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Abstract

The distribution of the set of embeddings of a graph into ori-
entable or non-orientable surfaces is called the total embedding dis-
tribution. Chen, Gross and Rieper [Discrete Math. 128(1994) 73-94.]
first used the overlap matrix for calculating the total embedding dis-
tributions of necklaces, closed-end ladders and cobblestone paths. In
this paper, also by using the overlap matrix, closed formulas of the
total embedding distributions for two classes of graphs are given.

Key words: Overlap matrix; Total embedding distribution; The
dipole D3

1 Introduction

Let G he a connected graph, allowing self-loops and multiple edges, with
vertex set V(G) and edge set E(G). Let |X| denote the cardinality of a set
X. A surface means a compact connected 2-dimensional manifold without
boundary. In topology, surfaces are classified into S,,, the orientable surface
with m(m > 0) handles and N,,, the non-orientable surface with n(n > 1)
crosscaps. An embedding of G into a closed surface S is a homeomorphism
¢:G — S of G into S. If every component of S — ¢(G) is a 2-cell, then
 is said to be a 2-cell embedding. Throughout this paper, all embeddings
of graphs into surfaces are 2-cell embeddings. Two embeddings § : G —
Sand n: G — S of G into S are said to be equivalent if there is a
orientation-preserving homeomorphism ¢ : S — S such that (o § = 7.
Basic terminologies for graph embedding appear in [6,15,19].

By the total genus polynomial of G, we mean the polynomial

>} oo

Io(z,y) =Y g +Y_ fi's
i=0 i=1

where g; is the number of embeddings of G into the orientable surface

S; up to equivalence and f; is the number of embeddings of G into the

non-orientable surface N; up to equivalence.
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We call the first part of Ig(z,y) the genus polynomial of G and denote
it by go(z) = Y20 g:z®. Similarly, fo(y) = Y0, fiy' is the crosscap
number polynomial of G. They are both finite polynomials.

Let G = {V, E} be a connected graph. A rotation at a vertex v of G
is a cyclic permutation of the edge-ends incident on it. A pure rotation
system of G is a list of rotations, one for each vertex of G. The total
number of the pure rotation systems of G equals the product of numbers
(dy — 1)!, taken over all vertices v € V(G). A general rotation system of
G is a pair (P, )), where P is a pure rotation system and ) is a mapping
E(G) — {0,1}. The edge e is said to be twisted(respectively, untwisted)
if Me) = 1(respectively, A(e) = 0). It is well known that every orientable
embedding of G can be described by a general rotation system (P, A) with
Ale) =0, for all e € E(G). Let T be a spanning tree of G. A T-rotation
system (P, ) of G is a general rotation system (P, \) such that A(e) = 0,
for all e € E(T).

Let ®Z be the set of all T-rotation systems of G. Suppose that in
these |®Z| T-rotation systems of G, there are a;, i = 0,1, ..., embeddings
into the orientable surface S; and b;, i = 0,1,..., embeddings into the
non-orientable surface N;, we call the polynomial

[o o] o0

Ezy) =) az'+) by
=0 i=1

the T'—distribution polynomial of G.

Theorem 1.1.[2] Let T be a spanning tree of graph G. For any general
rotation system (P, X) of G, there is an equivalent T-rotation system of G.
The total genus polynomial Ic(x,y) is equal to the T— distribution poly-
nomial IZ(z,y). The total number of embeddings of G up to equivalence

S
22 I] (dy -1
veV(G)

Given a graph G = {V, E} such that |V(G)| = n and |E(G)| = q. Let
T be a spanning tree of G. Let (P, \) be a T-rotation system of G, and
let Ey = {e| A(e) =1,e € E(G)}. Suppose that e; and e are two co-tree
edges in E— E(T). We say that e; and e; overlap with respect to P, E; and
T either if e; = e3 and e, € E), or if e; # e, and the induced embedding I
of T +e; + e from the pure rotation system P is non-planar (I is obtained
by deleting all edges from P except the edges e;, e2, and the edges in T').
Let e, e2,...,ep(g) be the co-tree trees of T, where B(G) is the cycle rank
number of G, and B(G) = g —n+ 1. The overlap matriz of G with respect
to P, E; and T is a Sx 8 matrix M over GF(2) such that the (i, j) element
of M is 1 if and only if the edges e; and ey overlap with respect to P, E;
and T
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The following proposition is obvious.

