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Abstract.In the paper, we discuss properties of the (super) vertex-graceful
labeling of cycle C,, , crown graph C, ® K, and generalized crown graph
Cn ® K, and prove that Cy , , C, ® K1 and C,, © K¢ are vertex-graceful
if n is odd; C,, is super vertex-graceful if n # 4,6; and C,, ® K is super
vertex-graceful if n is even. Moreover, we propose two conjectures on
(super)vertex-graceful labeling.
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1. Introdution

In 1967, Rosa [15] first introduced the concept of graph labeling and
proved some interesting results. In 1980, Graham and Sloane [9] further
developed the methods and new notations on graph labeling. Up to now, it
has been discovered that theory of labeling graphs can be applied to coding
theory, X-ray crystallography, radar, astronomy, circuit design, communi-
cation network addressing, data base management, etc [2, 3, 5, 14, 19).

In 2005, Lee, Pan and Tsai [12] called a graph G with p vertices and
q edges is vertex-graceful if there is a bijection f : V(@) — {1,2, - ,p}
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such that the induced mapping g from E to Z, defined by g(uv) = (f(u) +
f(v))(modg) is a bijection. In 2006, Lee and Wei [13] defined a graph
G(V,E) to be super vertex-graceful if there is a bijection f from V to
{0,%1,%2,---, :tm,;—l} when |V is odd and from V to {£1, £2,---, i]%l}
when |V is even such that the induced edge labeling g defined by g(uv) =
f(uw)+f(v) over all edges uv is a bijection from E to {0, £1,+2,--- , :t@;—l}
when |E] is odd and from E to {£1, £2,--- ,:i:%l} when |E| is even. They
showed that K, x P, are not super vertex-graceful for n odd; for n > 3,
P2x P, is super vertex-graceful if and only if n = 3,4, 5; PryxPp,x--xPy,,
is not super vertex-graceful for each of m,n;,ny, -+ .n, at least 3; and
Cn x Cp, is not super vertex-graceful. They conjecture that P, x P, is
super vertex-graceful for n > 3.

There are two interesting graphs cycle C,, and C,, ® K in the theory
of graph labeling, which have been extensively studied. For example, C,
is graceful if and only if n = Oor3(mod4)[15); C, is almost graceful[l, 16];
C, is harmonious if and only if n = 1 or 3(mod4)[9]; C,, is odd graceful
if and only if n is even(8]; L(2,1)-labeling of C,[11] and L(2,1)-labeling of
C, [6]have been investigated. For crown graph C, © K}, it is known that
C.OK, is graceful[4]; C,, ® K is odd graceful if only if n is even(8]; C, O K,
is harmonious[10]; C, © K is integral sum(18]. Moreover, for C, ® K} .,
it is known that C, ® K is super edge-graceful(17] and is odd graceful
when n is even [7].

In the paper, we prove that Cp, Co, © K; and C, 0 K 1,: are are vertex-
graceful when n is odd; C, is super vertex-graceful when n # 4,6; and
Cn ® K} is super vertex-graceful when n is even. Two conjectures that C,,
» Cn © K and C, ® K¢ are not vertex-graceful when n is even; C, ® K,
is not super vertex-graceful when n is odd are proposed.

2. Preliminary
Definition 2.1. Let a graph G(V, E) that has p vertices and q edges, if
there is a f bijection from V to {1,2,-.- ,p} such that the induced mapping

g from E to Z, defined by g(uv) = (f(u)+ f(v))(modg) (u,v € V, uv € E)
is a bijection, then graph G(V, E) is called vertex — graceful graph.
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Definition 2.2. Let a graph G(V, E) that has p vertices and g edges, if
there is a bijection f from V to {0,+1,%+2,.-- ,:I:M{—l} when |V is odd
and from V to {£1,+£2,.--, :l:l%l} when |V/| is even such that the induced
edge labeling g defined by g(uv) = f(u) + f(v) (u,v € V, uv € E) over all
edges uv is a bijection from E to {0,%1,+2,---, :!:IEIZ_—I} when |E| is odd
and from E to {*1,%2,--- ,:l:%l} when |E| is even, then graph G(V, F)
is called super vertex — graceful graph.

