Differential in Cartesian Product Graphs

José M. Sigarreta

Facultad de Matemáticas
Universidad Autónoma de Guerrero,
Carlos E. Adame 5, Col. La Garita, Acapulco, Guerrero, México.
josemariasigarretaalmira@hotmail.com

Abstract

Let $\Gamma(V,E)$ be a graph of order $n,S\subset V$ and let B(S) be the set of vertices in $V\setminus S$ that have a neighbor in a set S. The differential of a set S is defined as $\partial(S)=|B(S)|-|S|$ and the differential of the graph Γ is defined as $\partial(\Gamma)=\max\{\partial(S):S\subset V\}$. In this paper we obtain several tight bounds for the differential in Cartesian product graphs. In particular, we relate the differential in Cartesian product graphs with some known parameters of $\Gamma_1\times\Gamma_2$, namely, its domination number, its maximum and minimum degree and its order. Furthermore, we compute explicitly the differential of some class of product graphs.

Keywords: differential; domination number; cartesian product graphs. AMS Subject Classification Numbers: 05C69; 05A20; 05C50.

1 Introduction

The mathematical properties of the differential in graphs are studied in [1]. In particular, several bounds on the differential of a graph were given. The differential in certain classes of graphs is studied in [1] and some bounds on he differential in graphs are shown in [1]. The parameter $\partial(S)$ is also considered in [1] and the differential of an independent set has been considered in [1]. The case of the *B*-differential of a graph, defined as $\psi(G) = max\{|B(S)| : S \subseteq V\}$ was investigated in [1].

We begin by stating some notation and terminology. $\Gamma = (V, E)$ denotes a simple graph of order n = |V| and size m = |E|. The degree of a vertex $v \in V$ will be denoted by $\delta(v)$. We denote by δ and Δ the minimum and maximum degree of the graph, respectively. The subgraph induced by a set $S \subseteq V$ will be denoted by $\langle S \rangle$. For a non-empty subset $S \subseteq V$, and any vertex $v \in V$, we denote by $N_S(v)$ the set of neighbors that v has in $S: N_S(v) := \{u \in S: u \sim v\}$ and $\delta_S(v) = |N_S(v)|$. The complement of the set S in V is denoted by \overline{S} , so that $N_{\overline{S}}(v)$ is the set of neighbors v has in $\overline{S} = V \setminus S$. Let $\Gamma(V, E)$ be a graph of order v and let v be the set of vertices in v that have a neighbor in a set v. The differential of a set v is defined as v be a graph v and the differential of the graph v is

defined as $\partial(\Gamma) = max\{\partial(S) : S \subset V\}$.

In this paper we obtain several tight bounds for the differential in Cartesian product graphs. In particular, we relate the differential in Cartesian product graphs with some known parameters of $\Gamma_1 \times \Gamma_2$, namely, its domination number, its maximum and minimum degree and its order.

Relations between the Differential and the 2 Domination Number of $\Gamma_1 \times \Gamma_2$

Notice that if Γ is a connected graph, then $0 \leq \partial(\Gamma) \leq n-2$. It is not difficult to calculate the exact values of the differential in the following families of graphs.

$$\partial(P_2 \times P_n) = \begin{cases} 2\lfloor \frac{n-1}{2} \rfloor & \text{if } n \text{ odd} \\ 2\lfloor \frac{n-1}{2} \rfloor + 1 & \text{if } n \text{ even} \end{cases}$$

$$\partial(P_2 \times P_n) = \begin{cases} 3k & \text{if } n = 3k \\ 3k + 1 & \text{if } n = 3k + 1 \end{cases}$$

$$\partial(P_3 \times P_n) = \begin{cases} 3k & \text{if } n = 3k \\ 3k + 1 & \text{if } n = 3k + 1 \\ 3(k + 1) & \text{if } n = 3k + 2 \end{cases}$$

A set $S \subset V$ of a graph Γ is a ∂ – set of Γ if $\partial(S) = \partial(\Gamma)$, and S is a minimum ∂ – set if

$$|S| = min\{|X| : X \subset V \text{ and } \partial(X) = \partial(\Gamma)\}$$

In [1] appears the following result. For completeness we include a proof of this result.

