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Abstract

In this paper we present a new combinatorial problem, called
the Nearly Perfect Bipartition Problem, which is motivated by a
computer networks application. The leads to a new graph parameter
PNp(G) which equals the maximum cardinality of a proper nearly
perfect set. We show that the corresponding decision problem is
NP-hard, even when restricted to graphs of diameter 3. We present
several bounds for PN,(G) and determine the value of PNy(G) for
several classes of graphs.

1 Introduction

Upgrading computer networks to keep up with rapidly developing software,
and optimizing the software to meet customer needs are important tasks.
When upgrading a network, dealing with a single system is much easier
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than dealing with the entire network, since upgrading an entire network
requires complex decisions about performance and financial issues. Even
when one decides not to upgrade the entire network, there is still the dif-
ficulty of resolving conflicts between the newly upgraded components and
the old components. One solution to this problem is to find parts of the
network that are almost isolated from the rest of the network, that is, parts
of the network having a very small number of connections to the rest of the
network. We reformulate this as the following problem:

Nearly Perfect Bipartition Problem. Given a graph G, find a
bipartition m = {S,V — S} such that (i) neither S nor V —~ S is empty, (ii)
every vertez in V — S has at most one neighbor in S, and (iii) the size of
S is as large as possible.

In the remainder of this section we review related approaches to this
problem in the graph theory literature.

As one of the key concepts in modern graph theory, the concept of
domination, has prompted many definitions and parameters of graphs [18],
for example perfect dominating sets [22, 16, 13, 6, 3, 4], efficient dominating
sets [1, 2] and nearly perfect sets. Nearly perfect sets, along with perfect
dominating sets, were defined for the first time in [10], but were not studied
there. In a graph G, a set of vertices S is nearly perfect if every vertex in
V(G) \ S is adjacent to at most one vertex in S.

Naturally, and similar to many other topics in graph theory, finding
nearly perfect sets with minimum or maximum cardinalities in a graph
are the first problems to be considered. However, these two problems are
trivial since a minimum cardinality set is the empty set, while a maximum
cardinality set is V(G).

To overcome this difficulty, J. E. Dunbar et al. [12] considered 1-
maximal and 1-minimal nearly perfect sets and introduced two new pa-
rameters, N,(G) and n,(G), as the maximum cardinality of a 1-minimal
and the minimum cardinality of a 1-maximal nearly perfect set in G, re-
spectively. Following B. Bollobés et al. [5] they called a nearly perfect set
1-minimal if for every vertex u € S, the set S\ {u} is not nearly perfect and
similarly S is called to be 1-maximal if for every vertex u in V(G)\ S, SU{u}
is not a nearly perfect set. They calculated n, for some classes of graphs
such as paths and cycles. They proved that the decision problem for n,(G)
is NP-complete, while N,(G) can be calculated in polynomial time for any
graph G.

In this paper, we introduce a new parameter related to nearly perfect
sets. This parameter, PN,(G), is defined as the maximum cardinality of
a proper nearly perfect set, that is a proper subset of vertices which is a
nearly perfect set.
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If one considers (S, V(G)\S) as a bipartition of the vertices of the graph
G, it is perfectly clear that another way for looking at this problem will be
in bipartition context.

In fact, we are focusing on bipartitions of vertices (A, B) such that every
vertex in A has at most one neighbor in B. This kind of decomposition
(bipartition) with a forbidden subgraph (K2 in our case) is studied in [23]
where it is shown that a K, -free decomposition can be found in polynomial
time. Since A and B in every bipartition (A, B) are nonempty, finding a
proper nearly perfect set in a graph can be seen as a bipartition problem.
Thus the maximum cardinality of Bs in a K o-free decomposition is another
way of defining PN.

Obviously, the Nearly Perfect Bipartition Problem (A, B), as stated
above, is a special case of a more general problem where any vertex in A
can be adjacent to at most ¢ vertices in B. Due to this generalized Nearly
Perfect Bipartition Problem one can define generalized PN, numbers, PN;.
Studying these parameters is potentially an attractive subject but here we
restricted ourselves to the special case where ¢ = 1.

In Section 2 we consider some basic properties of PN, and determine
its value for several classes of graphs. In Section 3 we consider the concept
of the nearly perfect closure of a set of vertices. In Section 4 we consider
the value of PN, in terms of several other parameters of graphs, and in
Section 5 we show that the decision problem corresponding to PNp(G) is
NP-hard.

