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Abstract

We investigate the group choice number of a graph G and prove
the group list coloring version of Brooks’ Theorem, the group list
coloring version of Szekeres-Wilf extension of the Brooks’ Theorem,
and the Nordhaus-Gaddum inequalities for group choice numbers.
Furthermore, we characterize all D-group choosable graphs and all
3-group choosable complete bipartite graphs.
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1 Introduction

We consider finite and simple graphs. Undefined terms and notations can be
found in [1]. Thus for a simple connected graph G, and for any v € V(G),
dc(v), A(G), k(G), ¢(G), and x(G) denote the degree of vertex v, the
maximum degree, the connectivity, the number of components of G and
the chromatic number of G, respectively. When the graph G is understood
from the context, we also use d(v) for dg(v). If X is a vertex subset or an
edge subset, then G|[X] is the subgraph of G induced by X. Throughout
this paper, Z denotes the set of integers, and for m € Z with m > 0, Z,,
denote the cyclic group of order m.
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Erdés, Rubin and Taylor [3] and Vising [13] introduced graph list col-
orings. A list assignment of a graph G is a function L that assigns to each
vertex v € V(G) a list L{v) of colors. A proper vertex coloring ¢ of G is
an L-coloring of G if for any v € V(G), ¢(v) € L(v). For an integer k,
a k-list assignment of G is a list assignment L with |L(v)| = k for each
vertex v € V(G); G is k-choosable if G has an L-coloring for every k-list
assignment L of G. The choice number, x;(G), is the minimum k such that
G is k-choosable.

Throughout this paper, A denotes a group with identity 0. We will use
addition to denote the binary operation of A even when A is not Abelian.
For a graph G, let F(G,A) = {f : E(G) — A}. Fix an orientation of G.
If for every f € F(G, A), G has a vertex coloring c: V(G) — A be a map
such that c(z) — c(y) # f(zy) for each edge directed from z to y, then G is
A-colorable. It is known [4] that whether G is A-colorable is independent
of the orientation of G. The group chromatic number of G, x4(G), is the
minimum k such that G is A-colorable for any group A of order at least k.

Krél and Nejedly [5] further introduced the group choosability of graphs.
Given a digraph G with a list assignment L : V(G) — 24, for an f €
F(G, A), an (A, L, f)-coloring is an L-coloring ¢ : V(G) — A such that
c(z) — c(y) # f(zy) for every edge directed from z to y. If for any f €
F(G, A), Ghasan (A, L, f)-coloring, then G is (A, L)-colorable. It is routine
to show that whether G is (A, L)-colorable is independent of the orientation. -

If G is (A, L)-colorable for each group A of order at least k& and for
any k-list assignment L : V(G) — 24, then G is k-group choosable. The
minimum k for which G is k-group choosable is the group choice number
of G and is denoted by x4:(G). The following inequalities follow from the
definitions.

Xg1(G) 2 max{x(G), xa(G)} 2 min{xy(G), x1(G)} 2 x(G). (1)

A graph G is D-group choosable if it is (A, L)-colorable for every group
A with |A| > A(G), and for every list assignment L : V(G) — 24 with
|L(v)| = d(v), for any v € V(G).

The choice number, the group chromatic number and the chromatic
number have been intensively studied (see e.g.[3, 8, 11, 12] and the refer-
ences therein). Erdds, Rubin and Taylor {3] proved a list coloring version of
the Brooks’ Theorem, while Lai and Zhang [8] obtained its group coloring
version. Utilizing D-group choosability, we in this paper prove a group list
coloring version of the Brooks’ Theorem.
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Theorem 1.1 For any connected simple graph G, we have,
Xgt(G) £ A(G) +1,
with equality if and only if G is either a cycle or a complete graph.

In Section 2, we characterize the D-group choosable graphs and present
an example G so that x5(G) > max{x4(G), x:(G)}. In the other sections,
we prove the Szekeres-Wilf extension of Theorem 1.1, a Nordhaus-Gaddum
type Theorem for group choice numbers, and a characterization of complete
bipartite graphs with group choice number at most 3, respectively.

2 List coloring extension and D-group choos-
ability of graphs

In this section, we shall characterize all D-group choosable graphs. This
result is used in the next section to prove a group list coloring version of
Brooks' Theorem.

