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Abstract

A graph G is Hamiltonian connected, if there is a Hamiltonian
path between every two distinct vertices of G. A Hamiltonian con-
nected graph G is called critical Hamiltonian connected (CHC), if
for every edge e in G, graph G — e is not Hamiltonian connected. In
this paper, we study the properties of CHC graphs.

Keywords: Hamiltonian connected, Critical Hamiltonian connected, Harary
graph.

1 Introduction

Through the paper all graphs are finite, simple and connected. The notations §
and A are used for minimum and maximum degree of graph, respectively, and
d(v) denotes the degree of vertex v in G. We write u ¢ v (u % v) when u and v
are adjacent (not adjacent). The set of adjacent vertices to vertex v is denoted by
N(v). A spanning cycle and a spanning path in a graph are called Hamiltonian
cycle and Hamiltonian path. A Hamiltonian graph is a graph with a Hamiltonian
cycle. A graph is called Hamiltonian connected if there is a Hamiltonian path
between every two vertices of it (see [4, 5, 6]). For the definitions and notations,
we follow (7).

The number of edges in a Hamiltonian connected graph is quite large. A
formula for minimum number of edges needed to guarantee a graph to be Hamil-
tonian connected is found in terms of the order and minimum degree of graph
in [2). In [6], it is proved that if the size of graph G of order n is at least
(";l) 4+ 2, then G is Hamiltonian and if the size of G is at least (";1) + 3,
then G is Hamiltonian connected. Moon in [5], proved that every vertex in a
Hamiltonian connected graph of order n > 4 has degree at least 3. Hence, every

Hamiltonian connected graph of order n > 4 has at least [3n/2] edges. For every
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positive integer n > 4, we have a Hamiltonian connected graph of order » and
size [3n/2] (see Figure 1). For n = 2k, k > 3, graph G, consists of two cycles

uy,...,U%k, w1 and vi,...,vk,v1 and edges u;vi, 1 £ ¢ < k. This graph is called
k-prism. For n = 2k + 1, k > 3, graph G, consists of two cycles u1,...,ur, w1
and v1,...,Vk, Uk+1,v1 and edges uiv;, 1 <1 < k, and uxvig+1. We call this graph

(k, k + 1)-prism.

Fault tolerant Hamiltonian connectivity is another important parameter for
graphs as indicated in [3]. A Hamiltonian connected graph G is k edge-fault
tolerant Hamiltonian connected if G — F remains Hamiltonian connected for any
F C E(G), with |F| < k. The edge-fault tolerant Hamiltonian connectivity of a
Hamiltonian connected graph G, denoted by HC.(G), is the maximum integer k
such that G is k edge-fault tolerant Hamiltonian connected.

In this paper, we introduce the concept of critical Hamiltonian connected
graph (CHC) which are Hamiltonian connected graphs that are not Hamiltonian
connected after discarding any edge of them. Observe that for CHC graph G,
HC.(G) = 0. Here, some necessary conditions for a graph to be CHC are ob-
tained. Also, infinite family of CHC graphs with some given maximum degree
are constructed . Finally, as a well known class of graphs, we consider Harary
graph Hy, . and prove that for kK > 4 and n > 5, Hi,, is Hamiltonian connected
and it is not CHC, while for some integer n, Has,, is a CHC graph.

Figure 1: Graph G, of order n > 4 and size [3n/2].
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2 Critical Hamiltonian connected graphs

In the following definition, we consider the Hamiltonian connected graphs in
critical state.

Definition 1. Let G be o Hamiltonian connected graph. An edge e is critical
Hamiltonian edge in G, if for some vertices u and v in V(G) there is no
Hamiltonian path from u to v in G — e. In this case, we say e is a (u,v)-
critical Hamiltonian edge. A Hamiltonian connected graph G is said critical
Hamiltonian connected (CHC), if every e € E(G) is criticel Homiltonian
edge.

Proposition 1. Every Hamiltonian connected graph of order n > 4, is 3-
connected.

Proof. Let G be a connected graph. If v is a cut vertex of G and B, is a block
contains v, then there is no Hamiltonian path with end vertices v and a vertex
v1 € V(B)). Hence, G is a 2-connected graph.

