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Abstract

In this paper, we obtained two flag-transitive symmetric (v, k, A)
designs admitting primitive automorphism groups of almost simple type
with socle X = PSL(12,2).
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1 Introduction

A 2-(v,k, A) design is a finite incidence structure D=(P, B), where P is a
set of v elements called points and B is a set of k-subsets of P called blocks,
such that any two distinct points are incident with exactly A blocks. And
D is called symmetric if |B| = v. The symmetric design D is non-trivial
if A\ < k < v—1. Now we study non-trivial symmetric 2-(v, k, A) designs
which are denoted by symmetric (v, k, A) designs for simplicity. A symmetric
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design D is called a projective plane if A = 1, while a biplane if A = 2 and
a triplane if A = 3. The complement of D, denoted by D', is a symmetric
(v,v—k,v—2k+ ) design whose set of points is the same as the set of points
of D, and whose blocks are the complements of the blocks of D. A flagin a
design is an incident point-block pair.

An automorphism of D is a permutation of P that preserves B. A group
obtained under composition of automorphisms is an automorphism group.
The group of all automorphisms of a design is the full automorphism group
of D, denoted by Aut(D). For G < Aut(D), the design D is called point-
primitive if G is primitive on P, and flag-transitive if G is transitive on the
set of flags. The socle of a certain group is the product of all its minimal
normal subgroups.

In recent years, researchers have tackled many problems related to the
designs with an automorphism group which is a linear group acting flag-
transitively. In 1986, Delandtsheer (3] classified flag-transitive finite linear s-
paces where the automorphism group G is one of the simple groups PSL(2, q)
or PSL(3,q). In [8], Regueiro proved that if a biplane D admits a flag-
transitive automorphism group G of almost simple type with classical so-
cle, then D is either the unique (11,5,2) or the unique (7,4, 2) biplane, and
Soc(G) = PSL(2,11) or PSL(2,7), respectively. Recently, Zhou et al. proved
in 10, 11] that there is only one triplane with flag-transitive linear automor-
phism group G, namely the (11,6, 3) triplane with G = PSL(2, 11) (this is the
complement of the (11,5,2) biplane), and there is a unique symmetric (v, k, 4)
design with a flag-transitive linear automorphism group G, with parameters
(15,8,4) and Soc(G) = PSL(2,9). Now we consider the case in which the
automorphism group has PSL(12,2) as its socle, and obtain the following
conclusion.

Theorem 1.1

If D is a symmetric (v,k,)) design admitting a point-primitive, flag-
transitive automorphism group G of almost simple type with socle PSL(12,2),
then D is either the unique projective space PG(11,2), with v = 4095, k =
2047 and A = 1023, or its complement, the unique symmetric (4095, 2048, 1024)
design.

2 Some Preliminary Results

The following lemmas give some fundamental information which is essen-
tial to the proof of our main theorem.
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Lemma 2.1 ([4])
Let D be a symmetric (v,k,)) design and G < Aut(D). Suppose that
(k,A) =1 and G is doubly point transitive, then G is flag-transitive on D.

Lemma 2.2 ([7))

(1) An automorphism group of a symmetric design has as many as orbits
on points as on blocks.

(2) A transitive automorphism group of a symmetric design has the same
rank whether considered as a permutation group on points or on blocks.

1.0

Lemma 2.3

Let D = (P, B) be a symmetric (v,k, ) design admitting a flag-transitive
automorphism group G. Suppose that G is 2-transitive on P, then D', the
complement of D, is also flag-transitive.

Proof. Lemma 2.2 (1) implies G, has the same number of orbits on points
and on blocks, similarly for Gp (although here we still don’t have that these
numbers are equal). Lemma 2.2 (2) implies G, has as many orbits on points
as G g has on blocks, so now we do know these two numbers are equal. Finally
we know this is 2 by the 2-transitivity of G.

The flag-transitivity implies that Gp acts transitively on the points of B
(see [9], Lemma 2.3). Then Gp has a orbit I'; of length k on P and the other
orbit T'; is of length v—k and I'; = P—T";. Obviously, I'y = B’ is one of blocks
of D’ and Gg = Gpg'. So Gp: is transitive on the points of B’. Moreover, by
Lemma 2.2, we have that G is block-transitive on D’ since D’ has the same
set of points as D and G is 2-transitive on P. Hence G is flag-transitive on
D, |

3 Proof of Theorem 1.1

Suppose that G is a flag-transitive and point-primitive automorphism
group of a symmetric (v, k, A) design D, and the socle of G is X = PSL(12,2).
It is known that the order of X is

6441762292785762141878919881400879415296000.
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Since G is primitive, G, the stabilizer of G for some = € P, is a maximal
subgroup of G. Hence we consider each of the maximal subgroups of G as G,
to search the possible symmetric designs. Note that a subgroup of a classical
group must fall into at least one of nine Aschbacher classes C;, with 1 < i < 9.
In [2], J. Bray et al. discussed the maximal subgroups of PSL(12,q) with
g = p°® be a power of a prime p. Since G is a maximal subgroup of G, G.NX
is a maximal subgroup of X. Thus Table 1 lists all the potential groups G,NX
(combining Table 8.76 and Table 8.77 of (2], and let ¢ = 2), such that G; is
maximal in the group G. Because X <4 G and G; is maximal in G, we get
G/X = XG:/X = G;/(Gz N X) which implies |G : G.| = |X : (G2 10 X)|.
The index of G; in G is listed in the last column of Table 1.