Let H C G, A be a group and L : V(G) + 24 be a function. Suppose
that f € F(G,A). If for an (A, L|x, f|u)-coloring ¢y of H there is an
(A, L, f)-coloring ¢ of G such that c is an extension of g, then we say that
co is extended to c. If any (A, L|g, f|#)-coloring ¢g of H can be extended to
an (A, L, f)-coloring ¢ of G, then we say that (G, H) is (A, L, f)-extensible.
If for any f € F(G, A), (G, H) is (A, L, f)-extensible then (G, H) is (A, L)-
extensible. The next lemma follows from the definitions.

Lemma 2.1 Let G be a graph, A be a group and L : V(G) — 24 be a
function. Then,

(i) Suppose that H C G. If (G,H) is (A, L)-extensible and if H is (A, L)-
colorable, then G is (A, L)-colorable,

(ii) Suppose that H, C H, € G. If (G,H,) and (Hy,Hy) are (A,L)-
extensible, then (G, Hy) is also (A, L)-extensible.

We prepare some lemmas below which are needed in the characterization
of D-group choosable graphs, and in other proofs of this paper.

Lemma 2.2 Suppose that G is a graph and the vertices of G, v1,...,vn are
so ordered that fori=1,...,n, if G = Glvy,...,v], then dg,(vi) < k. For
any group A of order at least k+1 and for any list assignment L : V(G) —
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24 with |L(v)| > k + 1, for any v € V(G), (Giy1,G:) is (A, L)-extensible.
Consequently, G is (A, L)-colorable.

Proof. For any edge e = vj,v;, € E(G) with j, > j, orient e from v;; to
vj,. Let D denote the resulting orientation. Suppose that f € F(Gi1, A)
and ¢, is an (A4, L|g,, flg, )-coloring of G;. Let v;,,...,v;, denote the neigh-
bors of vi41 in Giyy. As [L(vi1)] 2 k+1 and dg,,, (vi41) < k, it follows
that B = L(viy1) — {f(vit1vi,) + e1(viy), ..., F(vig1vi,) + a1 (vi,)} # 9.
By coloring v;41 with some ¢ € B, we extend ¢; to an (4, Llg,,,, flc.,,)-
coloring of Gy;. Hence (Git1,Gi) is (A, L)-extensible fori = 1,...,n—1.
As G, is (A, L)-colorable, G is (A, L)-colorable by Lemma 2.1. |

Lemma 2.3 Let G be a graph, then xou(G) < maxyce{d(H)} + 1.

Proof. Let k = maxgcg{6(H)}. Then the vertices of G can be ordered as
V1,2, ...,Vn, satisfying the hypothesis of Lemma 2.2, and so this lemma
follows from Lemma 2.2. [ |

Lemma 2.4 Let G be a forest, L(v) = Zy for eachv € V(G) and H C G.
Then (G, H) is (Z3, L)-extensible if and only if any two components of H
belong to two different components of G.

Proof. Without loss of generality, we assume that G is a tree, and prove
that (G, H) is (Z2, L)-extensible if and only if H is a connected subgraph
of G. First let H be connected and let e = uguvp be a directed edge of
G such that up € V(H) and vp ¢ V(H). For an f € F(G, A), extend a
(Z3, L\ g, f|i)-coloring ¢, of H to a (Z,,L| HU{uovo}s fI HU{uowo} )-coloring
by coloring v with a € L(vp) — {—f(uovo) + c1(uo)}. Inductively, a
(Z2, L|x, flu)-coloring ¢, of H can be extended to a (Zg, L, f)-coloring
c of G. This proves the sufficiency.

Conversely, suppose that H is disconnect with H; and H, being two
components of H, and that vov; ... vk is a directed path of G such that
vo € V(Hy), vk € V(H;) and v; ¢ V(H) for 1 <i < k—1. Define an f €
F(G,Z,) such that f(ex_1) =0 and f(e) = 1, for any e € E(G) — {ex-1}.
Let ¢; be a (Z2, L| i, f|u)-coloring such that ¢;(v) = 1 for every v € V(H).
It is routine to verify that ¢, can not be extended to a (Z, L, f)-coloring
for G and so (G, H) is not (Z;, L)-extensible. |

A graph G is strongly (A, L)-colorable if for every H C G, (G,H) is
(A, L)-extensible.
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Theorem 2.5 Let A be a group with |A| > 3 and L : V(G) — 24 be a
function with |L(v)| = 3 for each v € V(G). If G is a forest, then G is
strongly (A, L)-colorable.