2 Definitions and Preliminaries

Throughout this paper we will assume that all graphs are finite, simple, and
undirected. We use [11] for terminology and notations not defined here.

Let G = (V, E) be a graph with |V| = n. For any nonempty subset S C
V(G), the subgraph of G induced by S is the graph G[S] = (S, EN(S x §)).
For any vertex v € V(G), the open neighborhood of v is the set N(v) = {u:
uv € E}, while the closed neighborhood of v is the set N[v] = N(v) U {v}.
For a subset S C V(G) the open and closed neighborhoods of S is defined
by N(S) = Uyes N(v) and N[S] = |J,¢g N[v], respectively.

A set S C V(G) is called nearly perfect if for every vertex v € V' \ S,
| N(v) NS |< 1; such a set is abbreviated as an np-set. A nearly perfect
set S C V(G) is called 1-mazximal if S is an np-set but for every v € V'\ S,
S U {v} is not an np-set. J. E. Dunbar et al. [12] defined ny(G) to equal
the minimum cardinality of a 1-maximal nearly perfect set; such a set is
abbreviated as an n,-set.

Definition 2.1. A proper subset S ¢ V(G) is called a proper nearly perfect
set (or a pnp-set, shortly) in G , if for each z € V(G) \ S, there exists at
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most one vertex y € S adjacent to z. If there is no confusion about the
underlying graph, we also call S proper nearly perfect. For any graph G,
the maximum cardinality of pnp-sets in G is denoted by PN,(G); such a
set is abbreviated a PN, — set.

Obviously, the empty set and all singleton sets in graphs of order n > 2
are proper nearly perfect sets, so PN,(G) is well defined. It is obvious that
0 < PNy(G) £ n—1 for any graph G. It is easy to check that if G is
nontrivial, then 0 < PN,(G) <n—1.

Proposition 2.2. For any graph G of order n,
a) PNy(G) =0 if and only if G = K,
b) PN,(G) =n -1 if and only if 6(G) < 1.

Proof. Part (a) is obvious. For part (b), let v be a vertex of G with
dege(v) < 1. Then § = V(G) — {v} is a maximum pnp-set. For the
converse, suppose that S is a pnp-set of size n — 1 and {v} = V(G)\ S .
By definition, | N(v) N § |< 1. So §(G) < dege(v) < 1. ]

Let G; = (W, E1) and G; = (V,, E3) be two vertex disjoint graphs and
let f be a function f : Vi — V5. Then a function graph, G1fG; = (V, E)
has the vertex set V = V(G1) U V(G2) and the edge set

E = E(G1)UE(G2)U {uv:u e V(Gy),v € V(G2),v = f(u)}

Function graphs are closely related to the special classes like permutation
graphs, prisms, and generalized Petersen graphs (7, 8, 9, 14, 19]. The
following proposition is an immediate consequence of the definitions.

Proposition 2.3. If G1fG> is a function graph defined by two non-empty,
verter disjoint graphs G1 = (W1, E) and G = (V,, E;) and a function
f: Vi = V3, then V, is a proper nearly perfect set in G1fGs.

Theorem 2.4. For any graph G of order n > 2 and minimum degree §,
PNy(G) < n — 4§, with equality if and only if G is a function graph of the
form K.;fH .

Proof. Let S be a PNj-set of G and let v € V' \ S. Then, by definition,
[IN(w)n S| < 1. Thus, | Nw]n (V '\ S) |> deg(v), and therefore

n— PNp(G) =n—| S |> deg(v) > 6.

Now suppose that PN,(G) =n — 3 and S is a PNp-set. Let X =V \ S =
{z1,22,...,25}. For every z; € X we have deg(z;) > § and z; has at most
one neighbor in S. Therefore, deg(z;) = § and all of the vertices in X \ {z;}
are adjacent to z;. Therefore, G{X] ~ K and G is a function graph of the
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form G = K;fG|[S). Therefore by Proposition 2.3, S is a proper nearly
perfect set of cardinality n — J, and since we showed that for any graph G
PN,(G) < n — 4, the proof is complete. O

Corollary 2.5. For any graph G, if PN,(G) =n -2, then G = HfK; ,
for some graph H.

Proof. By Theorem 2.4, PN,(G) = n — 2 implies §(G) < 2. If §(G) < 1,
then PN,(G) = n — 1 by Proposition 2.2(b). So §(G) = 2 and using
Theorem 2.4 the proof is complete. O

Intuitively one would expect that the value of PNp(G) is generally
greater for sparse graphs than it is for non-sparse graphs. This is because
every nearly perfect set in G is also a nearly perfect set in G \ e. The next
theorem captures this intuition formally.