Now let S = {u, v} be a vertex cut of G. Every path with end vertices u and
v contains the vertices of at most one of the components of G — S. Therefore,
there is no Hamiltonian path from u to v. Hence, every vertex cut in G has at
least three vertices. ]

Since in every Hamiltonian connected graph of order n > 4, we have § > 3,
every incident edge to a vertex of degree 3 is critical Hamiltonian edge. For
example in k-prism, (k, k+1)-prism and wheels every edge is critical Hamiltonian
edge. Thus, these graphs are CHC. The converse of this fact is not true. In
Figure 2, we have a CHC graph with a critical Hamiltonian edge vsv10, in which
vs and v1p are of degree 4. In fact, edge vsvio is (vs, vg)-critical Hamiltonian edge
and also (v4, vs)-critical Hamiltonian edge. One of the Hamiltonian paths from
v3 to vg is shown by bold edges in Figure 2.

Vs
vV, A

v v,

4]
Vy

Vio
v, Vs

Figure 2: A CHC graph contains an edge with end vertices of degree 4.

Every Hamiltonian connected graph contains a spanning critical Hamilto-
nian connected subgraph, since we can continue discarding edges by preserving
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Hamiltonian connectivity property. The spanning critical Hamiltonian connected
subgraph of a graph is not necessarily unique. For example in graph G in Fig-
ure 3, G — e; and G — ez — e3 are two critical Hamiltonian connected subgraphs
of G. Note that every CHC graph has minimal size, but it may not be minimum.

Figure 3: A non-critical Hamiltonian connected graph G.

Observation 1. If H is a spanning Hamiltonian connected subgraph of a graph
G and H is not CHC, then G is not CHC, too.

A graph G of order n < 4 is a CHC graph if and only if G = K. Hence, if u
and v are two adjacent vertices in G, then d(u) + d(v) < n + 2. In the following
theorem, this result is obtained for n > 5.

Theorem 1. Let G be a CHC graph of order n > 5. If u and v are two adjacent
vertices in G, then d(u) +d(v) < n+2.

Proof. Since G is a CHC graph, for any edge uv, there exist two vertices,
say v1,vn € V(G) such that edge uv is (v1,vn)-critical Hamiltonian edge. Let
P : v,v2,...,Vi,Vi41,...,Un be a Hamiltonian path, say (vi,vn)-Hamiltonian
path, where v; = © and vi41 = v.

By symmetry, we consider the following three cases.

Casel. i=1.

Assume that R = N(v;) N {va,...,vs}, where |R| = r and § = N(vi+1) N
{va,...,va}, where |S| = s. It is clear that d(v1) = r + 1 and d(v2) = s +
2. For j,3< j<n-1,if vy € R, then vj41 € S. Otherwise, the path
V1, Ui, Vj=1,Uj=2,- - -, V2, Uj+1,Vj42,. .- ,Un iS @ (v1,vs)-Hamiltonian path in G —
v1v2; a contradiction. Hence, if v, € R, then at least r—1 elements of {v3,...,vs}
are not in S. If v, & R, then at least r elements of {vs,...,v.} are not in S.
Thus,

s<max{(n—-3)-r,(n-3)—(r-1)}=n—-r-2.

Finally,
div)) +d(v2) =(r+1)+(s+2) <(r+1)+(n—-r)=n+1
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Case 2. i=2.

Let R = N(vi) N {v4,...,vn}, where |[R| =7 and § = N(vi41) N {vs,...,vn},
where |S| = s. It is easy to see that d(v2) =7 + 2 and d(v3) < s + 3. Similar to
Case 1,for j, 4 < j<n-—1,if v; € R, then vj4; € S. Now if v» € R, then at
least » — 1 elements of {va,...,vn} are not in S and if v, ¢ R, then at least r
elements of {v4,...,v,} are not in S. Hence,

s<max{(n—-4)-r,(n—4)—(r—-1)}=n—-r-3.
Thus,
d(v2) +d(v3) S (r+2)+(s+3) < (r+2)+(n-r)=n+2