Proof. Let H be a subgraph of G. Without loss of generality, we may
assume that G is a tree. Argue by induction on ¢(H). Argue similarly as in
the proof of Lemma 2.4, the theorem holds when ¢(H) = 1. Let k > 0 be an
integer and assume that the theorem holds when ¢(H) < k. Now suppose
that H has k41 components. Choose two components H, and Hj of H and
a directed path P = vgv; ... v with vo € Hy, vy € Hy and v; ¢ V(H) (1 £
i <k-1). Assume f € F(G,A) and ¢, : V(H) — Ais an (A,L|g, f|a)-
coloring of H. Define ¢ : V(H U P) — A as follows. Let c(v) = ¢;(v) if
veE V(H), c(v,') =a; € L(‘U,’) - {—f(v.'_lv,') +c(vi_1)} (1 <i<k- 2) and
c(vk—1) = ak—1 € L(vk—1) — {—F(Vk—2vk—1) + c(vi—2), fvr—1Vk) + c(v) }-
Then ¢ is an (A, L|gup, flHup)-coloring of H U P. Since ¢c(H U P) =
c(H) — 1 = k, by induction, ¢ : V(H U P) — A can be extended to an
(A, L, f)-coloring ¢’ of G. Hence (G, H) is (A, L)-extensible and so G is
strongly (A, L)-colorable. [ |

A 0-graph is a graph obtained by subdividing the edges of the loopless
multigraph consisting of two vertices and three parallel edges.

Lemma 2.6 Each §-graph is D-group choosable.

Proof. Orient the edges of a (labelled) 6-graph G as shown in Figure 2. Let

wa
w1 Wy

U7 Um
U2

Figure 1: A directed §-graph.
A be a group of order at least 3, f € F(G, A) be a function and L : V(G)

24 be a map with |L(v)| = d(v) for each v € V(G). First color u with
c(u) € L(u)—{f(uw:)+ala € L{w;)}. Let u = up = vo, and for each i with
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1 <i<mandjwith1 < j <k, color u; with ¢(u;) € L(u;)—{—f(us—1u:)+
¢(ui-1)} and v; with c(v;) € L(v;)—{—f(vj—19j)+¢(vj-1)}. Since d(v) = 3,
v can be colored with c¢(v) € L(v) — {—f(umv) + c(um), — f(vkv) + c(vi)}.
Let v = wey1. Then for each 1 < I < ¢, color wy with c(w;) € L(wy) —
{f(wiwi1) + c(wi+1)}. Since c(u) € L(u) — {f(uw) + ala € L(w;)}, cis
an (A, L, f)-coloring for G. [ ]

Lemma 2.7 If a connected graph G has a connected induced D-group choos-
able subgraph H, then G is D-group choosable.

Proof. We argue by induction on |V(G) — V(H)|. If V(G) = V(H), then
the lemma holds trivially. Hence we assume that V(G) —V(H) # @. Let A
be a group with |A| > A(G), f € F(G, A) b a function and L : V(G) ~ 24
be a map with |L(v)| = d(v) for each v € V(G). Choose z € V(G) — V(H)
to maximize the distance from z to H in G. Then G —z is a connected and
contains H. Without loss of generality, suppose that each edge incident at
z is directed from z.
Pick any ¢ € L(z). Define L : V(G — z) — 24 be a map by

I(v) = L(v) = {—f(zv) +t} if v is adjacent to z in G
| Lw) otherwise.

By induction, G — z is D-group choosable and so it has an (4, L, flg_z)-
coloring ¢. Extending ¢ by coloring z with ¢, we obtained an (4, L, f)-
coloring for G. | |

The following theorem plays an important role in the proof of a group
list coloring version of the Brook’s Theorem.

Theorem 2.8 Let G be a graph with k(G) > 2. If G is neither a complete
graph nor a cycle, then G has an induced 9-subgraph.

Proof. Assume first that G contains a 3-cycle. Then G has a maximal
clique H with |V(H)| > 3. Since G # H and since (G) > 2, G has a
path P = zvjv;... vy with [ > 1 such that |V(P) N V(H)| = 2 and such
that ! is minimized. Let V(P) N V(H) = {z,y} and pick z € V(H) —
{z,y}. If zv; ¢ E(G) for each 1 < i < I, then the induced subgraph on
{z} UV(P) is a 6-graph. Hence for some 1 < i < I, zv; € E(G). Let
Py = zvy...v;z and P, = zv;vi41 ...y (as depicted in Figure 2). Since
[V(P)| £ min{|V(P,)|,|V ()|}, we have [ = 1 and zv; € E(G). Since
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H is a maximal clique of G, G|V (H) u {v1}] is not a clique of G, and so
tv; ¢ E(G) for some t € V(H) — {z,y}. It follows that G[{z,v1,y,t}] is a
f-graph. Hence we may assume that G is triangle free.