Proposition 2.6. For any graph G = (V, E) and any edge e € E, PNp(G—
e) > PNy(G).

In the following proposition, PNp(G) is determined in terms of two
standard binary operations on graphs, where G, U G denotes the disjoint
union of two graphs, and G; + G2 denotes the join of two graphs.

Proposition 2.7. Let G and G2 be two connected vertex disjoint graphs,
then

a) PNy(G1 U Gs) = maz{PNy(G1)+ | V(G2) |, PNy(Ga)+ | V(Gy) [}

b) PN,(Gy + Gp) =1.

Proof. (s) Let M = maz{PN,(C1)+ | V(G2) |, PN,(Ga)+ | V(Gy) |} and
S be a pnp-set in G = Gy UGy. Then §; = SNViand S = SNV,
are both np-sets in G, and G,, respectively, at least one of which is a
pnp-set. Without loss of generality, assume that S; is a pnp-set. Then
| SNV(Gy) | PNp(Gy) and | S |< PNp(G1)+ | V(G2) |. Therefore
for any pnp-set S in G we have | S |< M, so PN,(G) < M. On the
other hand, suppose that S; is a pnp-set in G; of size PNp(Gy), then
S = S UV(G2) is a pnp-set in G, so PN,(G) > PN,(G1)+ | V(G2) |.
Similarly, PN,(G) > PNp(G2)+ | V(G1) | and the proof is complete.

(b) Let S be a maximum pnp-set in G1+G3. It is obvious that | SNV(G;) |[<
1. So PNp(G1+G2) < 2. Let | S |=2 and SNV(G;) = {z:}. Sis a pnp-set,
therefore at least cardinality of one of V(G;)’s, say V(G,), is grater than
1. Now suppose y € V(G,) be a neighbor of z;. Then y has two neighbors
in S which is a contradiction. o

In the following proposition the values of PNp(G) are determined for
several classes of graphs.
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Proposition 2.8. We have

a) PNp(K,)=1; forn > 2,

b) PN,(W,) = 1; for any wheel W,, withn > 3,
¢) PNp(Kmn) = 2; form,n > 2,

d) PNp(Cp) =n -2,

e) PN,(T) =n—1; for any tree T.

Proof. (a) and (b) are immediate consequences of Proposition 2.7(b).

(c) Let K, n be a complete bipartite graph with partite sets X of size m
and Y of size n. For any np-set S, we have | SN X |<land |SNY |<1.
Hence PNp(Km,n) <2. Now let z € X and y € Y. Clearly, S = {z,y} is
a pnp-set and PNp(Kpm n) = 2.

(d) Since Cr = K3fP,_3, by Corollary 2, PN,(Cp) =n — 2.

(e) It is an immediate consequence of part (b) of Proposition 2.2. O

3 np-closure

In this section we introduce the notion of np-closure of a subset of the
vertex set of a graph and use it to prove something more complex about
PNy
Suppose that S is a subset of V(G). The np — closure of S, denoted by
cl(S), is defined as ({T': S C T and T is an np — set of G}. If Sis a
nearly perfect set, then cl(S) = S. The np — closure of a subset S can
be computed by initially setting c/(S) = S, and then repeatedly adding to
cl(S) vertices having two or more neighbors in ¢l(S). This process stops
when the resulting set is a nearly perfect set. Notice that cl(S) is not
necessarily a pnp-set. In order to prove that PN,(G) = k, it is sufficient to
show that there exists a proper subset § C V such that | S |=k, cl(S) = S,
and c/(T) =V forevery T C V with | T |=k + 1.

As a simple application of these ideas, we compute PN,(L(K,)), where
L(G) is the line graph of G.

Proposition 3.1. PN,(L(K,)) =1, ifn > 3.

Proof. 1t is enough to prove that for any subset T C V(L(K,)) of size two,
c(T) = V(L(K,). Let T = {{a,b},{c,d}}. Without loss of generality,
suppose that ¢ ¢ {a,b}. It is obvious that {a,c} and {b,¢c} are in cl(T). So
for each vertex z of K, we have {c,z} € cl(T). Now if {z,y} is an arbitrary
vertex of L(Ky), then {z,y} has at least two neighbors in ¢/(T") and hence
{z,y} € cl(T). Therefore cl(T) = V(G). a

In (21] Kwasnik and Perl proved that if $ and S’ are nearly perfect sets
in G and G’, respectively, then S x S’ is a nearly perfect set in the Cartesian
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product GOG’. They also proved the following inequality
np(GOG’) < min{n,(G)x | V(G') |,np(G")x | V(G) |}
The following theorem yields a much stronger assertion about PNj.