Definition 2.3. The crown graph is obtained by joining a single pendant
edge to each vertex of C,, and denoted by C, © Kj;.

Definition 2.4. The generalized crown graph is obtained by joining
t(t > 1) pendant edges to each vertex of Cp, and denoted by C, © K.

In order to prove our results, we introduce the follow operations: let
A={a1,az,- - ,am}, B={by,b2, -+ ,bm}, be two sets and c is real num-
ber. If f is a mapping, then denote f(A) = {f(a1), f(az2), -, flam)},
A+c={a1+c,az+c,-- ,am+c}.

The Graph C,, is illustrated in Fig.1.
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The Graph C, ® K is illustrated in Fig.3.
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Flg3. Cn © Kl,t
3. Vertex-graceful Graph

Theorem 3.1. If n is odd, then C,, is vertex-graceful.
Proof For C,,, we suppose S = {u1,u,-- ,us}, S1 = {ug, us, - - yUn, U1},
let:

f(8)y=1{,3,---,n,2,4,--- ,;n—-1},

it is easy to see that there is a vertex labelings on C, in accordance with
the definition 2.1. For the edges labelings on C,,

Case 1. n = 1(mod4), then let

9(E) = (f(S)+f(51))(modn) = {4,8,12,--- ,n—1,3,7,--- ,n—2,2,6,- -,
n-3,1,5,--- ,n —4,0}(modn).

Case 2. n = 3(mod4), then let

9(E) = (f(S)+f(S1))(modn) = {4,8,12,--- ,n—-3,1,5,--- ,n—2,2,6,---,
n-1,3,7,.-- ,n—4,0}(modn).  No matter what n = 1(mod4) or n =
3(mod4), the edges labelings on C,, are different. Moreover, the maximum
value is (n — 1)(modn) and the minimum value is O(modn). Hence the
mapping g is a bijection from E to Z,. Therefore C,, is vertex-graceful for
n is odd.

Theorem 3.2. If n is odd, then C, ® K (t > 1) is vertex-graceful.
Proof Clearly, there are n(t + 1) vertices and n(t + 1) edges on C,, ® K1 ¢,
Suppose S = {uj,ug, -+ ,un}, S; = {ul,u?,--- ,ut} (1 <i<nt>1).
Let

FS)={t+1,2(t+1),--- ,n(t +1)},

f&)={n(t+1)-1,nt+1)-2,--- yn(t+1) —t},
f(SR)={t+2,t+3,---,2t +1},

for2<i< e:g—l,f(s,.) = f(Si=1) — 2(t +1),
for %"—3 <i<n—-1,f(S) = f(Six1) + 2(t + 1).

By the above rules, we get that the vertex labelings on cycle of C,® K
are n numbers that they are t + 1 number of times, the maximum value is
n(t+1), the minimum value is t4-1. For the vertex uff (1€i<n1<jLt),
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it is easy to see that their labelings are different from the above rules, and
their labelings are difference with the labelings of the vertex labelings on
cycle of C,, ® K 4, the maximum value is n(t + 1) — 1, the minimum value
is 1. So f is a bijection from V to {1,2,--- ,n(t +1)}.

For edges, according to definition 2.1., the edge labeling set on cycle is
{0t +1,2(t+ 1), ,(n—1)(¢ + 1) }(modn(t + 1)); for edge uiuf (1<i<
n,1 < j < t), the labeling sets are:

{t,t —1,--- ,1}(modn(t + 1)),

{nt+1)=-1,nt+1)—2,---,n(t+ 1) — t}(modn(t + 1)),
{n=-2)t+1)~1,(n-2)(t+1)—2,--- ,(n—2)(t+ 1) — t}(modn(t + 1)),

......

{2t +1,2t,--- ,t + 2} (modn(t + 1)).

Hence we can get that these edge labelings are difference each other, and
differ with the labelings on cycle, where the maximum value is (n(t + 1) —
1)}(modn(t + 1)), the minimum value is 0(modn(t + 1)), then according to
definition 2.1, the mapping g defined by g(uv) = (f(u)+ f(v))(modn(t+1))
is a bijection from E to Zn(y41). Hence C, ® K, is vertex-graceful for n
is odd.