Let C be a shortest cycle of G. Since G # C and since £(G) = 2,
G has a path P = zv;...yy with { > 1, such that |V(C) N V(P)| = 2
and V(C) N V(P) = {z,y}, and such that ! is minimized. If CU P is
not an induced f-graph, then for some v; € V(P) and 2 € V(C) — {z,y},
v; is adjacent to z. Suppose that Py = zvy...v;z and P = zv;...9y.
Since |[V(P)| € min{|V(P1)|,|V(P2)|}, we have [ = 1. Let Q' and Q tow
internally disjoint (z,y)-paths of C (see Figure 3). Since C is a shortest
cycle, both Q' and Q are 2-paths. Hence vyyzv, is a triangle, contrary to
the assumption that G is triangle-free. This implies that C U P must be an
induced é-graph. | |

o

T T

Figure 2: The two graphs in the proof of Theorem 2.8.

The lemma below follows from Lemmas 2.6, 2.7 and Theorem 2.8.

Lemma 2.9 If G has a block B which is neither a complete graph nor a
cycle, then G is D-group choosable.

Since x¢(Kn) = n and x4(Cr) = 3 (see [8]), by (1) and Lemma 2.3, both
Xgt(Kn) = n and xg(Cn) = 3. Hence both K,, and C;, are not D-group
choosable.

Theorem 2.10 Let G be a connected graph. Then G is D-group choosable
if and only if G has a block which is neither a complete graph nor a cycle.

Proof. If G has a block B which is neither a complete graph nor a cycle,
then by Lemma 2.9, it is D-group choosable. Hence it suffices to prove the
necessity of the theorem.
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Let b(G) the number of blocks of G. We argue by induction on 5(G).
The theorem holds trivially if (G) = 1, and so we assume that b(G) > 1,
and the theorem holds for graphs with smaller values of b(G). It remains
to show that if every block of G is either a cycle or a complete graph, then
G is not D-group choosable.

Let By,...,Bx be the blocks of G. It is well known (see Page 121 of
(1], for example) if G with |[V(G)| > 3 is connected but not 2-connected,
then G has at least two end blocks. Suppose that B; is an end block
and V(B;) N (UL,V(B;)) = {v}. By induction, K = G — V(B; — v) is
not D-group choosable. Thus for some group A4; with |A;| > A(K), an
f1 € F(K,A,;) and an Ly : V(K) — 24 with |L;(w)| = dg(w) for each
w € V(K), K is not (A, L1, f1)-colorable. Since K,, and C,, are not D-
group choosable, there is a group A’ with |A’| > A(B,), an f, € F(B;, A)
and an Ly : V(B;) — 24" such that B, is not (A’, Ly, f2)-colorable. Let
A = A; @ A’ be the direct sum of 4; and A, L : V(G) ~ 24 with
L(v) = Ly(v) U La(v), L(w) = Ly(w) for w € V(G — By) and L(w) =
Ly(w) for w € V(B,) — {v}. Define f € F(G, A) so that f(e) = fi(e) if
e € E(K), and f(e) = fa(e) if e € E(B;). If G has an (A4, L, f)-coloring
¢, then for c(v) € Li(v), K is (A1, Ly, f1)-colorable and for ¢(v) € La(v),
B, is (A', Ly, f3)-colorable, contrary to assumptions. Therefore, G is not
(A, L, f)-colorable and the proof for the theorem completes. |

As suggested by (1), we will investigate the existence of graphs G such
that xqi(G) > max{x,(G),xi(G)}. To do that, the concept of group
connectivity will be needed. For an Abelian group A, a graph G is A-
connected if for every b: V(G) — A with EveV(G) b(v) = 0, there exists a
[ € F(G, A) such that for each e € E(G), f(e) # 0 and for every v € V(G),
the net out flow at v equals to b(v). A wheel of order n, denoted by W,,, is
a graph obtained by adjoining a new vertex to the vertices of an n vertex
cycle C,,.

