Flag-transitive symmetric (v, k, λ) designs admitting primitive automorphism groups with socle PSL(12, 2)

Delu Tian*

Department of Mathematics, Guangdong University of Education, Guangzhou, Guangdong 510303, P. R. China Shenglin Zhou[†]

Department of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, P. R. China

Abstract

In this paper, we obtained two flag-transitive symmetric (v, k, λ) designs admitting primitive automorphism groups of almost simple type with socle X = PSL(12, 2).

Keywords: symmetric design, flag-transitive, point-primitive, linear group

MR(2000) Subject Classification 05B05, 05B25, 20B25

1 Introduction

A 2- (v, k, λ) design is a finite incidence structure $\mathcal{D}=(P, \mathcal{B})$, where P is a set of v elements called points and \mathcal{B} is a set of k-subsets of P called blocks, such that any two distinct points are incident with exactly λ blocks. And \mathcal{D} is called symmetric if $|\mathcal{B}| = v$. The symmetric design \mathcal{D} is non-trivial if $\lambda < k < v - 1$. Now we study non-trivial symmetric 2- (v, k, λ) designs which are denoted by symmetric (v, k, λ) designs for simplicity. A symmetric

^{*}Project supported in part by NSFC (No:11426066), ARF (GDEI,No:2014ARF03) and Project for Young Creative Talents of Ordinary University of Guangdong Province (No:2014KQNCX229). Corresponding author: tiandelu@gdei.edu.cn

[†]Project supported in part by NSFC (No:11471123). E-mail: slzhou@scut.edu.cn.

design \mathcal{D} is called a *projective plane* if $\lambda=1$, while a *biplane* if $\lambda=2$ and a *triplane* if $\lambda=3$. The *complement* of \mathcal{D} , denoted by \mathcal{D}' , is a symmetric $(v,v-k,v-2k+\lambda)$ design whose set of points is the same as the set of points of \mathcal{D} , and whose blocks are the complements of the blocks of \mathcal{D} . A *flag* in a design is an incident point-block pair.

An automorphism of \mathcal{D} is a permutation of P that preserves \mathcal{B} . A group obtained under composition of automorphisms is an automorphism group. The group of all automorphisms of a design is the full automorphism group of \mathcal{D} , denoted by $\operatorname{Aut}(\mathcal{D})$. For $G \leq \operatorname{Aut}(\mathcal{D})$, the design \mathcal{D} is called point-primitive if G is primitive on P, and flag-transitive if G is transitive on the set of flags. The socle of a certain group is the product of all its minimal normal subgroups.

In recent years, researchers have tackled many problems related to the designs with an automorphism group which is a linear group acting flagtransitively. In 1986, Delandtsheer [3] classified flag-transitive finite linear spaces where the automorphism group G is one of the simple groups $\operatorname{PSL}(2,q)$ or $\operatorname{PSL}(3,q)$. In [8], Regueiro proved that if a biplane $\mathcal D$ admits a flagtransitive automorphism group G of almost simple type with classical socle, then $\mathcal D$ is either the unique (11,5,2) or the unique (7,4,2) biplane, and $\operatorname{Soc}(G) = \operatorname{PSL}(2,11)$ or $\operatorname{PSL}(2,7)$, respectively. Recently, Zhou et al. proved in [10, 11] that there is only one triplane with flag-transitive linear automorphism group G, namely the (11,6,3) triplane with $G = \operatorname{PSL}(2,11)$ (this is the complement of the (11,5,2) biplane), and there is a unique symmetric (v,k,4) design with a flag-transitive linear automorphism group G, with parameters (15,8,4) and $\operatorname{Soc}(G) = \operatorname{PSL}(2,9)$. Now we consider the case in which the automorphism group has $\operatorname{PSL}(12,2)$ as its socle, and obtain the following conclusion.