Corollary 3.1. If n is odd, then C,, ® K is vertex-graceful.
Proof In the proof of theorem 3.2., let t = 1. It is easy to see that the
assertion holds.

4, Super Vertex-graceful Graph

Lemma 4.1. C4, Cs are not super vertex-graceful.
Proof Suppose Cj is super vertex-graceful, then the vertex labelings set is
{£1, £2}, but not matter whether labeling of the vertices of C4, one of the
following cases is occur, there is 0 or +3 in the edge labelings, contradic-
tion.

Suppose Cg is super vertex-graceful. Let f(u;) = 3, then f(ug) = —1
or —2.
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Case 1. If f(uz) = —1, then f(us) = 2 or —2. Suppose f(u3z) = 2,then
f(ug) = 1or =3. If f(us) = 1, then f(us), f(ue) are =3, -2 or —2, -3,
hence the edge usug labeling is —5, contradiction. If f(uq) = —3, then
the edge uqus labeling is —5 or g(usus) = g(usus), contradiction. If
f(ug) = —2, then the other vertices labelings are 1,2, -3 or 1, -3, 2, hence
g(uguy) is 0 or 5, contrsdiction.
Case 2. If f(uz) = -2, then f(uz) = 1 or —1. Suppose f(uz) = 1,
then f(u4) = 2 or —3. If f(uq) = 2, then g(usug) = —4, contradiction; if
f(ug) = —3, then g(ugus) = —1 or—4, contradiction; if f(u3) = —1, then
the other vertices labelings are 2,1, —3, or 2, 3,1, Thus g(usu;) = 0 or 4,
contradiction.

Thus, Cy , Cg are not super vertex-graceful.
Theorem 4.1. If n # 4,6, then C,, is super vertex-graceful.
Proof We consider the following two cases:
Case 1. nisodd. Let n =2m+1,m =1,2,-.-, we consider the following
two subcases:
subcase 1.1. m is odd. Define f as follows:

f: {u2au47"' )ul;'.l} U {ul’u3)"' sul',‘_‘} - {2;—1')"7—1 -1,--- ,_nT—S_ +
1} U {Oa _11 _2s Tty _nT—3}’

for the other vertices , let f(up4o—i) = —f(w;) 2<14 El'—l- Thus we get
that these labelings are different, max |f(us)| = l,lgn? |f(us)] = 0.

Hence, the mapping f is a bljectlon from V to {0,£1,%2,--- , 251},
Next, we consider the edge labelings, according to the above rule, we get the
edge labelings as following in proper order: ";1 , 1‘—;—1-— ,oo0,1,0,-1,-2,...
— 221, hence, there is a bijection from E to {0,+1,£2,--- , 2251}
subcase 1.2. m is even. Define f as follows:

[ {uo,uq,- - ,ugi_x}u{ul,ug,, . u+} — &;’ﬂ_;l -1,-- ’nT-l +
1}u{0,-1,-2,--.,—-251},

for the other vertices , let f(un42-i) = —f(u;) 2 < i < 24, we can get
the same conclusion by following the proof of the subcase 1.1.

Case 2. n is even, We consider the following four subcases.

subcase 2.1. n = 0(mod8). For the vertex u;(1 < i < %), define f as
follows:

fi{uus, oo unce JU{ug, ug, - ug JU{ug g, ug s, - s ug o JU{ug 4o,
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G440 ,u“} - {'z'v%"‘l"" ’%*‘I}U{—la—za’” R -+
1, -1}u{%,8+1,---, %
for the other vertices, let f(u +,) = —f(u;) (1 €7 < %), by the above
rule, it is easy to see that the vertex labelings are different if their sub-
scripts are different, max |f(ui)] = 5, rmn |f(u;)] = 1. So the mapping

f is a bijection from V to {%1,%2,---, :i:Lz—l}

Now, we discuss the edge labelings, following the definition 2.2. we get
the mapping g :
9 : {wmuz,uous, - ,ugugpy} = {3 -,%-2,--,5+1,-3,-% +
1,-%2+42,---,-1,—2%}, the other edges labelings are the opposite num-
bers of the above edges labelings in proper order, from these labelings,
we can deduce that these labelings are different and rga,x lg(uitiigr)| =