Theorem 2.11 Let A be an Abelian group. Then,

i) /2] If |A| > 3 and n € N, then Wy, is A-connected,

ii) /4] If G is a plane graph, then it is A-connected if and only if its dual
graph is A-colorable.

Corollary 2.12 If A is an Abelian group with |A] > 3, then Wy, is A-
colorable.
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Lemma 2.13 [8] Let G be a connected graph and A be an Abelian group.
Then G is A-colorable if and only if each block of G is A-colorable.

The following example shows that the first inequality in (1) can be strict.
Let G denote the graph depicted in Figure 2. We show that x4(G) = 4,
while x4(G) = x:(G) = 3.

v2

Figure 3: A graph G with xg(G) > max{x,(G), x:(G)}.

By Corollary 2.12 and Lemma 2.13, G is Z3-colorable. On the other
hand, by Lemma 2.3, x4(G) < xg1(G) < 4 and so x,4(G) = 3. Moreover,
by an easy argument we get x;(G) = 3. Now assume that A = Zg is the
cyclic group of order 8 and a € A is the element of order 2 and z,y,2 €
A —{0,a}. Let L : V(G) — 24 be a list assignment of G with L(v;) =
{z,a,0}, L(w;) = {y,a,0}, L(w;) = {z,0,0} for 1 < i < 4 and L(g) =
{z,y,2z}. Let f € F(G,A) with f(e) = a for e € {vavs, ugus, wows} and
f(e) = 0, otherwise. For each (A4, L, f)-coloring ¢ : V(G) — A, there
exist v;,uj, wk with 1 < 4,5,k < 4 such that ¢(v;) = z, c(wi) = y and
¢(wy) = 2. Consequently, the vertex ¢ can not admit any color of L(g) and
$0 Xqi(G) = 4. By Lemma 2.3, xq(G) = 4.
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3 Brooks Type Theorems

We start this section with a proof for a group choice number version of
Brooks Coloring Theorem.

Proof of Theorem 1.1: If G is a cycle or a complete graph, then x4(G) =
A(G) + 1. Now suppose that G is neither a complete graph nor a cycle.
If G is not regular, then maxygce{6(H)} < A(G) —1 and so by Lemma.
2.3, xg1(G) < A(G). Thus, we assume that G is A(G)-regular. If G is
a 2-connected graph, then by Theorem 2.10, G is D-group choosable and
so xgi(G) < A(G). So suppose that G has a cut vertex. In this case,
regularity of G implies that there is at least a block of G, such as B, which
is neither a complete graph nor a cycle. Again by Theorem 2.10, G is
D-group choosable and so x4:(G) < A(G). [ |

Following Szekeres and Wilf [10], define « to be a real-valued function
on graphs satisfying the following two properties:
(P1) If H is an induced subgraph of G, then y(H) < v(G).
(P2) If 6(G) is the minimum degree of G, then 4(G) > §(G) with equality
if and only if G is regular.

Szekeres and Wilf [10] presented an extension of the Brooks coloring
theorem by replacing A(G) by 4(G), as follows.

Theorem 3.1 (Szekeres and Wilf, [10]) If v is a real function on graphs
with properties (P1) and (P2), then for each graph G, x(G) < v(G) + 1.

In (7}, Lai et al extended Theorem 3.1 to its group coloring version. To
determine the structure of graphs satisfying the equality, a concept of Xg-
semi critical graph is introduced in [7]. Following the same idea, we define
a graph G to be kg;-semi critical if x41(G —v) < xq(G) = k for every vertex
v € V(G) with d(v) = §(G). Complete graphs and cycles are examples of
semi kgi-critical graphs. By definition, any graph G has a kg-semi critical
subgraph H where k = xq(G) = xq(H).

Lemma 3.2 Let G be a graph, v € V(G) and H =G —v.

(1) If de(v) < xqi(H), then xg(G) = xq(H).
(%) If G is kgi-semi critical, then dg(v) > k—1 for allv € V(G).