Theorem 1.1

If $\mathcal D$ is a symmetric (v,k,λ) design admitting a point-primitive, flagtransitive automorphism group G of almost simple type with socle PSL(12,2), then $\mathcal D$ is either the unique projective space PG(11,2), with v=4095, k=2047 and $\lambda=1023$, or its complement, the unique symmetric (4095, 2048, 1024) design.

2 Some Preliminary Results

The following lemmas give some fundamental information which is essential to the proof of our main theorem.

Lemma 2.1 ([4])

Let \mathcal{D} be a symmetric (v, k, λ) design and $G \leq \operatorname{Aut}(\mathcal{D})$. Suppose that $(k, \lambda) = 1$ and G is doubly point transitive, then G is flag-transitive on \mathcal{D} .

Lemma 2.2 ([7])

- (1) An automorphism group of a symmetric design has as many as orbits on points as on blocks.
- (2) A transitive automorphism group of a symmetric design has the same rank whether considered as a permutation group on points or on blocks.

1.0

Lemma 2.3

Let $\mathcal{D}=(P,\mathcal{B})$ be a symmetric (v,k,λ) design admitting a flag-transitive automorphism group G. Suppose that G is 2-transitive on P, then \mathcal{D}' , the complement of \mathcal{D} , is also flag-transitive.

Proof. Lemma 2.2 (1) implies G_x has the same number of orbits on points and on blocks, similarly for G_B (although here we still don't have that these numbers are equal). Lemma 2.2 (2) implies G_x has as many orbits on points as G_B has on blocks, so now we do know these two numbers are equal. Finally we know this is 2 by the 2-transitivity of G.

The flag-transitivity implies that G_B acts transitively on the points of B (see [9], Lemma 2.3). Then G_B has a orbit Γ_1 of length k on P and the other orbit Γ_2 is of length v-k and $\Gamma_2 = P-\Gamma_1$. Obviously, $\Gamma_2 = B'$ is one of blocks of \mathcal{D}' and $G_B = G_{B'}$. So $G_{B'}$ is transitive on the points of B'. Moreover, by Lemma 2.2, we have that G is block-transitive on \mathcal{D}' since \mathcal{D}' has the same set of points as \mathcal{D} and G is 2-transitive on P. Hence G is flag-transitive on \mathcal{D}' .

3 Proof of Theorem 1.1

Suppose that G is a flag-transitive and point-primitive automorphism group of a symmetric (v, k, λ) design \mathcal{D} , and the socle of G is $X = \mathrm{PSL}(12, 2)$. It is known that the order of X is

6441762292785762141878919881400879415296000.

Since G is primitive, G_x , the stabilizer of G for some $x \in P$, is a maximal subgroup of G. Hence we consider each of the maximal subgroups of G as G_x to search the possible symmetric designs. Note that a subgroup of a classical group must fall into at least one of nine Aschbacher classes C_i , with $1 \le i \le 9$. In [2], J. Bray et al. discussed the maximal subgroups of $\mathrm{PSL}(12,q)$ with $q=p^e$ be a power of a prime p. Since G_x is a maximal subgroup of G, $G_x \cap X$ is a maximal subgroup of G. Thus Table 1 lists all the potential groups $G_x \cap X$ (combining Table 8.76 and Table 8.77 of [2], and let q=2), such that G_x is maximal in the group G. Because $X \le G$ and G_x is maximal in G, we get $G/X = XG_x/X \cong G_x/(G_x \cap X)$ which implies $|G:G_x| = |X:(G_x \cap X)|$. The index of G_x in G is listed in the last column of Table 1.