Lemma 1. If S is a minimum ∂ – set of Γ , then the set $\{S, B(S), C(S)\}$ with $C(S) = V \setminus (B(S) \cup S)$ is a partition of V such that:

- (a) for all $v \in S$, $\delta_{B(S)}(v) \geq 2$,
- (b) for all $v \in B(S)$, $\delta_{C(S)}(v) \leq 2$,
- (c) for all $v \in C(S)$, $\delta_{C(S)}(v) \leq 1$.

Proof. (a) Assume, to the contrary, that there is a vertex $v \in S$ such that $\delta_{B(S)}(v) \leq 1$. Since $\delta_{B(S)}(v) \leq 1$, then for $S' = S \setminus \{v\}$ we have $\partial(S') \geq \partial(S)$ with |S'| < |S|, which is a contradiction.

- (b) Assume, to the contrary, that there is a vertex $v \in B(S)$ such that $\delta_{C(S)}(v) \geq 3$. Taking $S' = S \cup \{v\}$ we obtain that $\partial(S') > \partial(S)$, which is a contradiction.
- (c) Using the same arguments as in Case (b), we conclude that for all $v \in C(S)$, $\delta_{C(S)}(v) \leq 1$.

Proposition 2. Let Γ_i be a graph with minimum degree δ_i for i = 1, 2. If S_i is a minimum $\partial - \text{set}$ of Γ_i with partition $\{S_i, B(S_i), C(S_i)\}$ such that $C(S_i) \neq 0$ for some $i \in \{1, 2\}$, then

$$\partial(\Gamma_1 \times \Gamma_2) \ge \partial(\Gamma_1) + \partial(\Gamma_2) + \delta_1 |S_2| + \delta_2 |S_1|.$$

Proof. Suppose that $u \in C(S_1)$ and $v \notin S_2$. If $A = \{u\} \times S_2$, then A dominates all vertices of $(\{u\} \times B(S_2)) \cup (N(u) \times S_2)$. If $B = S_1 \times \{v\}$, then B dominates all vertices of $(B(S_1) \times \{v\}) \cup (S_1 \times N(v))$. Notice that the sets $\{u\} \times B(S_2)$, $N(u) \times S_2$, $B(S_1) \times \{v\}$ and $S_1 \times N(v)$ are pairwise disjoint. Therefore, we have

$$\begin{split} \partial(\Gamma_{1}\times\Gamma_{2}) &\geq |\{u\}\times B(S_{2})| + |N(u)\times S_{2}| + |B(S_{1})\times\{\upsilon\}| + |S_{1}\times N(\upsilon)| \\ -|A| - |B| &= |B(S_{2})| + |N(u)||S_{2}| + |B(S_{1})| + |S_{1}||N(\upsilon)| - |S_{2}| - |S_{1}| \\ &= \partial(\Gamma_{1}) + \partial(\Gamma_{2}) + |N(u)||S_{2}| + |N(\upsilon)||S_{1}| \\ &\geq \partial(\Gamma_{1}) + \partial(\Gamma_{2}) + \delta_{1}|S_{2}| + \delta_{2}|S_{1}| \end{split}$$

The above bound is attained, for instance, if $\Gamma_1 = C_4$ and $\Gamma_2 = C_3$ we have $\partial(\Gamma_1) = 1$, $\partial(\Gamma_2) = 1$, $|S_1| = 1$, $|S_2| = 1$, $\delta_1 = 2$, $\delta_2 = 2$ and $\partial(\Gamma_1 \times \Gamma_2) = 6$.

A set $S \subset V$ of a graph Γ is a dominating set if every vertex not in S is adjacent to a vertex in S. The domination number of Γ , denoted by $\gamma(\Gamma)$, is the minimum cardinality of a dominating set. The reader is referred to [[:],[:],[:]] for more details on domination in graphs.