Proof. We present the proof for (i) only as that for (ii) is similar to that
for Lemma 2.3 in [7]. Since H C G, we have xg(H) < xq(G). So it is

204



sufficient to show that x4i(G) < xg(H). Let A be a group of order at least
xgi(H), L : V(G) — 24 be a map with |L(v)| = xq(H) for each v € V(G)
and f € F(G,A). There is an (A, L|g, f|u)-coloring ¢/ for H. Assume
that Ng(v) = {v1,v2,...,v4)} and G is oriented such that all the edges
incident with v are directed from v. Since d(v) < xq(H), by assigning
a € L(v)— U?S;){ f(vv;) +¢'(v;)} to v we extend ¢’ to an (A, L, f)-coloring
for G and so x4(G) < xq(H). This proves (i) of the lemma. |

Lemma 3.3 If a connected graph G is kgi-semi critical, then k = y(G) +1
if and only if G is either a cycle or a complete graph.

Proof. Since a cycle C or a complete graph K, is a regular graph, by
(P2) we have v(C) = 2 and y(K,) = n — 1. By definition, cycles C,, and
complete graphs K, are semi critical with x4i(C) = 3 and xg(K») = n.
Hence the sufficiency follows.

Conversely, suppose that G is a kgi-semi critical graph and xg(G) =
m = v(G) + 1. By Lemma 3.2(ii) and (P2), xq(G) — 1 < §(G) < v(G) =
Xg1(G) — 1. Consequently, 6(G) = 7(G) = xqi(G) — 1 and so by (P2), G
is regular. It follows that xoi(G) = v(G) +1 =6(G) +1 = A(G) + 1. By
Theorem 1.1, G is either a cycle or a complete graph. |

Let m > 0 be an integer. Following the same ideas in (7], we define
F(m) to be a family of simple, connected graphs satisfying the following
properties.

(F1) F(m) = {Km} for m =1,2.

(F2) For m = 3, G € F(m) if and only if either G is a cycle or G—v € F(m)
for a vertex v with d(v) = 1.

(F3) For m > 4, G € F(m) if and only if either G = K, or G — v € F(m)
for a vertex v with d(v) <m —2.

By Definition, F(3) is the set of connected unicyclic graphs. The next
theorem extends Theorem 3.1 as well as Theorem 2.4 of [7].

Theorem 3.4 If G is a connected graph and v is a real function satisfying
(P1) and (P2), then xq(G) < ¥(G) + 1. Moreover, if xq(G) = v(G) +1,
then G € F(m) where m = xq(G).

Proof. Let xn(G) = k and let H C G be a kg-semi critical induced
subgraph. By (P1), (P2) and lemma 3.2(ii), we have k — 1 < §(H) <
v(H) < 7(G) and so xqi(G) =k < 7(G) + 1.
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If G is mg-semi critical for m = xq(G), by Lemma 3.4, G € F(m).
Suppose that Hp is a mg;-semi critical subgraph of G where m = xu(G).
We may assume that x,(G) > 3. Then xg(Ho) = xqi(G) = 7(G) +1 >
v(Ho) +1 2 xq(Ho). It follows that x4 (Ho) = v(Ho) + 1 and y(Hp) =
v(G). By Lemma 3.4, Hy must be a cycle or a complete graph and so
6(Ho) =m —1. As §(G) > m — 1, we have m = xq(G) = v(G) +1 >
6(G) +1 2 m. Hence 7(G) = 6(G) = m — 1 and so G is regular. Since G
is connected, G = Hp € F(m).

Now assume that §(G) < m — 2. Then G can not be a mg-semi critical
graph, and so G has a vertex v with d(v) = 6(G) such that x,(G) =
Xgt(G — v). Now by induction on |V(G)|, we show that G € F(m). By
(P1),

Xgt(G —v) = xgi(G) =v(G) +1 2 ¥(G = v) + 1 > xq(G ~ v).

It follows that xq(G —v) = 4(G —v) +1. By induction hypothesis, G —v €
F(m). By the definition of F(m), G € F(m). [

Example 3.5 The k-degree, k > 1, of a vertex v of G is the number of
walks of length k from v. The mazimum k-degree of G is denoted by Ax(G).
Let \(G) denote the mazimum eigenvalue of G. Then it is routine to verify
that both Ak(G) and A(G) satisfy (P1) and (P2). Consequently, xq(G) <
min{Ax(G), A\(G)} + 1.

4 Graphs G with xu(G) < 2 and Nordhaus-
Gaddum Type Theorems

In this section, we apply former results to present a characterization of
graphs G with that xq(G) = 2, and derive the Nordhaus-Gaddum type
theorem for group choice number.

Proposition 4.1 For any non-trivial graph G, x4(G) = 2 if and only if
G 1is a forest.