Case 3. 2< i< n/2

Let Ry = N(vi)N {v1,...,vi-2}, where |[R1| =71, S1 = N(vi1)N {v1,...,vi01},
where |Si| = 81, Rz = N(vi) N {vi4+2,...,vn}, where |R2] = r; and S; =
N(vig1) N {vi43,...,va}, where |Sz| = s2. Since, d(v;) = r1 +r2 + 2 and
d(vig1) =81 +82+2. Fork,1 <k <i—2 if vy € Ry, then vp+1 & S1. Other-
wise, the path vy, v2, ..., Uk, Vi, Vie1,%i=2, . - -, Uk+1, Vi41, Vi+2, . - . , Un i5 & (U1, Un )-
Hamiltonian path in G — v;vi+1, which is contradiction. Hence, sy <i—1—-r,.
Similarly, for j, i + 2 < j < n, if v; € Rz, then v;4+; ¢ S.. Depends on v, € R;
or v, & Rz, we have

s2<max{n—(i+2)-ro,n—(i+2)—(r2— 1)} =n—-ra—i—1.

Thus,
dv)+dvin)=(m+r2+2)+(s1+s2+2)<n+2,

as desired. |
Corollary 1. In every CHC graph of order n > 4, 3 < §(G) < [(n +2)/2).

Corollary 2. Every CHC graph of order n > 5 has at most one vertez of degree
n—1.

Theorem 2. A CHC graph G of order n > 5 has a verter of degree n — 1 if and
only if G is a wheel.

Proof. Let v be the only vertex of degree n— 1 in G. Since v is adjacent to all
the other vertices, by Theorem 1, the other vertices in G are of degree 3. Hence,
every vertex in G — v has degree 2. On the other hand, by Proposition 1, G —v
is a 2-connected graph. Therefore, G — v is a cycle of length n — 1. Hence, G is
a wheel. The converse is trivial. u

Corollary 3. For n =5, wheel is the only CHC graph of order n.
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Proof. If G is a CHC graph of order 5, then 3 £ §(G) < A(G) £ 4. By
Theorem 2, if A(G) = 4 then G is a wheel. Otherwise G is 3-regular graph of
odd order, which is impossible. [ ]

As we have shown, there is no CHC graph of order n < 5 and A = n — 2.
Thus, it is natural to ask about existence of CHC graphs of order n > 5 and
A=n-2.

Theorem 3. There is no CHC graph of order n > 6 with mazimum degree n—2.

Proof. Let G be a Hamiltonian connected graph of order n > 6 and maximum
degree n — 2. Also, assume that V(G) = {v,v,v1,...,vn-2}, d(u) =n—-2and v
be the unique vertex which is not adjacent to u, where P : u,v,...,vn-2,v be a
Hamiltonian path from u to v. We prove that G contains a spanning Hamiltonian
connected subgraph with a non-critical Hamiltonian edge which is incident to u.
Hence by Observation 1, G is not a CHC graph.

Since d(v) > 3, v is adjacent to a vertex v;, for some i, 2 < i < n — 3 (see
Figure 4 (a)). Let i is the largest index which vertex v; is adjacent to v. We
consider the following two possibilities.

Case 1. i =n — 3, d(vn-2) = 4, N(v) = {vi-1,vi,vi+1} and d(v;) = 4.

In this case, if d(vn—2) = 4 and va—2 ¢ vn_4, then {u,v._4} is a vertex cut
for G, which is a contradiction. Hence, vn -2 is adjacent to some vg,1 < k < n—4.
On the other words, G contains a spanning subgraph, which is shown in Figure 4

(b).

(a) (b)

Figure 4: Subgraphs of a Hamiltonian connected graph G' with maximum
degree n — 2.
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Now, we prove edge uvn -3 is not a critical Hamiltonian edge. For this sake, we
assume the path z,,z,,...,(zj-1 = ©), (Tj = vn-2),%j+1,...,Za is an (z1,Tn)-
Hamiltonian path and show that there exists another Hamiltonian path from z;
to zp in G — uvn-2.