Table 1: All the potential maximal subgroups G, of G with socle X

Case C; G.NX v=1G:G| = [X : (Gz N X))
1 G 27L(11,2) 4095
2 220 (L(2,2) x L(10,2)) 2794155
3 227 (L(3,2) x L(9,2)) 408345795
4 232 (L(4,2) x L(8,2)) 13910980083
5 2% (L(5,2) x L(7,2)) 114429029715
6 23%¢ (L(6,2) x L(6,2)) 230674393235
7 L(11,2) 8386560
8 L(2,2) x L(10,2) 2929883873280
9 L(3,2) x L(9,2) 54807244843253760
10 L(4,2) x L(8,2) 59747204511792365568
11 L(5,2) x L(7,2) 3931751522711497605120
12 221 1,(10, 2) 8382465
13 2% (L(2,2)? x L(8,2)) 486884302905
14 245 (L(3,2)? x L(6,2))  321790778562825
15 248 (L(4,2)%) 2793143957925321
16 2%°.(L(5,2)% x L(2,2))  305182222249905
17 C2 Si2 13448310596010038676027219703234560
18 L2(2)8.S6 191762947387550551491499243916492800
19 L3(2)*.S4 336942913074231107498859823104000
20 La(2)%.S3 131033355084423208471778820096
21 Le(2)2.S2 7925911799751749140480
22  C3 7.La(8).3 8876262199005034444121702400
23 3.Le(4).3.2 990494448689667375104
24 Cs L2(2) x Le(2) 53258718518184916991755262361600
25 L3(2) x Lq(2) 1901975355721419755609563929457459200
26 Cs  S12(2) 30952951521552105472
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Note that Out(X) = 2, so |G| divides 2|X;| = 2|G; N X|. Then |G;| =
|Gz N X| or 2|G; N X|. The cases 17-20, 24, 25 will be ruled out since |G;| is
too small to satisfy the inequality |Gz|* > |G| (see [9], Lemma 2.1(iii)).

As D is a symmetric design, k(k — 1) = A(v — 1) holds. Since G acts
transitively on the set of the k blocks which incident with z, we have k | |Gxl-
Now we state the following algorithm, which will be useful to search for de-
signs. The output of the algorithm is a list DESIGNS of parameter sequences
(v, k, A) of potential symmetric designs.

Algorithm 1 (DESIGNS)
INPUT: |Gzl v.
OutpuT: The list DESIGNS := S.
set S := an empty list;
for each k divides |G| and 1#k<v—1
Ai=kx(k-1)/(v-1)
if A be an integer
Add (v, k, A) to the list S;
return S.

Algorithm 1 checks all possibilities for any given {|G:|,v} pairs coming
from the remaining 20 cases. For case 1, We get five parameter sequences
(v,k,\): (4095, 713, 124), (4095, 1335, 435), (4095, 2047, 1023), (4095,
2048, 1024) and (4095, 2760, 1860). For case 7, We get one potential de-
sign (8386560, 150144, 2688). For the remaining 18 cases, there is no such
3-tuples (v, k, A).

We now consider the potential design (8386560, 150144, 2688). In this
case, Table 1 shows that G, N X = PSL(11,2). For any block B € B, the flag-
transitivity of G implies that Gg is transitive on the & (= 150144) points of
B. Thus G g should have at least one subgroup of index k. Since Out(X) = 2,
we have G = X or X.2. Let G = X, then G has only one conjugacy class
of subgroups of index v (= 8386560) which are isomorphic to PSL(11,2),
and PSL(11,2) has no subgroup of index k(calculated with MAGMA([1]). This
is not possible since Gp is a subgroup of index v of G. Then we suppose
that G = X.2. If Gg < X, then X should have a subgroup of index k,
but PSL(12,2) has no such subgroup. So G = XGpg holds. The second
isomorphism theorem shows that Gg N X 4 Gp and G/X = Gg/(Gp N X).
Hence GgNX = PSL(11,2). Let H < Gp of index 150144. We have H(GgN
X)/(GgnX) = H/(HN(GpNX)). Then |GgnX : HNX| = |H(GaNX) : H|.
Since |Gp : GpNX| =2, we get |H(GpNX)| = |Gp| or |Gg|/2. Thus GgNX
has a subgroup H N X of index k or k/2, however, we know that PSL(11,2)
has no such subgroups calculated with MAGMA.
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The GAP command Transitivity(G,§) returns the degree k (2 non-
negative integer) of transitivity of the action implied by the arguments, i.e.
the largest integer & such that the action is k-transitive. Thus we know that
X acts as a doubly transitive permutation group on the set P of 4095 points
by GAP [5, version 4.7.2].

gap> G :=PSL(12,2);

<permutation group of size 644176229278576214187891988
1400879415296000 with 2 generators>

gap> Transitivity(G, [1..4095]);

2

The symmetric design D has the same transitivity as its complement design
D'. So we check in [6] that there are exactly two 2-transitive symmetric
designs when v = 4095, and one is the unique projective space PG(11,2), with
v = 4095, k = 2047 and A = 1023, and the other is the unique symmetric
(4095, 2048, 1024) design, complement of PG(11,2).

Since (2047,1023) = 1, Lemma 2.1 shows that the symmetric (4095, 2047,
1023) design D is flag-transitive. By Lemma 2.3, as the complement of D,
symmetric (4095, 2048, 1024) design is also flag-transitive. Hence we get two
flag-transitive symmetric (v, &, A) designs admitting a primitive automorphis-
m group of almost simple type with socle PSL(12, 2).

This completes the proof of Theorem 1.1.
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