Proposition 1.2. Let T be a spanning tree of graph G, and let e and
f be two co-tree edges of T in G. Then e and f overlap only if their
fundamental cycles with respect to T have at least one vertez in common.

Mohar [16] has shown the following interesting result.

Theorem 1.3.(16] Let (P,)) be a general rotation system for a graph,
and let M be the overlap matriz. Then the rank of M equals twice the
genus, if the corresponding embedding surface is orientable, and it equals
the crosscap number otherwise. It is independent of the choice of a spanning
tree.

In 1987, Gross and Furst [7] introduced the concept of the genus distri-
bution. Subsequently, many authors have computed the genus distributions
for certain classes of graphs. Gross et al. computed the genus distribution
for bouquets of circles[8]; Furst et al. computed it for closed-end lad-
ders and cobblestone paths[5]; Tesar computed it for Ringel ladders(21];
Kwak computed it for dipoles[13], and many others, we only list a few,
see [1,20,22,23]. However, for the total embedding distributions, only few
classes are known. For example, Chen, Gross and Rieper computed the to-
tal embedding distributions for necklaces of type(r,0), closed-end ladders
and cobblestone paths|2], by using the overlap matrix; Kwak and Shim com-
puted the total embedding distribution for bouquets of circles [14], by using
edge-attaching surgery technique; In [3], Chen, Liu and Wang computed
the total embedding distributions of all graphs with maximum genus 1, by
using the overlap matrix; Furthermore, in [4], Chen, Ou and Zou ohtained
a closed formula for the total embedding distribution of Ringel ladders;
Yang and Liu computed the total embedding distributions for two classes
of 4-regular graphs[24], by using the joint tree model of graph embedding
which was established by Y.P. Liu. We use the overlap matrix herein to
compute the total embedding distributions of two classes of graphs from
the dipole D3. For complementary work on genus distribution of graph
amalgamations, see [9,10,11,12,18].

2 The total embedding distribution of L,

We introduce the concept of bar-amalgamation, which can also be seen
in (7). Define the bar-amalgamation of a single-rooted graph (G,t) and a
double-rooted graph (H, u,v) to be the result of joining the root t of G and
the root u of H by an edge e. We denote this operation by @®.:

(G,t) ®e (H,u,v) = (G &, H,v).

In [9), Gross et al. defined the vertez-amalgamation of a single-rooted
graph (G,t) and a double-rooted graph (H,u,v), which is obtained from
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their disjoint union by merging the roots t and u. We denote the operation
of the vertex-amalgamation by an asterisk:

(G,t)* (H,u,v) = (G * H,v).

A dipole graph D, is a multi-graph, which consists of two vertices joined
by n edges.

Let D3 be the graph obtained by inserting vertices u and v at the
midpoints of two different edges of the dipole graph D3, and by regarding
them as the roots. We construct a sequence of graphs recursively: (Ly,t;) =
(D3,v) (suppressing co-root u); (Ln,tn) = (Ln-1,tn-1) ®e (D3, u,v). (See
Figure 2.1)

AR A

Figure 2.1: L, is an open chain of n copies of Ds.

In (7], Gross and Furst proved the following theorem.

Theorem 2.1. gge, x(z) = de(t)dy (v)gc(z)gu (z).

In (3], Chen et al. presented the following theorem.

Theorem 2.2. foe.H(y) = de(t)dn (u)(fo(¥)fu(y) + fo(v)gu(v?) +
96(¥*) fu(y))-

We can obtain a recursion formula about the total genus polynomial of
L, by Theorem 2.1 and Theorem 2.2, but herein expedites the calculation
of the total genus polynomial of L,, with the overlap matrix.

Since we are examining topological properties of a graph, we often ignore
all 2-valent vertices.