Table 1: All the potential maximal subgroups G_x of G with socle X

Case	C_i	$G_x\cap X$	$v = G:G_x = X:(G_x \cap X) $
1	C_1	2 ¹¹ .L(11, 2)	4095
2		2^{20} .(L(2,2) × L(10,2))	2794155
3		$2^{27}.(L(3,2)\times L(9,2))$	408345795
4		$2^{32}.(L(4,2)\times L(8,2))$	13910980083
5		2^{35} .(L(5,2) × L(7,2))	114429029715
6		$2^{36} \cdot (L(6,2) \times L(6,2))$	230674393235
7		L(11, 2)	8386560
8		$L(2,2)\times L(10,2)$	2929883873280
9		$L(3,2) \times L(9,2)$	54807244843253760
10		$L(4,2)\times L(8,2)$	59747204511792365568
11		$L(5,2)\times L(7,2)$	3931751522711497605120
12		2^{21} .L(10, 2)	8382465
13		$2^{36}.(L(2,2)^2 \times L(8,2))$	486884302905
14		$2^{45}.(L(3,2)^2 \times L(6,2))$	321790778562825
15		2^{48} .(L(4,2) ³)	2793143957925321
16		$2^{45}.(L(5,2)^2 \times L(2,2))$	305182222249905
17	\mathcal{C}_2	S_{12}	13448310596010038676027219703234560
18		$L_2(2)^6.S_6$	191762947387550551491499243916492800
19		$L_3(2)^4.S_4$	336942913074231107498859823104000
20		$L_4(2)^3.S_3$	131033355084423208471778820096
21		$L_6(2)^2.S_2$	7925911799751749140480
22	C_3	7.L ₄ (8).3	8876262199005034444121702400
23		$3.L_6(4).3.2$	990494448689667375104
24	C_4	$L_2(2) \times L_6(2)$	53258718518184916991755262361600
25		$L_3(2) \times L_4(2)$	1901975355721419755609563929457459200
26	C ₈	$S_{12}(2)$	30952951521552105472

Note that $\operatorname{Out}(X) = 2$, so $|G_x|$ divides $2|X_x| = 2|G_x \cap X|$. Then $|G_x| = |G_x \cap X|$ or $2|G_x \cap X|$. The cases 17-20, 24, 25 will be ruled out since $|G_x|$ is too small to satisfy the inequality $|G_x|^3 > |G|$ (see [9], Lemma 2.1(iii)).

As \mathcal{D} is a symmetric design, $k(k-1) = \lambda(v-1)$ holds. Since G_x acts transitively on the set of the k blocks which incident with x, we have $k \mid |G_x|$. Now we state the following algorithm, which will be useful to search for designs. The output of the algorithm is a list DESIGNS of parameter sequences (v, k, λ) of potential symmetric designs.

```
Algorithm 1 (DESIGNS)

INPUT: |G_x|, v.

OUTPUT: The list DESIGNS := S.

set S := an empty list;

for each k divides |G_x| and 1 \neq k < v - 1

\lambda := k * (k - 1)/(v - 1);

if \lambda be an integer

Add (v, k, \lambda) to the list S;

return S.
```

Algorithm 1 checks all possibilities for any given $\{|G_x|, v\}$ pairs coming from the remaining 20 cases. For case 1, We get five parameter sequences (v, k, λ) : (4095, 713, 124), (4095, 1335, 435), (4095, 2047, 1023), (4095, 2048, 1024) and (4095, 2760, 1860). For case 7, We get one potential design (8386560, 150144, 2688). For the remaining 18 cases, there is no such 3-tuples (v, k, λ) .