2 l1<m£1 |g(uiti+1)] =1 (2n+4+1 = u1), so the mapping g is a bijection from

E to {+1,%2,--- , 151},
subcase 2.2. n = 2(mod8). For the vertex u;(1 < i < %), define f as
follows:

f:{u,us, - rUnc2 _1tV{ug, ug, -+ ,unﬂf_z}U{u%_z+l,u%_e+3,~- yug U
(uagtymuprar sz} = (B30 AL o2

U{’-.?'_n:l"g _(3_11-}__*_1)’ L }U{n_2 n— v""l})
f{ugn}U{ugio,ugia, o uanca JU{ugs, ugas, - uanga JU{uansa
e »Un—1} U {ul—e‘—+21”—f—+4' : ’”n} - {22}u {"T_z, "—Ig -
1,--- ,L‘gﬁ}u{_"_}'_z’_i‘lﬂ_l,... ,—%}U{%,gﬂ—éﬁ—l,”- ’23'_2_.1_
1pu{-2§8, — (28 +1),--- ,—232},
by the above rule, we can get that these vertex labelings satisfying the
demand from definition 2.2. Hence the mapping f is a bijection from V' to
{£1,%2,---, 2}

For the edges, there is:

g: {u1u21u2u3s ot $unul} - {%—11%_2,"’ +1 __) _:_21_($+
1)7 +l _¢+11 2»—11 "'21"' 1_n_‘4*'_+2a 1, n;2, n4—2 11 ,21 2?1._2'}7

we can see that these labelings are different and max lg(uiuwiz1)l = 5,

lr<n1n lg(uiuiz1)] =1 (upy1 = w1). So the mappmg g is a bijection from

E to {£1,%2,--- , &% }.
For n = 4, 6(mod8), by the same argument in subcase 2.2, the assertion
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holds.
subcase 2.3. n = 4(mod8) (n # 12). Let
[ {wr,u,uz} U {us, ug, - yug+3} U {ug,ue, - ,ug 2} U {ug+a,ug s,
ugie, uz4r} = {5, L, 3 -1}U{-5,-3+1,--- , —(2+1)}U{1,2,--- 31
241,242 -2 241}
flwi) = flui—a) +2 (3 +8<i<ni#tn~1), flun—1) =3 -2
If n = 12, we define the vertex labelings in proper order: 6,—1,5,1, —6,
2,-5,3,—-4,-2,4, -3.
subcase 2.4. n = 6(mod8) (n # 14,22). Let

fi{u,ug,us} U{us,ur, -+ ugpo} U{ug,us, - ugya} U {ugra, ug s,
oougee} = (5,1, 3-13U{-3,-5+1,--- ,—(3+1)}U{1,2,--- , 22}

{(-242 +1,-242 242 1 o _nd2 4 9 2 1, _nd2 4 9},
fui) = fui-a) +2 (5 +10<i<n,i #n—86),
fi{un—s,un—g, -+ un} = {§-3,-4,5 -4, -2,% —-2,-3}.

If n = 14 , we define the vertex labelings in proper order: 7,-1,6,1, -7,
2,-6,3,-5,4,-2,5,—4, -3.

If n = 22, we define the vertex labelings in proper order: 11, -1, 10,1,
-11,2,-10,3,-9,4,-8,5,-7,6,—5,—6,8, —4,7, -2, 9, 3.
Theorem 4.2. If n is even, then C,, ® K] is super vertex-graceful.
Proof Suppose S; = {uj,u2, - ,u.},S2 = {ug,us, - ,un,u1},83 =
{ul,ud,- - ,ul}, By = {ugug, ugus,