A 3-regular graph at each vertex has two cyclic orderings of its neigh-
bors. One of these two cyclic orderings is denoted as clockwise and the
other counterclockwise. We color the vertex black, if that vertex has the
clockwise ordering of its neighbors, otherwise, we will color the counter-
clockwise vertex white. This will offer convenience to embed a 3-regular
graph into surface, as we can draw an embedding on the plane and only
need to color the vertices black and white. We adopt the same notation
used by Ringel (17, p.17].

We define an edge is matched if it has the same color at hoth ends,
otherwise it is called unmatched.
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Figure 2.2: L,.

In Figure 2.2, fix a spanning tree T' = v1v20304 * * - V4n—3V4n—2Vdn—1V4an
of L,, list all its co-tree edges e;,e2,...,€m—1,€2, of T in Ly, and use
them as row and column labels of the overlap matrix M, with respect to
T.

By Proposition 1.2, in the case of L, it implies that only ez;—1 and e;

can overlap, for i = 1,...,n. Given a T-rotation system (P, A) of Ly, the
corresponding overlap matrix My, for (P, A) be of the following form:
/ )y Y 0 0 0 0 \
y1 z2 0 O 0 0
0 0 T3 Y2 0 0
My=| 0 O w =z o o |
0 0 0 O To2n-1 Yn
\o 0 0 0 Yo Ton )

where X = (z1,2,%3,%4,. - ., T2n-1,%2n) € (GF(2))?",Y = (y1,¥25. -1 ¥Un)
€ (GF(2))™. Note that z; = 1 if and only if the edge e; is twisted, for
all i = 1,2,...,2n, y; = 1 if and only if ey;_, and ez; overlap, for all
i=12,...,n.

Let MY, be a 2n x 2n symmetric matrix over GF(2) that is of the form
My, such that the diagonal elements are all 0.

Let ® be the set of all matrices over GF(2) that are of the form May,
and let ®° be the set of all matrices over GF(2) that are of the form M3,
we calculate the distributions of ranks of matrices in ® and ®°.

Let Dg(z) = T2, c;z* be the rank distribution polynomial of the set &,
ie., fori=0,1,...,2n, there are precisely ¢; matrices in ® of rank i, and
let Dgo(z) = L2%,ciz* be the rank distribution polynomial of the set $°,
for i =0,1,...,2n, there are precisely ¢; matrices of rank i in &°.

The following lemma is obvious.

Lemma 2.3. Dg(z) = (1 + 3z + 422)™; Dgo(2) = (1 + 2%)".

Proposition 2.4. Two co-tree edges ez;—1 and ea; of T in Ly, for
j=1,2,...,n, overlap if and only if the edge vq;_2v4;—, is unmatched.
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Proposition 2.5. For o fired matriz of the form Mo, there are ezactly
2%7=2 different T-rotation systems corresponding to that matriz.

Proof. Given a matriz Moy, the values of y1, v, ..., yn are determined.
Forj =1,2,...,n, let V; = {vgj_2,v45-1}. LetV = Uiy V. Fori =
1,2,...,n-1, letU; = {v4,~,v4,'+1}. Let U = U?____IIU,‘.

e y; = 0. If we color the vertex vsj_2 black, by Proposition 2.4, the
color of vsj_1 is black. Otherwise the vertex v4j—2 is colored white, by
Proposition 2.4, the color of vsj_; is also white.

o y; = 1. Similar discuss like the case y; = 0.

Therefore, for the matriz Ma,, there are two ways for V; to color and
2™ ways for V to color.

On the other hand, for any fivred matrizx Ma,, it is independent of the
colors of vertices in U. Since there are 2n — 2 vertices in U, and 2 ways to
color each vertez in U, there are 22"~2 ways for U to color.

According to Theorem 1.3, Lemma 2.3 and Proposition 2.5, the follow-
ing theorems are obtained.

Theorem 2.6. The genus polynomial of the graph L, is g1, (z) =
2311—2(1 +x)n.