If v = z), then there is a vertex z; € N(vn—~2) such that 2 <1 < j—1 or
J+1<il<n Ifl=2 then the path 1 = v,(zj = vn-2),22,23,...,(Tj-1 =
¥),Tj+1,...,Tn is a Hamiltonian path in G — uvp—2. If 2 <1 < j — 1, then
the path z1,...,Zi1-1,(Tj—1 = u),zj-2,...,21,(Tj = Un-2),Tj+1,...,Zn iS a de-
sired Hamiltonian path. If j +1 < ! < n, then the path z,,zs,...,(zj—1 =

U), T1—1,T1-2,...,(Tj = Vn-2),%,...,Tn is a desired Hamiltonian path.

Now, let v = ,, where, 2 < m<j—-lorj+1<m<n f2<m«x
J — 1, then the path z;,x2,...,Zm-1,(zj—2 = u),Tj-2,...,(Tm = v),(z; =
Un-2),Zj+1,- ., Zn is 2 Hamiltonian path which does not contain edge uvp-2. If
m = j+1, then there is another vertex in N{v,_2), say z;, such that 2 <l < j—1
or j+1 <! £ n In this case, similar to above we can find a Hamiltonian
path in G — uvp-2. If j+1 < m < n, then the path z),,2s,...,(zj-1 =
U, Lm—1,Tm=2,...,(Zj = vn-2),(Tm = v),ZTm+1,...,Zn is a desired Hamilto-
nian path.

Case 2. i#n—3 or d{va_2) =3 or N(v) # {vi=1,vi,vi41} or d(v;) # 4.
In this case, we claim that edge uv; is not a critical Hamiltonian edge.

Assume that P : z),%3,...,2;-1,%j,...,&n is an arbitrary Hamiltonian path
containing uv;. We provide another Hamiltonian path from z; to z, in G — uv;.

If v = x,, then it is easy to find a Hamiltonian path from v to every other
vertices in G — wv;.

Ifv=2zmy, where 1 < m < j—1, then an (z1,z,)-Hamiltonian path in G —uv;
is 1,Z2, ..., Tm-1,(Tj—1 = u),Tj-2,..., (Tm = V), (xTj = v:i),Tj41,---,Zn.
If there isno 1 < m < j — 1, such that v = zpm, then, if j + 1 < m < n, then the
path

Z1,T2,...,(Tj-1 = U),Tm-1,Tm=2,..,(Tj = i), (Tm = V), Tm41,..-,%n
is the desired Hamiltonian path. Otherwise, m = j + 1. Note that d(v;) > 4.
If v; is adjacent to a vertex z, such that 1 <! < j — 1, then the path
Ty, T2,y T, (Tl = U), Tjmz, .o, 1 (25 = i), (Tj41 = 0),..., Tn

is a Hamiltonian path in G — uv;. If v; is adjacent to a vertex x;, such that
Jj+2 <1 < n, then the path

Z1,%2, -, (Tj—1 = u), T1-1,T1—2,. .., (Tj41 =), (Tj = v:i), T, Tt41,-- -, Tn

is a Hamiltonian path in G — wv;. If there is no vertex z; adjacent to v;, such
that 1 <l < j—1orj+2 <! <m then N(v) = {z),u,v,zj42}. Ifj =3
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and z1 € N(v), then the path z1, (z4 = v), (3 = v;), x5, (z2 = u),Z6,...,Zn IS 2
desired Hamiltonian path. If j # 3, then there is a vertex z: € N(v), such that
l1<t<j-1lorj+2 <t <n. Otherwise, vi = vn-3, d(vn-2) 2 4, N(v) =
{vn-4,9n—3,Un-2} and N(vn-3) = {u, v, Vn~4,vn_2}, which is a contradiction.

Ifl1 <t<j~-1, then the Hamiltonian path
T1,T2,-..,Tt—1, (Tjo1 = ¥), Tjo2,...,Tt, (Tj4+1 = V), (Tj = i), Tj42,Zj43,.+.,Tn
does not contain edge uv;. If j + 2 < ¢t < n, then the Hamiltonian path
Z1,X2,. .., (Tjm1 = V), Tec1, Tt-2, ..., Ti4+2, (Tj = Vi), (Tj41 = V), Te, Teq1,.. ., Tn

does not contain edge uv;. Clearly, if z; & N(v), then there is a vertex z: € N(v),
such that 1 <¢ < j—1or j +2 <t < n, which has been considered above. H

In the following theorem, we construct CHC graph for some given maximum
degree.