In [1] the following result is proved, it relates the domination number and the differential of a graph.

Theorem 3. For any graph Γ of order n without isolated vertices,

$$n-2\gamma(\Gamma) \le \partial(\Gamma) \le n-\gamma(\Gamma)-1$$

Corollary 4. If Γ_i is a graph of order n_i for i = 1, 2, then

$$n_1 n_2 - 2\gamma(\Gamma_1 \times \Gamma_2) \le \partial(\Gamma_1 \times \Gamma_2) \le n_1 n_2 - \gamma(\Gamma_1 \times \Gamma_2) - 1$$

Theorem 5. If Γ_i is a graph of order n_i and maximum degree Δ_i for i = 1, 2, then

$$n_1\gamma(\Gamma_2) + n_2\gamma(\Gamma_1) - 3\gamma(\Gamma_1)\gamma(\Gamma_2) \le \partial(\Gamma_1 \times \Gamma_2) \le \min\{\gamma(\Gamma_1)n_2, \gamma(\Gamma_2)n_1\}(\Delta_1 + \Delta_2 - 1)$$

Proof. If S is a minimum ∂ -set of $\Gamma_1 \times \Gamma_2$, then $\partial(\Gamma_1 \times \Gamma_2) = |B(S)| - |S|$. Note that the maximum degree of $\Gamma_1 \times \Gamma_2$ is $\Delta_1 + \Delta_2$. Moreover,

$$|B(S)| \le \sum_{v \in S} \delta_{B(S)}(v) \le (\Delta_1 + \Delta_2)|S|$$

Using now that $\partial(\Gamma_1 \times \Gamma_2) = |B(S)| - |S|$, we can conclude that

$$\partial(\Gamma_1 \times \Gamma_2) \leq |S|(\Delta_1 + \Delta_2 - 1).$$

If S is a minimum ∂ -set of a graph Γ , then $|S| \leq \gamma(\Gamma)$. Using now the inequality $\gamma(\Gamma_1 \times \Gamma_2) \leq \min\{\gamma(\Gamma_1)n_2, \gamma(\Gamma_2)n_1\}$, see [4], the upper bound follows.

For all $S_1 \subseteq V_1$ and $S_2 \subseteq V_2$, we have

$$\begin{array}{ll} \partial(S_1\times S_2) &= |B(S_1\times S_2)| - |S_1\times S_2| \\ &= |S_2||B(S_1)| + |S_1||B(S_2)| - |S_1||S_2| \\ &= |S_2|(|B(S_1)| - |S_1|) + |S_1||B(S_2)| \\ &= |S_2|(|B(S_1)| - |S_1|) + |S_1|(|B(S_2)| - |S_2|) + |S_1||S_2| \end{array}$$

By taking S_i as the minimum dominating set of Γ_i we obtain

$$\begin{array}{ll} \partial(\Gamma_{1} \times \Gamma_{2}) & \geq \partial(S_{1} \times S_{2}) = |S_{2}|(|B(S_{1})| - |S_{1}|) + |S_{1}|(|B(S_{2})| - |S_{2}|) \\ + |S_{1}||S_{2}| & = \gamma(\Gamma_{2})(n_{1} - 2\gamma(\Gamma_{1})) + \gamma(\Gamma_{1})(n_{2} - 2\gamma(\Gamma_{2})) + \gamma(\Gamma_{1})\gamma(\Gamma_{2}) \\ & = n_{1}\gamma(\Gamma_{2}) + n_{2}\gamma(\Gamma_{1}) - 3\gamma(\Gamma_{1})\gamma(\Gamma_{2}) \end{array}$$

In [1] appears the following result. For completeness we include a proof of this result.

Lemma 6. If S is a minimum ∂ -set of Γ , then

- (a) $2|S| \le |B(S)|$,
- (b) $|S| \leq \lfloor \frac{n}{3} \rfloor$,
- (c) $|B(S)| \leq 2\partial(\Gamma)$.