Theorem 3.2. Let G and G’ be two connected graphs. Then
PN,(GOG'") = max{PN,(G)x | V(G") |, PNp(G')x | V(G) |}

Proof. If one of the graphs G or G’ is a trivial graph, then the result holds
obviously. Hence suppose that G and G’ are nontrivial graphs.

Let S and S’ be nearly perfect sets in G and G’, respectively. First we
show that S x S’ is a nearly perfect set in GOG'. Suppose that (v,v’) €
V(GOG) \ S x S'. We must show that at most one vertex in § x S’
is adjacent to (v,v’). Without loss of generality assume that v ¢ S and
(u,u’') € S x S’ be a neighbor of (v,v"). Then v’ = v’ and » is a neighbor
of v in G. Now since S is a nearly perfect set in G, hence v has no other
neighbor in S. Therefore (v, v’) has no other neighbor in S x §’ and S x S’
is a nearly perfect set in GOG'.

Now if S and S’ are two pnp-sets in G and G’, respectively, then S x V(G')
and V(G) x S’ are two pnp-sets in GOG’ so

PN,(GOG') > max{PN,(G)x | V(G') |, PNp(G")x | V(G) |}

In order to show that PNp(G) < max{PN,(G)x | V(G’) |, PNp(G"}x |
V(G) |}, we proceed as follows: Let V(G) = {v1,vs,...,vn}, V(G') =
{v},v5,...,v,}, and S ¢ V(GOG') be a pnp-set in GOG'. Define

Si={v| (vi,u) €S}y  1<1<m,
Sk = {vjl(vk,v;) €Sty 1<k<n

First we show that S; is an np-set in G for any 1 < ! < m. Otherwise, if
for some !, S; is not a nearly perfect set then there exist ¢ € V(G)\ Si, and
two distinct vertices v;,v; € S; such that v;,v; € N(z). Now (z,v}) ¢ S
and {(vj,v})} € SN N((z,v;)), which is a contradiction to the assumption
that S is a nearly perfect set in GOG'. Similarly, for any 1 < k < n, S} is
an np-set in G'.

To complete the proof, it is enough to show that either all Si’s are pnp-
sets in G or all S}’s are pnp-sets in G’. It is enough, because if the first
condition occurs then for any 1 < I < m, S; < PN,(G), hence | S |<
PN,(G) | V(G') |. Similarly, for the second condition we have | S |<
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PNy(G") | V(G) |, and the proof is complete.

Assume now, on the contrary, that for some ! and k we have S; = V(G)
and S}, = V(G’). Assume without loss of generality that [ = k = 1 and we
relabeled the vertices of G (and G’) such that each v; (vy, respectively) has
at least one neighbor in {v1,vs,...,vi—1} ({v],v5,...,v/_,}, respectively).
This is possible, because of the assumption of connectivity.

Let S; = 51 x {v}} and &’} = {v;} x S]. Now we prove that cl(S; US';) =
V(G) x V(G"). Assume that ci(S;US"1) # V(G) x V(G') and (v;,v]) ¢
cl(51U8'1) such that foreach 1 < k<nand1<I<mwithk+l<i+j
we have (vx,v;) € cl(S; US'y). Let v, € {v1,v2,...,vi—1} N N(v;) and
v, € {v},v3,...,vj_1} N N(v}). Then {(v;,)),(v., %)} € el(S1US1)N
N((vi,vj)). So we have (v;,v}) € ¢l(S; U S'1) and then (S U S"y) =
V(G) x V(G'). This contradicts the assumption that S is a pnp-set. O

As an application of the theorem above, we obtain the following corol-
lary.

Corollary 3.3. a) PN,(Qn) =2"71,
b) If m < n, then PN,(P,0P,,) = mn —m.

Proof. Using Theorem 3.2 and the fact Q, = K3 x Q,_1, a proof can be
constructed using induction. The assertion (b) is a straightforward result
from proposition 2.8(¢) and Theorem 3.2. O

4 PN, and Some Other Parameters of Graphs

The purpose of this section is to establish some relationships between
PNy(G) and some other parameters of graphs, including the girth, the
diameter, the 2-packing number, and n, of a graph G.