Theorem 4. There ezists a CHC graph G of order n > 6 with [3] < A(G) £
n-—3.

Proof. For a given positive integer n, n > 6, we construct a CHC graph G
of order n and maximum degree A, where [£] < A < n - 3, as follows (see

Figure 5).
Let V(G) = {u,v,v1,v2,...,0n-2} and

E(G)= {vivig1:1<i<n—3}U {uv1,uvn-2,v01,00n-2}
Ufuve; 1 £i<n—2-A}U{vvaiq1:1<i<n—-2-A}
Ufuvi :2n—2A —2<i<n-3}.

It can be seen that, there is a Hamiltonian path between every two vertices of G.
In Figure 5 as an example, a (v2, v4)-Hamiltonian path is shown by bold line. For
1,1 <i<n—2, d(v;) = 3. Thus, every edge in G is incident to a vertex of degree
3; hence is a critical Hamiltonian edge. Moreover, d(u) = A and d(v) =n — A,
where A > [254] + 2 = [2]. Therefore, G is a desired graph. [}

Theorems 3 and 4 guarantee the existence of CHC graphs of order n < 7
with a feasible maximum degree. For n > 8, the existence of a CHC graph with
3 < A < [%] could be a worthwhile question.
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VZN

Vn—l

Figure 5: A CHC graph with [J] <A <n-3.

3 Hamiltonian connectivity of Harary graphs

In this section, we study Hamiltonian connectivity of Harary graphs. For k < n,
Harary graphs are denoted by Hj , and obtained by placing n vertices around
a circle. If k is even, then each vertex is adjacent to the nearest k/2 vertices in
both direction clockwise and counterclockwise around the circle. If & is odd and
7 is even, then each vertex is adjacent to the nearest (k — 1)/2 vertices in both
direction and is adjacent to opposite vertex on the diameter of the circle. If k&
and n are both odd, then put V(Hi,») = {vo,v1,...,vn-1} and obtain H,, from
Hj._1,» by adding the edges viv;4(n-1)72, 0 i < (n—1)/2 [1].

For n > 4 and k£ = 2, Hy,, is a cycle which is not Hamiltonian connected.
The next theorems shows Hamiltonian connectivity of Hs , for some integer n.

Theorem 5. Ifn=j (mod 8), where j € {0,4}, then Ha , is a CHC graph.

Proof. For j =0, let n = 8k. We find a Hamiltonian path between an arbitrary
vertex wo and other vertices in H3 ,. To do this, we divide the outer cycle to four
regions such that the vertices wo, Zo, yo, 2o are the boundaries of these regions and
wp is adjacent to yo and zo is adjacent to zo. Let the outer cycle be in the form

Wo, W1,...,W2k—-1,20,%1y...,T2k-1,Y0,Y1,...,Y2k—-1,20,21,...,22k—1, W0
(see Figure 6). Hence, for i, 0 < i < 2k—1, w; is adjacent to y; and z; is adjacent
to z;. f i =2t,1 <t < k-1, then the path

W2t, Y2t, Y2t+1, W2e+1, W2t 42, Y242, Y2t +3, - « - Y2k~1, W2k -1, Zo, 20, 21, L1, T2, 22,
23, ..., T2k—3, T2k =2, 22k—-2, 22k—1, T2k—1, Y0, Y1, . - ., Y2t—2, Y2t—1, W2t —1,. .. , W1, Wo
and, if i = 2t,0 <t < k— 1, then the path

T2ty T2—1y ..+, L1, 20,20, 21, .+ - 5 228, 22¢41, T2+1, T242, 2242, 22¢+3, -+ - y T2k -3,

T2k—2; 22k—2) 22k—1, T2k~ 1, Y0, Y1, - - s Y2k =1, Wak =1, Wok-2, ..., W1, Wo
are Hamiltonian paths from w; to wo and z; to wo, respectively.
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Ifi=2t—-1,1<t <k, then the paths
W21, W2ty ..., W2k—1,T0, T2y ..., T2k—1;22k—1,-+-3; 21,20, Y2k=1, ..., Y2¢+1,