Theorem 2.7. The crosscap number polynomial of the graph L, is
fr.(y) =2°"72[(1 + 3y + 45" — (1 +4%)"].

Theorem 2.8. The total genus polynomial of the graph L,, is I, (z,y) =
9L.(3) + fr.(y) = 2%"2(1 + 2)" + 2%"72[(1 4 3y + 4y%)" — (1 + y2)").

The total genus polynomials of the graphs L, for n = 1,2,3,4 are as
follows:

I, (z,y) =2 + 2z + 6y + 6y2;

I, (z,y) = 16 + 32z + 162 + 96y + 240y> + 384y° + 240y%;

Ip,(z,y) = 128 + 384z + 38422 + 12823 + 1152y + 4608y2 + 12672y> +
19584y* + 18432y° + 8064y°5;

I (z,y) = 1024+4096z+614422+4096x°+ 10244+ 12288y + 67584y 2+
258048y + 617472y* + 1032192y° + 1142784y® + 786432y + 261120y°5.

Remark: The above four formulas are consistent with the results which
have been obtained by Theorem 2.1 and Theorem 2.2.

3 The total embedding distribution of L,, +eg

Let the graph L, + eg be obtained by joining two 2-valent vertices of
L, with an edge eg. See Figure 3.1. L, + eg is a 3-regular graph. When
n =1, L, + eg is isomorphic to the complete graph K.

We choose a path P = v195v3v4 « - - V4n—3V4n—2V4n—1V4r, as the spanning
tree T of L, + eg. List all its co-tree edges eg,e1,€2,...,€2n_1,€2, of T
in Ly, + ep, and use them as row and column labels of the overlap matrix
M2n+1 with respect to T'.
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Figure 3.1: Ly, + ep.

By Proposition 1.2, it can be seen that the overlap matrix Moy 41 over
GF(2) with respect to T has the following form:

/ To 21 22 23 % Z2n-1 Z2n \
F4) T Y1 0 0 0 0
Zo Y T2 0 0 0 0
- Z3 0 0 3 Y2 0 0
Many1 = 24 0 0 y x4 0 0
2201 0 0 0 O Ton-1  Yn
\ 2. 0 0 0 0 Yn  Ton )
Note that z; = 1 if and only if the edge e; is twisted, for all ¢ =
0,1,2,...,2n, y; = 1 if and only if edges ey;_; and ey; overlap, for all
j =1,2,...,n, zx = 1 if and only if edges ep and ex overlap, for all

k=1,2,...,2n.

Let M3, be a (2n+1) x (2n + 1) symmetric matrix over GF(2) that
is of the form M2n+ 1 such that the diagonal elements are all 0.

Now we denote ®2,4+) to be the set of all matrices over GF(2) that are
of the form M, 41, and ®3,,,, to be the set of all matrices over GF(2) that
are of the form MJ,, ;. '

Let Dg, . (z) = Tnd+lz 2% be the rank distribution polynomial of the
set 627;.{.1, ie., for i =0,1,...,2n + 1, there are precisely & matrices in

®on41 of rank i Let Dgo +l(z) = R¥n+la i be the rank distribution

polynomial of the set &:gn +1> 1.e, fori =0,1,...,2n+1, there are precisely
& matrices in 83, of rank i.

Lemma 3.1. Dg,  (2) = (1+6z+162*)""}(1+ 72+ 2022 +42% —
32z%) + 2271221 + 32 + 422)".

Proof. We consider the following different ways to assign the variables
Ton, Yn, Z2n, Tan—1 and zp,_; in the matrix Ms,41. Each term from the
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last column of the following table denote the distribution to Dg, .. (2)
under the corresponding case.