As mentioned in the introduction, J. E. Dunbar et al. [12] introduced n,(G)
to be the minimum cardinality of 1-maximal nearly perfect sets in graph
G. The reader can find the formal definition of n,, in the introduction.
Naturally, one expects PN,(G) to be greater than or equal to np(G), but
this is not always the case. For example in K| ,, the only 1-maximal nearly
perfect set is the whole vertex set of the graph, so ny(K1,,) = n+1 but by
Proposition 2.6(e), PNp(K1,») = n. Rather surprisingly, K , is the only
exception to the rule. This fact is a consequence of the following result in
(12].

Theorem 4.1. For any connected graph G with n vertices np(G) = n if
and only if G is a star.

Now, we can state the following theorem.
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Theorem 4.2. For any connected graph G, ny(G) < PN,(G) + 1, and
equality holds if and only if G is a star.

Proof. If G is a star, ny(G) = n and PN,(G) = n — 1. Suppose G is not
a star, then by Theorem 4.1 any 1-maximal np-set is also a pnp-set and so
np(G) < PNp(G). 0

In view of the Theorem 4.2, it is interesting to determine the largest
possible difference between PN, and n, in graphs. Consider the graph
G = mK, + K. A straightforward calculation shows that n,(G) = 1 and
PNp(G) = 2m — 1. Therefore PNp(G) — n,(G) can be arbitrarily large.

Theorem 4.3. Let G be a 3-regular connected graph of order n and girth
g. Then PN,(G) =n—g.

Proof. Let S be a PNy-set of G. For each vertex z of V(G) \ § we have
| N(z)N(V(G)\ S) [>2. So8(< G\ S >)>2and <G\ S > has a cycle.
Therefore | G\ S |> g and hence PN,(G) < n — g. On the other hand, let
C be a cycle of size g. It is obvious that S = V(G)\ S is a pnp-set in G, so
PN,(G) > n — g and the proof is complete. O

It is worth noting that the Theorem 4.3 restates an elementary result
about defensive alliances (20]. In a graph G, a nonempty set of vertices S
is a (defensive) alliance if for every vertex v € S,| N[vyJnS |> | N[v]n
(V(G)\ S) |. In fact in 3-regular graphs maximum proper nearly perfect
sets are complements of minimum defensive alliances.

As an application of the theorem above we can compute PN,(P) for
the Petersen graph P. Although direct computation of PNp(P) is not
straightforward, using Theorem 4.3 and the well known fact that the girth
g(P) =5, it follows that PN,(P) = 5. The following theorem establishes
a relationship between PN, and the diameter of a graph.

Theorem 4.4. Let G be a connected graph.

a) If § is a PNp-set in G, then we have diam(G o S) < 4, where Ge S is
the graph obtained by contracting the vertices of S to a single vertez.

b) If PNp(G) = 1, then diam(G) < 2.

Proof. a) It is enough to prove that for each v € V(G)\ S, d(v,S) < 2.
Assume on the contrary that there exists a vertex vo € V(G) \ S, such
that d(vg,S) = 3. Then N(vp) N N(S) = @ and there is not any vertex
in V(G)\ (SU {v}) with more than one neighbor in S U {vo}. Therefore
SU {vo} is a pnp-set and this contradicts the maximality of S.

b) Let diam(G) > 2. Then there exist two vertices u and v such that
N(u)NN(v) = @. Now S = {u,v} is a pnp-set, which implies PN,(G) > 2,
a contradiction. a

151



The following example shows that the bound of Theorem 4.4(a) is tight.

Example 4.5. Let G be the graph shown in Figure 1. It is easy to see
that S, the vertex set of Koo, is a maximum proper nearly perfect set in
G and diam(G e S) = 4.

Koo

Figure 1: A graph G with diam(G e S) =4.

We conclude this section by comparing the 2-packing number with PN,.
A set § C V(G) is called a 2-packing in G if for every pair of vertices
u,v € S, N[u] N N[v] = 0. The 2-packing number, po(G), is the maximum
cardinality of a 2-packing in G. In order to make a comparison between
PNp(G) and p2(G), it is convenient to restate the definition of PN,(G). A
set § C V(G) is called an np-set in G if for every pair of vertices u,v € S,
NuNN[v]N(V(G)\S) = @ and PNp(G) is the maximum cardinality of an
np-set in G. Obviously, every 2-packing is a pnp-set and the the following
theorem holds.