Proof. (a) Let v_1 be a vertex in S. By Lemma 1, we have that if $v_1 \in S$, then $\delta_{B(S)}(v_1) \geq 2$. Let u_1, u_2, \ldots, u_j denote the set of vertices of B(S) adjacent to v_1 . If u_2, \ldots, u_j , are adjacent to other vertices of S, then $S' = S \setminus \{v_1\}$ is a ∂ -set of Γ such that |S'| < |S|, which is a contradiction. Hence there are at least two vertices in B(S) adjacent to v_1 that are not adjacent to any vertex of S. Thus, we have that $|B(S)| \geq 2|S|$.

(b) If $\{S, B(S), C(S)\}\$ with $C(S) = V \setminus (B(S) \cup S)$ is a partition of V, then n = |B(S)| + |S| + |C(S)|. Since $2|S| \le |B(S)|$ and $|C(S)| \ge 0$, the result follows.

(c) Since $\partial(\Gamma) = |B(S)| - |S|$ we have that $\partial(\Gamma) + |S| = |B(S)|$. Using that $2|S| \le |B(S)|$, the result follows.

A graph Γ is said to be a dominant differential graph if it contains a minimum ∂ -set which is also a dominating set.

Theorem 7. Let Γ_i be a graph of order n_i for i = 1, 2.

- (a) If $\Gamma_1 \times \Gamma_2$ is a dominant differential graph, then $\partial(\Gamma_1 \times \Gamma_2) \geq \frac{n_1 n_2}{3}$.
- (b) If Γ_1 is not a dominant differential graph, then $\partial(\Gamma_1 \times \Gamma_2) \geq n_2 \partial(\Gamma_1) + \partial(\Gamma_2)$.

Proof. (a) If $\Gamma_1 \times \Gamma_2$ is a dominant differential graph, then there exists $S \subseteq V$ such that $n_1n_2 = |S| + |B(S)|$. By Lemma 6 we can assume that $|S| \le \partial(\Gamma_1 \times \Gamma_2)$ and $|B(S)| \le 2\partial(\Gamma_1 \times \Gamma_2)$. Thus $n_1n_2 \le 3\partial(\Gamma_1 \times \Gamma_2)$. (b) Let S_1 be a ∂ -set of Γ_1 whose associated partition is $\{S_1, B(S_1), C(S_1)\}$. If Γ_1 is not a dominant differential graph, then $|C(S_1)| \ge 1$. We also notice that if S_2 is a minimum ∂ -set of Γ_2 and $S = S_1 \times V(\Gamma_2) \cup C(S_1) \times S_2$, then

$$\partial(S) = n_2 \partial(\Gamma_1) + |C(S_1)| \partial(\Gamma_2) \ge n_2 \partial(\Gamma_1) + \partial(\Gamma_2)$$

The bound (a) is achieved, for instance, in the graph $P_2 \times P_3$. The bound (b) is achieved in the graph $P_3 \times P_4$.

The k-domination number of a graph Γ , $\gamma_k(\Gamma)$, is the minimum cardinality of a set $X \subset V$ such that any vertex in $V \setminus X$ is adjacent to at least k vertices of X.

Theorem 8. If $\Gamma_1 \times \Gamma_2$ is a graph with minimum degree $\delta \geq k$, then

$$\partial(\Gamma_1 \times \Gamma_2) \ge \frac{\gamma_{k-1}(\Gamma_1 \times \Gamma_2)}{3}$$

Proof. Let S be a minimum ∂ -set of $(\Gamma_1 \times \Gamma_2)$ and set $\{S, B(S), C(S)\}$ be a partition of $V(\Gamma_1 \times \Gamma_2)$; by Lemma 1, we have that for all $v \in C(S)$, $\delta_{C(S)}(v) \leq 1$. Thus, for all $v \in C(S)$, $\delta_{B(S) \cup S}(v) \geq \delta(v) - 1$. If $\Gamma_1 \times \Gamma_2$ is a graph with minimum degree $\delta \geq k$, then for all $v \in C(S)$, we have $\delta_{B(S) \cup S}(v) \geq k - 1$. Hence, the set $B(S) \cup S$ is a (k-1)-dominating set of $\Gamma_1 \times \Gamma_2$ and $|B(S) \cup S| \geq \gamma_{k-1}(\Gamma_1 \times \Gamma_2)$.

