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1 Introduction

Let G = (V, E) be a simple graph with vertex set V = V(G) = {v;,va,...,
vn} and edge set E = E(G). Fori =1,2,...,n, let d(v;) denote the degree
of vertex v; in G. The adjacency matrix of G is A(G) = (a;;), where
elements a;; = 1 if two vertices v; and v; are adjacent in G and 0 otherwise.
The signless Laplacian matrix of G is defined to be Q(G) = D(G) + A(G),
where D(G) = diag(d(v1),d(v2), .. .,d(v,)) is the diagonal matrix of vertex
degrees in G. The spectral radius (resp., signless Laplacian spectral radius)
of G, denoted by p(G) (resp., u(G)), is the largest eigenvalue of A(G) (resp.,
Q(G)). 1t is well known that if G is connected, then A(G) (resp., Q(G)) is
irreducible and nonnegative, and by the Perron-Frobenius theorem, p(G)
(resp., u(G)) is simple and has a unique positive unit eigenvector. For more
properties and applications about these two graph invariants we refer the
readers to (5, 6] and the references cited therein.

A matching in a graph is a set of disjoint edges. The maximum cardinal-
ity of a matching over all possible matchings in a graph G is the matching
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number of G, which is denoted by 8 = 8(G). A matching is perfect if it
contains n/2 edges (so n is necessarily even), which is the largest possible
value for S.

Let K,, be the complete graph on n vertices. Denote by G the comple-
ment of the graph G. For two graphs G; = (W}, E}) and G2 = (Vz, E»), the
union G1 U G3 of G; and G is defined to be G, UG, = (VU V,, Ey U E));
the join G; V G2 of G; and G is obtained from G; U G2 by joining edges
from each vertex of G to each vertex of Gj.

In [3], Brualdi and Solheid proposed the following classic problem con-
cerning the spectral radius of graphs: Given a set G of graphs, find an
upper bound for the spectral radius in this set and characterize the graphs
in which the mazimal spectral radius is attained. Up to now, Brualdi-
Solheid problem has been solved for various sets of graphs, see, for exam--
ple, [1,2,7, 8,9, 10, 11, 13]. In particular, for the set of graphs with given
matching number, Feng, Yu, and Zhang [8] proved the following result.

Theorem 1 Let G be any graph on n vertices with matching number .

(1) If n =28 or 2B + 1, then p(G) < p(K,), with equality if and only if
G=K,.

(%) If 28 + 2 < n < 38 + 2, then p(G) < 28, with equality if and only
fG= Kogy1 UKn_2p-1.

(i) If n = 38 + 2, then p(G) < 28, with equality if and only if G =
K2,3+1 U Kn—2ﬂ—l orG= K,g VK, -B-

() Ifn > 36 +2, then p(G) < § (p—1+ -1+ 48(n— B)),
with equality if and only if G = KgV K,_g.
Recently, Brualdi-Solheid problem has also been extended to the study

on signless Laplacian spectral radius [4, 12, 13, 14, 15]. In particular, Yu
(14] showed the following signless-Laplacian version of Theorem 1.

Theorem 2 Let G be any graph on n vertices with matching number .

(}) If n =28 or 28 + 1, then u(G) < u(K,), with equality if and only
if G = K,.

(i) If 2B+ 2 < n < £ then u(G) < 48, with equality if and only if
G=Kypgt1UKp28;1.

(i) If n = £33, then u(G) < 48, with equality if and only if G =
Kgﬂ.“ U Kn-gﬂ_l or G & K‘g v Kn_p.

(i) Ifn > B2 then p(G) < 3(n—2428+/(n — 2 + 2B)% — 862 + 86),
with equality if and only if G = KgV Kn_g.

Notice in Theorems 1 and 2 that Kg41 U K,_25_1 is not connected.

So, in this paper we would like to find upper bounds for the (signless Lapla-
cian) spectral radius of connected graphs with given matching number, and

238



characterize the graphs in which the maximal (signless Laplacian) spectral
radius is attained. Observe that if G is a connected graph with matching
number B = 1, then G is nothing but K3 or K; V K,_;. Hence, we would
consider only the case of 8 > 2. Our main results are as follows.

Theorem 3 Let G be any connected graph on n vertices with matching
number 8 > 2. Then

(i) If n =28 or 28 + 1, then p(G) < n — 1, with equality if and only if
G2 K,.