“yupuy }, By = {u;u},1 < i < n}, there are 2n vertices and 2n edges.
Case 1. n = 0(mod4), from u;, we label the vertices u; (1 < i <
n) on the subscript is added in proper order, we divide them into four
parts that the vertices number is same. For the first part, we label in
proper orderl,3,---,% — 1; for the second part, we label in proper or-
der: 2,%2 —2,--.,2; foe the third part and the forth part, they are the
opposite numbers of the first part and the second part respective. For
u} (1 £ i < n), from u} , we label the vertices them on the subscript
is add in proper order, for u} (1 < i < % + 1) we label in proper or-
der: n—1,-n,—n+2,---,-3 -2, foruf (3+2<1i< 3), wela
bel in proper order: —% —1,-2 —3,-.:,-n+3,tou! (3+1<i<
n), flu;) = —f (u,'_,v); , thus we get the labelings of all vertices on C,, ® K},
which satisfy: f(ui) € {£1,%2,..-,£%}, where there are n differ numbers,
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max |f(w)l = 3, min |f)l =1, f(ul) € (£(3+1),£(3 +2),-- ,£n},

there are n differ numbers Joax [f(})| = n, llgllél [f(u:)| = § + 1. From

the above rule, we can get that these vertex labelings satlsfymg the con-
ditions of definition 2.2. Hence, the mapping f is a bijection from V to
{£1,%2,--- ,%n}.

Now, we cosider the edge labelings on C,, ® K. According to definition

2.2, we get :
g(El) = f(Sl)+f(S2) = {41 8, o yn_4s n—1, n—2, n_G, trty 10, 61 1,4, _8v
,—n+4,-n+1-n+2-n+86,---,-10,—6,—1}, expect the edge

UnUy, U UG 41, UGUS 41, Usa Udn 4y labelings are ~1,n — 1,1,—n + 1, the
others are even, and the maximum of absolute values is n — 2 the mini-
mum of absolute value is 4

g(E2) = f(S1)+ f(S3) = {n,—n+3,-n+7,--- ,-5,-2,-3,-7,.-+ ,—n+
5-nn-3,n-—-7,---,5,2,3,7,

-,n — 5}, expect ujul,u +1un+1,u’+1u +l,uan+1u13,.+1 are n,—2 —
n,2, the others are odd, and the maximum of absolute va.lues isn—3, the
minimum of absolute value is 3, so these edge labelings satisfy the demand
from definition 2.2.

Case 2. n = 2(mod4). We define:

f: {‘Ul,uz,"' ,un_#} U {’u&}z_,_l,‘ulzﬁ_*_z,”- ,u_;.} — {1,3,"- ,%} U{% -
1,3-38,---,2},

for the others vertices, their labelings are opposite numbers of the first %
vertices in proper order. Similar to case 1, we get the labelings of the ver-

tices on cycle are {£1,42,---,+%} there are n differ numbers.
f : {'u,},u%, -,UL#l}U{U__t._+l,u_3;z+2’ -.,ﬂu}.} — {n—l’—n,—n-i-
2,00, —-—1}u{—-—2———-4 ,—n+ 3},

for the others vertices, their labelings are opposite numbers of the first %
vertices in proper order. Thus we get the vertex labelings satisfy the de-
mand from definition 2.2.
Now, we consider the edge labelings.

g(El) = f(S1)+f(S2) = {4,8,--- ,n-2,n—1,n—4,n-8,.--,10,6,1, -4, -8,

,—n+2, —n+1, —-n+4, —n+8,--- , —10,—6, —1, expect Unll, UngaUnga oy,
UBUL L), UsngaUsnga ) labelings are —1,n—1, 1, —n+1, the others are even,
and the maximum of absolute values is n — 2 the minimum of absolute
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value is 4.

9(E2) = f(S1)+ f(S3) = {n,~n+3,-n+7,.-- ,-3,-2,-5,-9,--. , —n+
5-nn-3,n-7,---,3,2,5,9,

--+,n—5}, expect ulu{,uL-‘Lz_,_lu{#H,u§+1u%+l,ua_¢‘+_z+lu%ﬂ+l label-
ings are n,—2 — n,2, the others are odd, and the maximum of absolute
values is n —3 , the minimum of absolute value is 3, so these edge labelings
satisfy the demand from definition 2.2.

Hence, if n is even, C,, ® K] is super vertex-graceful.

Conjecture 1. C, ® K and C, ® K, are not vertex-graceful for even n

Conjecture 2. C, ® K is not super vertex-graceful for odd n.
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