Y2t, Y2t-1, Y2t-2, W2t -2, W2t-3, ..., Y3, Y2, W2, w1, Y1, Yo, Wo
and

T2t—1, T2ty 22ty 22t 41, T2t+1, T2+2) 22t 425 22043, -+ + y T2k =3, T2k —2, 22k -2, 22k—1, T2k—-1,
Yo, Y1y .-y Y2k—1,20,21, -+ 22t—1, 22¢t-2,T2t=2,...,T1, 20, W2k-1,..., W1, Wo
are Hamiltonian paths from w; to wo and z; to wo, respectively.

Finally, the path
Yo, Y1, .-, Y2k-1,20,21, .-, 22k—1,T2k—1,T2k~-2,- .., %0, W2k—1, W2k-2,...,W0
is a Hamiltonian path from yo to wo.

Hamiltonian paths from y;, 1 <i<2k—-1,to wp and z;, 0 <i<2k—1, to
wp can be found by symmetry. Recall that, Hi,, is 3-regular; hence, is a CHC
graph.

221 W, w,

34l Yo X 2k-1
Figure 6: Harary graph H3 ,, n =0 (mod 8).

For j =4,let n =8k + 4. If k =0, then H3, = K, which is a CHC graph.
For k > 1 similar to above, we divide the outer cycle to four regions with bound-
aries wo, Zo, Yo, and zo. Hence, the outer cycle is in the form

Wo, W1y ..., W2k, T0y Ty .-y T2k, Y0r Y1, - - -, Y2k, 205 21, - -+, 22k, WO.
By symmetry it is enough to find a Hamiltonian path from wo to vertices w;,
1<LiL 2k, 2, 0< i< 2k, and yo.
For i =2t,1 <t <k, the path

Wat, Y2t, Y2e+1, W2t+1, W2t 42, Y2¢4-2, Y2t 43, - - - y W2k, Y2k, 20, T0, T1, 21, 22,
T2,T3y...922kyT2k, Y0, Y1, Y2, - - -, Y2t-1, W2t—-1, W2t-2,... , W, Wo

is a Hamiltonian path from w; to we.
For i = 2t, 0 <t < k, the path
L2¢, T2t 41y« s T2ky 22k, X2k =1y -+ y B2ty 22t~1,T24~1,T2t-2,...,X3,T2, 22,
21,21, %0, 20, Y2k, W2k, W2k—-1, Y2k-1, Y2k-2, ..., W2, W1, Y1, Yo, Wo
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is a Hamiltonian path from z; to we.
Ifi=2t-1,1<1t<k, then the paths
W2t—1, W2ty ..y W2ky L0, L1, ..y T2ky 22k B2k—1, -« « 5 20, Y2k Y2h—1, - + - , Y2¢,

Y2t-1, Y2t -2, W2t -2, W23, Y2t -3, Y2t -4, . . . , W2, W1, Y1, Yo, Wo

and

T2t—-1,22t—1, 22t, T2t T2t +1, 22841, 228425+« y 22k—1, 22k, T2k YO, Y1, Y2, - - -, Y2k,

20y 21y .-y %2t-2,T2t-2,T2¢=3, .- ., L0, W2k, W2k—1,..., W1, Wo

are Hamiltonian paths from w; to wop and z; to wo, respectively.

Finally, a Hamiltonian path from yo to wp is

Yo, Y1y« - Y2k, 20, 21y - -« 5 22k, T2k, T2k=1) . - - , TO, W2k, W2k—~1,. .., W0,
which completes the proof. |

Theorem 6. Ifn=j (mod 8), where j € {1,5}, then Hj,, is a CHC graph.

Proof. Consider the outer cycles which introduced in the proof of Theorem 5.
Note that H3,» wheren =3 (mod8) and j =1 or j = 5 can be obtained from
Hj3,n-1 by adding a new vertex 2 on the outer cycle such that z ¢ wo, z ¢ yo
and z © wak—1 Or z > wak, respectively. Figure 7 shows Han, where n = 1
(mod 8)

By Theorem 5, there is a Hamiltonian path between every two distinct vertices

21 Z W, w,

Wi Yo X2k-1
Figure 7: Harary graph H3 5, n =1 (mod 8).

of H3,n-1. To complete the proof we need to show that,

1) there is a Hamiltonian path from z to every other vertices of Hs. .