T2n | Yn | 22n | To2n—1 | Z22n-1 terms

0 0[O0 O 0 Ds,..(2)

0 0[O0 1 1 zDg, _ (z)

0 J]0] O 1 0 zDg, _ (2)

0 0 0 0 1 24n=122(1 + 3z + 42%)"1
0 o] 1 0 0 2°7=1225(1 + 32 + 42771
0 |0 1 1 1 27~ 12%(1 4+ 3z + 42%)" T
0 |0 1 1 0 2°7=129(1+ 32 + 42°)7 T
0 |0 1 0 T | 22 2(1 + 3z + 422)° T
1 (1] 0 0 0 2°Dg, _ (2)

1 1] 0 1 T | 22231 + 3z + 429)7° T
T (1[0 1 0 2D;,._ (2)

1 |10 0 1 22Dg, _ (2)

1 1 (1 0 0 z°Dg, _ (2)

1 | 1] 1] 1 1 2Dg, _ (2)

1 |1 1 1 0 | 271251 + 3z + 422)° !
T 1] 1 0 1 2?D, ()

1 0 0 0 2zDg, _ (2)

1 {0 1 1 22°Dyg, ()
110 1 0 22Dy, _ (2)

1 0 0 1 2°7=1223(1 + 3z + 42%)*T
0 |1 82°Ds, (2)

The table implies a recurrence relation:
D,y (2) = (14+62+162%) Dy, (2)+2°"~1(322+62%)(1+ 32 +42%)"1,
the solution of which is:
Ds,.,.(2) = (1+624162%)""1Dg _(z) +22"+122(1 + 3z + 422) — 822(1 +
324 42%)(1+ 62 +162%)"~! = (1 + 62 + 1622)"~1(1 4 72 + 2822 + 2823) +
22nH122(1 4 32 + 422)™ — 82%(1 + 32 + 422)(1 + 62 + 1622)71,

Lemma 3.2. Do " (2) = (1+42%)" "1 (1 + 322 — 42%) +4"22(1 + 22)™.
Proof. We consider the following different ways to assign the variables
Yn, 22n and 22,1 in the matrix M3, ;. Each term from the last column
of the following table denote that the distribution to D@g - (z) under the

corresponding case.
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Zon—1 terms

D$gn—l (z)

1 22n—2z2(1 +22)n—1

0 227_222(1 +z2)n—-l

1 22n-222(1 +22)n—1
422D&>gu— 1 (z)

<

O =] = Ol§
o

=IO|IOIOf ©

The following recurrence relation is obtained from the table:
Dﬁ,gn“(z) =1+ 42:2)D<i,g"_l (z) +3-227=2;2(1 + 22)"~1, the solution of
whichis Dgo = (2) = (1+ 42%)"1Dgo(2) +4"2% (14 2%)" — 42%(1422)(1+
42271 = (1 +422)" "Y1 +72%) + 4722 (1 + 22" — 422(1 + 2%)(1 + 42%)" 1.

Proposition 3.3. For j =1,2,...,n, two co-tree edges ezj— and ey;
of T in Ly, + eg overlap if and only if the edge v4j_ov4j—1 is unmatched.
Proposition 3.4. For k = 1,2,...,2n, two co-tree edges ep and e, of

T in L, + eg overlap if and only if the edge ei is unmatched.

Proposition 3.5. For a fized matriz of the form Mani1, there are
ezactly 2" different T-rotation systems corresponding to that matriz.

Proof. Given a matriz Map 41, the values of y1,y2,...,yn and 21,22,.. .,
zon are determined. Let V; = {vy4j-3,v4j-2,V4j-1,v45}, for j =1,2,...,n.
LetV = U;-’=1Vj.

e y; = 0. If we color the vertex vyj_2 black, by Proposition 3.3, the color
of the vertez vg;_) is black. Since the values of z3;_1 and z2; are given,
by Proposition 3.4, the colors of vaj—_3 and v4; are determined. Otherwise
the vertez vgj—2 is colored white, by Proposition 3.3, the color of the vertex
vg;—1 s white, by the values of 22;_1 and zp; and by Proposition 3.4, the
colors of v4j—3 and vy; are determined.

o y; = 1. Similar discuss like the case y; = 0, the details are omitted.

Therefore, there are two ways for V; to color and 2™ ways for V' to color.

It follows from Theorem 1.3, Lemma 3.1, Lemma 3.2 and Proposition
3.5 that the following theorems are clear.