(i) If2+2<n<38—1 (8 23), then p(G) < p*, where p* is the
maximum root of the following equation

22 -2(8-1)z? —(n—-1)z+2(8-1)(n—26) =0.

The equality holds if and only if G 2 K1 V (Kag—1 U Kn_28).
(iti) If n > 38, then

WG <3 (B-1+ V- 12+ 8- B),
with equality if and only if G = KgV Kn_p.

Theorem 4 Let G be any connected graph on n vertices with matching
number 8 > 2. Then

(i) If n = 28 or 2B + 1, then u(G) < 2n — 2, with equality if and only
ifG= Ky

(i) If 28 +2 < n < 58/2 (B 2 4), then u(G) < u*, where p* is the
mazimum root of the following equation

2 —(n+48-3)z? +n(4f-3)z —4(8-1)(28-1) = 0.

The equality holds if and only if G 2 K1V (Kag_1 U Kn_2g).
(i#3) If n > (58 + 1)/2, then

WG) < 5 (n—2+26+ -2+ 282 —8F2 1 85),

with equality if and only if G = KgV Kn_p.

2 The proofs

In this section, we shall prove Theorems 3 and 4. To this end, we need the
following two lemmas, due to Feng et al. [8] and Yu [14], respectively.

Let G, g be the set of graphs on n vertices with matching number £.
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Lemma 5 (see [8]) If G is a graph in G, g with mazimal spectral radius,
then there exist nonnegative integers s,q such that

G =K,V (K., UK, ),

where s < B, g =n+s—28, and nyg =28 — 25+ 1. Moreover, p(G) is the
mazimum root of the equation f(x) =0, where

flz) = 23— (28-5—-1)2%+ (238 +2s—ns— s> —28)z
+25(B—s)(n+s—-28-1). (1)

Lemma 6 (see [14]) If G is a graph in G, g with mazimal signless Lapla-
cian spectral radius, then there exist nonnegative integers s,q such that

G =K,V (Kn UK,27),

where s < B, g =n+s—2B, and ng =28 — 2s+ 1. Moreover, u(G) is the
mazimum root of the equation g(z) = 0, where

9(z) = 2®~(n+48—s—2)z% + (4nB + 838 + 4s — 3ns — 4s* — 8F)x
—25(48% + s® + s — 458 — 2P). (2)

Now we are ready to present the proofs of Theorems 3 and 4.

Proof of Theorem 3. Without loss of generality, we first suppose that
G € Gn,p is a connected graph with maximal spectral radius. Since the
complete graph K, has the maximum spectral radius uniquely among all
the graphs on n vertices (see, e.g., [5]), it is easy to see that if n = 28 or
28 +1, then

p(G) < p(Kn) =1 — 1,

with equality if and only if G 2 K,,. Hence, in the following we may assume
that n > 28 + 2.

Note that G is connected. Then from Lemma 5, we have 1 < s < 8.
Moreover, it follows from (1) that

f(=00) <0, f(+00) >0,

f(=1)=3s(28-2s+1)(n+s—28-1) >0,

f@2B—3s)=-s*(n+s-28-1) <0, (3)
which imply that the three roots of f(z) = 0 lie in three intervals (—co, —1),
(-1, 28 — s), (28 — s, +00). We now consider the following two cases:

Case 1. 28+2<n<3B-1 (obviously, it is required that 8 > 3). Let
F = K,V (K31 UK, _25). Then we just need to show that p(G) < p(F),
with equality if and only if G = F.
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Indeed, by putting s = 1 in (1), we know that p(F') is the maximum
root of the equation hj(z) = 0, where

hi(z) = &* = 2(8 — 1)2° — (n = 1)z +2(8 — 1)(n — 26).
By a direct computation, we have
hi(26 — 1) = —(n - 28) <0,

which implies that

p(F)>28-1. 4)
On the other hand, after a simple calculation, we obtain
flz) = hi(z) + (s — )ri(z), (5)

where
r(z) =22 — (n+5—28 - 1)z~ (48% +25% + 2ns + 2n — 2nB — 650 — 45).

Taking the derivative of () with respect to z, and recalling that n <
38 —1, we have, forz > 26— 1,

ri(z)=2z-(n+s-26-1)>26f-n—-5—-1>3-s5>0.