2) it is possible to add vertex z to every Hamiltonian path with arbitrary end
vertices z; and z,-) in Hj ;.

To prove (1), add vertex z to the end of every Hamiltonian path introduced
in the proof of Theorem 5. For example, if n =1 (mod8)and1<t<k -1,
then a Hamiltonian path between ws; and z is in the form
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W2, Y2, Y2tgly. - - )yzk—l,wzk—l’m‘):zO;zl) 1,T2,22,23,...,T2k~3,T2k=2,
22k=2,22k=11T2k=1,Y0, Y1,y -+, Y2¢~2, Y2t =1, W2t=1,...,W1, W0, 2.

We prove (2) for n =1 (mod 8). The case for n =5 (mod 8) is similar.

Consider an arbitrary Hamiltonian path z1,%2,...,Zi-1,%i = Wo, Ti+l,-.-,Zn-1
in H3n—1. Note that at least one of z;-; or zi4+1 belongs to {yo, z2k-1}.

If z;—) € {yo, 2261}, then the path z1,23,...,%i-1,2,%Zi = Wo, Ti+1,...,Tn-1 iS
a Hamiltonian path in Hs ,. If zi41 € {yo, #2k—1}, then the path £,,%2,...,%i-1,
Zi = Wo, 2, Ti+1,...,Tn-1 is a Hamiltonian path in H3 ,. ]

By Theorems 5 and 6, Harary graph H3n, where n = j (mod8) and j €
{0,1,4, 5} are CHC graphs. But for j € {2,3,6,7}, H3,. is not necessarily CHC.
Figure 8 shows some Harary graphs which don’t have any Hamiltonian path from
vertex v to w.

H;, H,,

n=10=2 (mod8) n=11=3(mod8)
v v, v,

V, =V V, =W %=v v, =w
Vs Y v "

Yo Vo

Hiq Hy,

n=6=06(mod8) n=7=7(mod8)

Figure 8: Harary graphs Hg ,, which are not CHC.

In the following, we prove that Hi,, for k > 4 and n > 5 is not a critical
Hamiltonian connected graph. First we consider Ha,n.

Theorem 7. For n > 5, Harary graph Han is Hamiltonian connected.

Proof. Let v1,...,vn,v1 be the outer cycle of Hy,,. For two distinct vertices
v; and v;, where i < j, consider the following cases.
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If j —i <2, then v; & v; and v;—; & vj—;. In this case, a Hamiltonian path
from v; to vj iS vj,Vj41,...,Un, U1, V2, .+, Vic1,Vj—1, Vi.

If j —i > 2, then, if for some integer p, j — ¢ = 2p, then a Hamiltonian path from
v; to v; is

Vi, Vi—1,..-,U1,VUn, Un~1y ...y VUj+1,Uj=1,Yj=3,Vj~5y. . ., Vit1, Vi42, Vitd, ..., Vj-2,V;5.
If for some integer p, j — ¢ = 2p + 1, then a Hamiltonian path from v; to v; is

Vi, Vi—1,.-, V1, Un, Un—=1,. .+ Vi1, Vj=1,Vj =3, Uj~5, . . ., Vi42, Vi1, Vi43,...,V5-2,V;.

Note that every edge in Harary graphs is a chord or lies on the outer cycle. In
the following theorem, we show that Hq,n, n > 5, is not a CHC graph.

Theorem 8. For n > 5, every edge on the outer cycle of Hs,n 1is not critical
Hamiltonian edge.