Theorem 4.6. For every graph G, PN,(G) > p2(G).

5 Complexity Issues

In this section we investigate the complexity of the following problem:

Proper Nearly Perfect Set (PNPS).
INSTANCE: A graph G = (V, E) and a positive integer & .
QUESTION: Does G have a proper nearly perfect set of cardinality at least
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k?

To show that PNPS is NP-hard for arbitrary graphs, we use a well known
NP-hardness result, called Exact Three Cover(X3C), which is defined in
[17] on page 221, as follows.

Exact cover by 3-sets (X3C).

INSTANCE: A set X with |X| = 3¢ and a collection C of 3-element subsets
of X.

QUESTION: Does C contain an exact cover for X, that is, a sub-collection
C’ C C such that every element of X occurs in exactly one member of C’?
(Note that if C’ exists, then its cardinality is precisely g.)

Theorem 5.1. PNPS is NP-hard.

Proof. To show that PNPS is an NP-hard problem, we will establish a
polynomial transformation from X3C. Let X = {z;,%2,...,%3¢} and C =
{C1,Cs,...,Cn} be an arbitrary instance of X3C.

We will construct a graph G and a positive integer k£ such that the
instance (X, C) of X3C has an exact cover by 3-sets if and only if G has a
pnp-set of cardinality at least k. The vertex set V(QG) is the union of X and
C and the edge set E(G) is the union of the following sets: Ex = {z;z; :
i # j} and E¢c = {C;z; : z; € C;}. Finally, Let k = g. Clearly, the above
transformation can be performed in time that is polynomial in m and gq.
We now show that the instance (X, C) of X3C contains an exact 3-cover if
and only if PN,(G) > q. Suppose that C contains an exact 3-cover C’ C C.
It is easy to verify that C' is a pnp-set in G and since the cardinality of
C' is ¢, PNp(G) > q. Now suppose PN,(G) > gand let S C X UC be
a pnp-set with cardinality at least q. To prove that C contains an exact
3-cover we show that SN X =, so S C C and S must be an exact 3-cover.
First notice that if | SN X |> 2 then every z; € X has two neighbors in S
so X C S. Now every C; € C has at least three neighborsin Sso C C S
and S is not a proper subset, a contradiction. Hence, | SN X | is at most 1.
Suppose z; € S. Now if C; € S at least two vertices in X have more than
one neighbor in S, s0 SNC =@ and | S |= 1. So without loss of generality
one can assume that SN X = @. Now it is obvious that S is an exact 3-
cover. a

From the proof of Theorem 5.1 it turns out that PNPS is NP-hard
even if restricted to graphs with diam(G) = 3. But we don’t know whether
there is a polynomial-time algorithm for PNPS if we restrict ourselves to
graphs with diameter 27 Another interesting problem is the complexity of
PNPS for bipartite graphs.
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6 Summary and Open Problems

In this paper, a new graph parameter, PN,(G), has been introduced to deal
with the Nearly Perfect Bipartition Problem. It is shown that the problem
of determining PN, for a graph is NP-hard even when restricted to chordal
graphs with diameter 3. Some bounds and exact values of PN, for several
classes of graphs and Cartesian products GOH are given. Many questions
remain to be investigated including the ones listed here.

Problem 1. Determine the exact values of PN,(G x H), where G x H
is the tensor product of graphs G and H.

Problem 2. PNPS(Diameter 2)
INSTANCE: Graph G = (V, E) of diameter 2, positive integer k < |V/|.
QUESTION: Does G have a pnp-set of cardinality at least k?

By the application of PNy, a graph G would be interesting when PN,(G)
1. In Theorem 4.4(b), diam(G) < 2 is stated as a necessary condition for
PN,(G) = 1. By a small revision in Theorem 3.2 in [15], it is not difficult
to see that §(G) > % is a sufficient condition for PN,(G) = 1.

Problem 3. Find some necessary or sufficient conditions for graphs G
with PNp(G) =1.

When PN,(G) = 1, G cannot be sparse. Therefore it is natural to ques-
tion about the minimum number of edges of graph G when PNy(G) = 1.
It is obvious that if G = K2 + K, and G = T + K, where T is a tree,
then PN,(G) =1 and E(G) = 2 | V(G) | —3. Based on this observation
we make the following conjecture.

Conjecture: If PN,(G) =1, then | E(G) {> 2| V(G) | -3.
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