We now consider the potential design (8386560, 150144, 2688). In this case, Table 1 shows that $G_x \cap X = PSL(11,2)$. For any block $B \in \mathcal{B}$, the flagtransitivity of G implies that G_B is transitive on the $k \ (= 150144)$ points of B. Thus G_B should have at least one subgroup of index k. Since Out(X) = 2, we have G = X or X.2. Let G = X, then G has only one conjugacy class of subgroups of index v = 8386560) which are isomorphic to PSL(11, 2), and PSL(11,2) has no subgroup of index k(calculated with Magma[1]). This is not possible since G_B is a subgroup of index v of G. Then we suppose that G = X.2. If $G_B \leq X$, then X should have a subgroup of index k, but PSL(12,2) has no such subgroup. So $G = XG_B$ holds. The second isomorphism theorem shows that $G_B \cap X \subseteq G_B$ and $G/X \cong G_B/(G_B \cap X)$. Hence $G_B \cap X \cong \operatorname{PSL}(11,2)$. Let $H \leq G_B$ of index 150144. We have $H(G_B \cap$ $(X)/(G_B \cap X) \cong H/(H \cap (G_B \cap X))$. Then $|G_B \cap X : H \cap X| = |H(G_B \cap X) : H|$. Since $|G_B:G_B\cap X|=2$, we get $|H(G_B\cap X)|=|G_B|$ or $|G_B|/2$. Thus $G_B\cap X$ has a subgroup $H \cap X$ of index k or k/2, however, we know that PSL(11,2)has no such subgroups calculated with MAGMA.

The GAP command Transitivity (G, Ω) returns the degree k (a non-negative integer) of transitivity of the action implied by the arguments, i.e. the largest integer k such that the action is k-transitive. Thus we know that X acts as a doubly transitive permutation group on the set P of 4095 points by GAP [5, version 4.7.2].

```
gap> G := PSL(12,2);

<permutation group of size 644176229278576214187891988
1400879415296000 with 2 generators>
gap> Transitivity(G, [1..4095]);
2
```

The symmetric design \mathcal{D} has the same transitivity as its complement design \mathcal{D}' . So we check in [6] that there are exactly two 2-transitive symmetric designs when v=4095, and one is the unique projective space PG(11,2), with v=4095, k=2047 and $\lambda=1023$, and the other is the unique symmetric (4095, 2048, 1024) design, complement of PG(11,2).

Since (2047, 1023) = 1, Lemma 2.1 shows that the symmetric (4095, 2047, 1023) design \mathcal{D} is flag-transitive. By Lemma 2.3, as the complement of \mathcal{D} , symmetric (4095, 2048, 1024) design is also flag-transitive. Hence we get two flag-transitive symmetric (v, k, λ) designs admitting a primitive automorphism group of almost simple type with socle PSL(12, 2).

This completes the proof of Theorem 1.1.

Acknowledgments

The authors sincerely thank the referees for their very helpful suggestions and comments which led to the improvement of this article.

References

- [1] W. Bosma, J. Cannon, C. Playoust, The MAGMA algebra system I: The user language, J. Symb. Comput. 24 (1997) 235-265.
- [2] J. Bray, D. Holt, C. Roney-Dougal, The maximal subgroups of the lowdimensional finite classical groups, volume 407 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2013.
- [3] A. Delandtsheer, Flag-transitive finite simple groups, Arch Math, 47: 395-400, 1986.

- [4] P. Dembowski, Finite Geometries. Berlin: Springer, 1968.
- [5] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.7.2; 2013, (http://www.gap-system.org).
- [6] W. M. Kantor, Classification of 2-transitive symmetric designs, *Graphs and Combin*, 1(1): 165-166, 1985.
- [7] E. S. Lander, Symmetric Designs: An Algebraic Approach, London Mathematical Society Lecture Note Series, 74, Cambridge University Press, London, 1983.
- [8] E. O'Reilly Regueiro, Biplanes with flag-transitive automorphism groups of almost simple type, with classical socle, *J Algebr Combin*, **26**: 529-552, 2007.
- [9] D. L. Tian, S. L. Zhou, Flag-transitive $2-(v, k, \lambda)$ symmetric designs with sporadic socle, *J Combin Designs*, **23**(4): 140-150, 2015.
- [10] S. L. Zhou, H. L. Dong, and W. D. Fang, Finite classical groups and flag-transitive triplanes, *Discrete Math*, 309(16): 5183-5195, 2009.
- [11] S. L. Zhou, D. L. Tian, Flag-transitive point-primitive 2-(v, k, 4) symmetric designs and two dimensional classical groups, Appl Math J Chinese Univ, 26(3): 334-341, 2011.