Proof. Let edge zy be on the outer cycle and incident to a Hamiltonian path
from vertex v; to v;. Without loss of generality, we assume for some {, i <! < j,
z = v; and y = vy (otherwise, make an ordering for the vertices on the outer
cycle to satisfy this condition). We need to show that, there is a Hamiltonian
path from v; to v; in Han — zy. According to this, there are two possibilities.
Ifl—-i+1<2and j—!<2, then the path

Vi, (0 = Z),%i-1,Vi=2,. .., V1, Un, Vn—1,- .., Vj+1, (V41 = ), 9;

is a Hamiltonian path from v; to v; which does not contain zy.
Ifl—i+1>2, when n — j +i is even, then the path
Uiy Uj—1y. -, Ul41, V=1, U1, V-2, V=3, - . . , Vi}1,Vi-1,Vi-3,...,Vj+3,
Vj+1, Uj42, Ujtdy . - o, Vi-2, Vi

is a Hamiltonian path from v; to v; without using zy, and for n — j + i odd,
the path
UjsUj—1y. -y Ul41, V=1, U, V-2, V13, . ., Vit1,
Vi-1,Vi-3,...,Vj42,Vj4+1, Yj+3, Vj45,...,Vi-2,Vj

is a Hamiltonian path from v; to v; without using zy.
If j —1> 2, then the Hamiltonian path for n — j + ¢ even, is
Uiy Vig1y -« UL V42, Vi1, V143, V44, - - -, Vj—-1,
Vj+1,Vj+3, ..+, Vi-1,Vi-2,Vi—4q,...,Vj42,Vj

and for n — j + ¢ odd, is
Viy Vidl,y -0« UL V142, V41, V43, Vi4d,y -+ Uj—1,
Vi+1,Vj43y- -+, Vi-2,Vi-1, Vi-3, Vi-5,...,Vj+2,Vj.

Hence, zy is not a critical Hamiltonian edge. ]
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Let Q1 : vi,%i+1,...,v and Q2 : Vk41,Vk42,...,0 be two vertex disjoint
paths in connected graph G, where vx ¢ vi+1. In the following, we mean by
P =Q, + Q2 the path P : v;,vi41,...,Vk, Uk1, Uk+2,- - » Uj

Theorem 9. For n > 5, every chord of Hy,n is not critical Hamiltonian edge.

Proof. Let v1,vs2,...,vn,v1 be the outer cycle of Hs,. We will find two
Hamiltonian paths P, and P; between every two arbitrary vertices v; and vj,
1 £ i < j < n, such that E(P;) N E(Pz) doesn’t contain any chord of Hy,n.

By means of defined paths in Table 1, two Hamiltonian paths P, and P> may
be found (Table 2).

Table 1: Some paths on the outer cycle of Hy, ..

for everyiand j | Q1:vi,vi-1,...,01,Vn,...,Vj41
n-— j 4% is even Q’l fUi=1, Vi=3, .. VUj+1, Vj42, Vj44, ..., Vi-2, Ui
n—j+1iis odd ¥ S Vim 1, Vim3y e« oy V42, Uitl, Viddy - - -, Vie2, Vi
for every t and j | Q2: vj,vj-1,Vj-2,...,Vit1
j—1tiseven Q5 I Uj—1,Uj=3, .-, Vitl, Vit2, Vitdy - - -, Uj—2, V5
j —1iis odd g CUj—1,Vj=3,. ..y Vi42, Vi1, Vi43,...,Uj-2,Y;

Table 2: Hamiltonian paths P, and P; with no common chord.
Bothof nand j—iareeven [ A= +Q2 | P2 =Q2+ Q)
Bothofna.ndj—ia.reodd P1=Q1+Q'2' P2=Q2+Q§
nisevenand j—iisodd | P =Q1+Q5 | P.=Q: + QY
nisoddand j—iiseven | Pi=Q1+Q% | P.=Q2+Q)

Hence, for every arbitrary chord e in Hy,n, there exists at least one Hamilto-
nian path between v; and v;, excluding e. ]

Corollary 4. For every k > 4 and n > 5, Hi,, is a Hamiltonian connected
graph, but it is not a CHC graph. Moreover, every edge of Hy , is not a critical
Hamiltonian edge.

Proof. For k = 4, the statement is obtained from Theorems 7, 8 and 9. For
k > 4, Hy ,, contains a spanning subgraph Hy,,. Thus by Observation 1, Hy , is
a Hamiltonian connected graph which is not CHC and every edge of Hy . is not
critical Hamiltonian edge. ]
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