This means that the function r(z) is strictly increasing with respect to =
when = > 28 — 1. Hence, by using (4) and again, recalling that n <38 —1
and s < 3, we get

ri(p(F)) > n(26-1)
= 4% +4sf+s—2s°—(2s+1)n
> 4%+ 4sB+s5—282—(2s+1)(38-1)

(B-s)48+25—-3)+1>0,
which, together with (5), would yield that
F(p(F)) = ha(p(F)) + (s — 1)ri(p(F)) 2 0, (6)

with equality if and only if s = 1.

Thus, combining (6), (3) and (4), we may conclude that p(G) < p(F),
with equality if and only if f(p(F)) = O, that is, s = 1, which, together
with Lemma 5, implies that G & F.

Case 2. n > 38. Let H = KgV Kn_g. Then it suffices to prove that
p(G) < p(H), with equality if and only if G = H.
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In fact, by putting s = § in (1), we get that p(H) is the maximum root
of the equation ha(z) = 0, where

ha(z) =z [z = (B~ 1)z — B(n - B)]

A direct computation shows that

oH) =5 (p-1+VB-1F+ B - ).
On the other hand, by some tedious calculation, we may obtain
7(z) = ha(a) + (B~ Iraf), ™
where

ro(z) = -2+ (n+s-B -2z +2s(n+s—26—1).

For notational convenience, let 8(n) = /(8 — 1)2 + 43(n — B). Since n >
33, we have

8(n) = 4nB—-382-28+1>+/982-28+1>38-1,
and hence
p(H)>28-1. (®)

Furthermore, we get

r2(o(H)) = %[(G(n) +4s— B —1)n+ (s — 28 - 1)8(n)

+4s2 - T8 —5s+ B +1]

%[(O(n) +4s— B —1)(36) + (s — 28 — 1)8(n)

+45® — 75 —5s + B+ 1]

= %[(ﬂ+3_l)9(n)+482+58/3"3.32—53—2/3+1]

v

> % [(B+5-1)(36—1) +4s* + 558 — 382 — 55 — 26 + 1]
= 36(s—1)+s(B+2s—-3)+1>0,

which, together with (7), would yield that
F(p(H)) = ha(p(H)) + (B - s)r2(p(H)) 2 0, (9)

with equality if and only if s = .
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Thus, from (9), (3) and (8), we can deduce that p(G) < p(H), with
equality if and only if f(p(H)) = 0, that is, s = 8, which, together with
Lemma 5, implies that G = H.

The proof of Theorem 3 is completed. O

Proof of Theorem 4. As the proof of Theorem 3, we can suppose that
G € Gn,p is a connected graph with maximal signless Laplacian spectral
radius. Since the complete graph K, also has the maximum signless Lapla-
cian spectral radius uniquely among all the graphs on n vertices (see, e.g.,
(6]), it follows easily that if n = 28 or 28 + 1, then

u(G) < p(Kyn) =2n -2,

with equality if and only if G = K,,. Hence, in what follows we may assume
that n > 28 + 2.
Clearly, 1 < s < 8 since G is connected. Moreover, from (2) we get

g(—OO) < 01 g(+°°) > 01

g28-s-1)=(28-s-1)(268-2s+1)(n+s—28~-1) >0,

9(48 — 25) = —25(28 — s)(n + s — 28— 1) <0, (10)
which imply that the three roots of g(z) = 0 lie in three intervals (—oo, 28—
s—1), (28—s-1, 48—-2s), (4B—2s, +00). We now distinguish the following
two cases.

Case 1. 28 +2 < n < 58/2 (obviously, it is required that 8 > 4). Let
F = K V(Ka5-1 U Kpn—2p). Then we just need to prove that u(G) < u(F),
with equality if and only if G = F'

Indeed, by putting s = 1 in (2), we know that p(F) is the maximum
root of the equation p;(z) = 0, where

pi(z) =2° — (n+ 48 - 3)2® + n(4f — 3)z — 4(B - 1)(26 - 1).