Theorem 3.6. The genus polynomial of the graph L,+eq S gL, +e,(T) =
2"(1 4 4z)""1(1 4 3z — 422%) + 2%"z(1 + z)".

Theorem 3.7. The crosscap number polynomial of the graph L, +eqg is
FLuteo(y) = 20 (1 +6y +16y%)" 1 (14 Ty + 20y 4 4y® — 32y*) + 2% 192 (1+
3y + 4yd)™ — 27(1 + 492" (1 + 3y® — dy?) — 23y2(1 + y2)™.

The total genus polynomials of graphs L, + o for n = 1,2, 3,4 are as
follows:

IL, eo(,y) = 2 + 147 + 14y + 42y% + 56y°;

Iy teo (T, y) = 44922416022 + 52y + 348y + 1712y + 3264y* + 2560y°;

I, teo(,y) = 8+ 600z + 182422 + 166423 + 152y + 1800y2 + 16512y> +
61920y* + 145536y° + 187776y5 + 106496y,
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IL4+eo (z,y) = 16 + 4336z + 17664x% + 2713623 + 16384z + 400y +
8688y2% + 134272y + 734976y + 2671872y° + 6312960y° + 9945088y” +
9486336y° + 4194304y°.

4 Conclusions

The above calculations are two illustrations of Theorem 1.3 by Mohar
that relates topological types of embedding surfaces to ranks of the corre-
sponding overlap matrices. We conclude that, computing the total embed-
ding distribution of a graph with the overlap matrix, one can consider the
following three points:

1: Choose a spanning tree T of the objective graph, then derive the
corresponding overlap matrix M with respect to T'.

2: For each fixed matrix of the form M, analyze how many different
T-rotation systems corresponding to that matrix.

3: For each fixed matrix of the form M, calculate the rank of that
matrix.

Take another example. We construct a sequence of graphs recursively:
(L1,t1) = (Da,v) (suppressing co-root u); (Lnytn) = (Ln1y tn_1)%(Ds, u, v).
See Figure 4.1.

€2 €4 €2n
1 m /’i)‘-,-\ cer Ugpn—q _/"M_n\
NZ S N\ s U Nz U

€1 €3 €2n—1

Figure 4.1: Vertex-amalgamations of n copies of Djs.

The following theorems can be obtained in a similar way as in Section
2 and Section 3 (It may be helpful to precede the calculation of the total
genus polynomial of L, with the reading of (2, p.86-p.93)).

Theorem 4.1. The genus polynomzal of L is

= 14 +i=2n 9g2n—1 2,0y . .
gLn(I) - Z‘l. i >0 27 Feli1daynad )th 1l.£LJ Where 21,2250 04y 2p

are positive integers, c(iy,iz,...,i,) equals the number of even numbers
of the set {iy,4; +1ig,...,41+ - +ir_1}. )
Theorem 4.2. The crosscap number polynomial of L, is f; (y) =

et e telinien) [Ty (round( )y + round(Z5 )y )

Z::"' :;’0_2" 22n=ldc(inyizrir)yEiaa 203 ) Where 4y, 4g, ..., ir are pos-
itive integers, c(iy, iz, ...,1,) equals the number of even numbers of the set

{i1,41 + 42,...,01 + .-+ + ir_1} and round(t) equals the closest integer to
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the real number t.

The total genus polynomials of L1, Ly and L3 are as follows:

I; (z,y) =2+ 2z + 6y + 8y?;

I; (z,y) = 16 + 56z + 2422 + 104y + 304y + 608y° + 424y*;

I (z,y) = 128+ 768z + 11202 + 2882° + 1280y + 6048y” + 21600y +
41760y* + 49152y° + 25312y°.

Remark: The above genus polynomials of L, L and L3 are consistent
with the results which have been obtained by Corollary 3.8 of [9].

Research Problem: Methods for deriving total embedding distribu-
tion analogues of the theorems in (9], {10], [12] and [18] would be developed
in the future.

Acknowledgement: The authors would like to express their gratitude
to the referees for valuable comments and constructive suggestions of the
manuscript.
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