Károlyi, O. Serra, B. Szegedy, Transversals of additive Latin squares, Israel J. Math. 126 (2001) 17-28.
- [4] H.-R. Fanaï, Existence of partial transversals, Lin. Alg. Appl. 432 (2010) 2608-2614.
- [5] N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta Functions, Graduate Text in Mathematics No. 58, Springer-Verlag (1977).
- [6] A. R. Kräuter, N. Seifter, On some questions concerning permanents of (1,-1)- matrices, Israel J. Math. 45 (1983) 53-62.
- [7] S. Lang, Algebraic Number Theory, Addison-Wesley (1970).
- [8] H. Minc, Permanents, Addison-Wesley, Reading, MA (1978).
- [9] R. Simion, F. W. Schmidt, On (+1, -1)-matrices with vanishing permanent, Discrete Math. 46 (1983) 107-108.
- [10] H. Snevily, The Cayley addition table of \mathbb{Z}_n , Amer. Math. Monthly 106 (1999) 584-585.

HAMID-REZA FANAÏ, fanai@sharif.edu

Department of Mathematical Sciences Sharif University of Technology P. O. Box 11155-9415 Tehran, Iran.