A direct computation shows that,
o If28+2<n<(58~-1)/2, then

4B -2)=-2(28-1)(n-28) <0,
which implies that
u(F)y>4—2. (11)

e If n = 58/2 (so B is necessarily even), then

P48 - 3) = (3644 <O,
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which implies that
B(F) > 48—, (12)
On the other hand, after somewhat tedious calculation, we get
9(z) = p1(z) + (s — 1)ta(z), (13)
where
ti(z) = 2° — (3n + 4s — 8)x — (88% + 25% + 45 — 838 — 126 + 4).

Taking the derivative of ¢;(x) with respect to x, and recalling that n <
58/2, we have, for z > 48 - 2,

£(2) =2z — (3n+ 45— 88) > 168 ~3n—ds —4 > gﬁ—4s—4>0.
This means that the function ¢;(z) is strictly increasing with respect to z
when z > 48 — 2. Hence, it follows that,

¢If28+42 < n < (56 —1)/2, then by using (11) and the fact that

s* + (48 — 2)s < 582 — 2B,

we obtain
t(u(F) > t1(48-2)
= 2{208% - 108 — (68 —3)n — [s* + (48 - 2)s]}
> 2[156% -8B — (68 — 3)n]
> 2[156%2 -8B~ (68— 3)(58 — 1)/2]

58-3>0.
e If n = 583/2, then by using (12) and the fact that
3652 + (1448 — 48)s < 18082 — 483,

we get

WF) > tn(s-3)

- % {18087 — 398 — 22 — [365” + (1445 — 48)s] }

1
1_8'(

v

98 —22) > 0 (as 8 > 4).
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Thus, for 28 + 2 < n < 58/2, by (13) we have
9(u(F)) = p1(u(F)) + (s — Dta(u(F)) 2 0, (14)

with equality if and only if s = 1.

Now, combining (14), (10), (11) and (12), we may deduce that u(G) <
w(F), with equality if and only if g(u(F)) = 0, that is, s = 1, which,
together with Lemma 6, implies that G = F.

Case 2. n > (58 +1)/2. Let H = KgV K,_g. Then it suffices to show
that u(G) < p(H), with equality if and only if G = H.

In fact, by taking s = 8 in (2), we get that u(H) is the maximum root
of the equation p(z) = 0, where

p2(z) = (2 —B) [z* - (n+28-2)z+28(8-1)].

A direct computation shows that

w(H) =3 (n+28 -2+ /26— 2F ~8B(E D).
On the other hand, by some calculation, we have
9(z) = p2(z) + (B — s)tz(), (15)
where
to(z) = —x% + (3n + 4s — 48 — )z + (28% + 28% + 25 — 638 — 2).

For notational convenience, let o(n) = \/(n + 28 — 2)2 — 88(8 — 1). Since
n > (58 +1)/2, we obtain

o(n)=vn2+ (4B -4)n—-482+4> %\/4gﬁ2_22’3+9> ?_1,

and hence
5
WH) > 46~ 7. (16)

Moreover, noting that 2s2 + 2(n + o(n) — 8 — 1)s > 2n + 20(n) — 283, we
get

to(u(H)) = n®+(0(n) =B —3)n—(36+1)o(n) — 26 +2
+282 +2(n+a(n)—B-1)s
> n2+4(o(n)—B—1)n— (38 —1)o(n) — 262 - 28 +2.

Now we consider the following function

y(z) = 2%+ (o(z) — B — 1)z — (38— 1)o(z) —28% - 28 +2, = > (58 +1)/2,
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where o(z) = \/(z + 28 — 2)? — 88(8 — 1). For = > (58 + 1)/2, since

(z+o(z)—-38+1)(z+o(z)+28-2) >0

y'(z) = ol

y(z) is increasing monotonously with respect to z. Moreover, observing

that

58 < /4982 - 228+9< 78,
we obtain
t2(u(H)) y(n)

>
> y((58+1)/2)
= Ili("’2‘5\/4932-22ﬁ+9+3\/49ﬁ2-22ﬁ+9_1og+7)

\%

% (56 +7)>0,
which, together with (15), would yield that

9(p(H)) = p2(u(H)) + (B - s)t2(u(H)) 2 0, (17)

with equality if and only if s = 8.

Thus, from (17), (10) and (16), we can conclude that u(G) < u(H),
with equality if and only if g(u(H)) = 0, that is, s = 8, which, together
with Lemma 6, implies that G = H.

This completes the proof of Theorem 4. O
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