Proof. By Corollary 4.2 of [8), if G has a cycle C of length n > 3, then
X1 (G) 2 x41(C) 2 x4(C) = 3. Conversely, if G is a forest, then by Lemma
2.3, Xg1(G) < 2. [
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Assume G° denotes the complement of a graph G. Nordhaus and Gad-
dum (9] first investigate the bounds for the sum and product of the chro-
matic numbers of G and G°. This has been extended to group chromatic
numbers and choice numbers.

Lemma 4.2 If G is a graph of order n, then

(i) 8] 2/ < X(G)+x(G®) < Xg(C)+xg(G°) S n+1 andm < X(G)X(G) <
xa(C)x5(G°) < ((n+1)/2).

(i6) 3] 27 < x1(G)+x1(G°) < n+1 andn < xa(G)a(G¥) < ((n+1)/2)°.

We are ready to present the group choice number version for the Nordhaus-
Gaddum Theorem.

Theorem 4.3 Suppose that G is a graph of order n. Then 2¢/n < xq1(G)+
xgt(G%) £ n+1 and n < xg1(G)xq(G®) < ((n+ 1)/2)2.

Proof. Since xg(G) = x4(G) and xq(G®) > x4(G°), by Lemma 4.2,
it suffices to prove that xq(G) + xgi(G°) < n+ 1 and xq(G)xq(G¢) <

((n+1)/2)°.

We follow a similar argument as in the proof of in {8]. Let xu(G) =k
and xg(G°) = k'. Suppose that dy > -+ > d, is the degree sequence of G.
With a similar argument to Lemma 6.2 in [8], we conclude that G has at
least k vertices of degree at least k — 1. Consequently,

Xgt(G) = min{dj + 1,k} < max{min{d; +1,1},1 < ¢ < n}.

Let d] > --- > dl, be the degree sequence of G°. Arguing as above, we
conclude that there exist integers p > 0 and ¢ > 0 such that

Xgt(G) < min{d, + 1,p} and xi(G®) < min{d; +1,q}.

Ifg>n—-p+1,thenn—1=d,+d,_ 4y 2dp+dy 2 (k—1)+ (K - 1),
and son+12 k+ k' = xq(G) + x1(G°). Since n —1 > dp + d,

kk' < (dp+1)(d, +1) =dpd +dp+d, +1 S dpd) +n
< dpdp_pri+n<((n—-1)/22 +n=((n+1)/2)%

If g <n-—p+1, then xu(G) < p and xu(G°) < gandson+1 =
p+(n—p+1) > p+q 2 x(G) + xq:(G®). Furthermore,

kk' <pg<p(n-p+1) < ((n+1)/2)%

This completes the proof. [ |
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5 Group choosability of complete bipartite
graphs

Here we study the group choosability of complete bipartite graphs and
characterize those with group choice number at most 3.

Proposition 5.1 If n > m™, then xgi(Kmn) =m + 1.

Proof. By Lemma 2.3, xg(Km,») < m + 1. By Theorem 5.1 of (8], when
n2mm, Xgl(Km,n) 2 XQ(Km,n) =m+1 |

Proposition 5.2 Each of the following holds.
(i) If n > 2, then xg(Kan) =3,

(i) If n > 6, then xq(Ksn) = 4.

(iii) xg((K4,4) =4,

(#v) xq1(K3,4) = 3.

(v) xg1(Kas) = xg(K35) = 3.

Proof. By (1) and by Theorems 7.1, 7.2 and Lemma 4.4 of (8], xg1(K2,n) =
Xg(K2,n) = 3, Xgl(K3,n) 2 Xg(K3,n) = 4, and Xgl(K4,4) 2 Xg(K4,4) =
4. By Lemma 2.3 or Theorem 1.1, we conclude that xu(K2n) < 3,

Xgt(K3,n) = 4 and xg(K4,4) = 4.
The proofs of (iv) and (v) are similar to the arguments used in the
proofs of Lemma 7.3 and 7.4 in [8]. | |

The corollary below follows immediately from Proposition 5.2.

Corollary 5.3 Let K, , be a complete bipartite graph with m > n. Then
Xgt(kmn) = 3 if and only if either n = 2 or (n,m) € {(3,4),(3,5)}.

We conclude this section with the following proposition, which follows
by an argument similar to the proofs of Theorem 7.4 in (8].

Proposition 5.4 For4 <n <10, xq(Ksn) =4.
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