Since $\partial(\Gamma_1 \times \Gamma_2) = |B(S)| - |S| = |B(S)| + |S| - 2|S|$ we have that $\partial(\Gamma_1 \times \Gamma_2) + 2|S| = |B(S)| - |S| = |B(S)| + |S|$.

By Lemma 6, we have that if S is a minimum ∂ -set of $\Gamma_1 \times \Gamma_2$; then $2|S| \leq |B(S)|$ and $|B(S)| \leq 2\partial(\Gamma_1 \times \Gamma_2)$. We have $\partial(\Gamma_1 \times \Gamma_2) \geq |S|$. Therefore,

$$3\partial(\Gamma_1 \times \Gamma_2) \ge |B(S)| + |S| \ge \gamma_{k-1}(\Gamma_1 \times \Gamma_2).$$

The bound is reached, for instance, in the graph $\Gamma = C_3 \times P_2$ for k = 3.

3 Relations between the Differential and the Order of $\Gamma_1 \times \Gamma_2$

Theorem 9. If Γ_i is a graph of order n_i for i = 1, 2, then

$$\partial(\Gamma_1 \times \Gamma_2) \ge \max\{n_2 \partial(\Gamma_1), n_1 \partial(\Gamma_2)\}.$$

Proof. On the one hand, if S_1 is a ∂ -set of $V(\Gamma_1)$, then

$$\partial(\Gamma_1 \times \Gamma_2) \ge \partial(S_1 \times V(\Gamma_2)) = |B(S_1 \times V(\Gamma_2))| - |S_1 \times V(\Gamma_2)|
= |B(S_1) \times V(\Gamma_2)| - n_2|S_1| = n_2|B(S_1)| - n_2|S_1| = n_2\partial(\Gamma_1).$$

Following this line of reasoning on the other hand, if S_2 is a ∂ -set of $V(\Gamma_2)$, we have that $\partial(\Gamma_1 \times \Gamma_2) \geq n_1 \partial(\Gamma_2)$. Therefore, the result follows.

The above bound is sharp as we can see in the following example: $\Gamma = P_3 \times P_n$ with n = 3k or n = 3k + 1.

Corollary 10. If Γ_i is a graph of order n_i for i = 1, ..., k, then

$$\partial(\Gamma_1 \times \cdots \times \Gamma_k) \ge \max\{(\prod_{j=1, j \neq i}^k n_j)\partial(\Gamma_i) : i = 1, \dots, k\}$$

Theorem 11. If Γ_i is a graph of order n_i for i = 1, 2, then

$$\max\{\frac{n_1}{2}\lfloor\frac{n_2}{2}\rfloor,\frac{n_2}{2}\lfloor\frac{n_1}{2}\rfloor\} \leq \partial(\Gamma_1 \times \Gamma_2) \leq \begin{cases} n_1(n_2-2) & \text{if} \quad n_1 < n_2 \\ (n_1-1)^2 & \text{if} \quad n_1 = n_2 \end{cases}$$

Proof. Recall that we have seen in the proof of Theorem 5 that for all $S_1 \subseteq V_1$ and $S_2 \subseteq V_2$,

$$\partial(S_1 \times S_2) = |S_2|(|B(S_1)| - |S_1|) + |S_1|(|B(S_2)| - |S_2|) + |S_1||S_2|.$$

If S is a dominating set of Γ , then $\partial(S) = n - 2|S|$. By taking S_1 as a dominating set of Γ_1 such that $|S_1| = \gamma(\Gamma_1)$, we obtain

$$\begin{array}{l} \partial(\Gamma_1 \times \Gamma_2) \geq \partial(S_1 \times S_2) = |S_2|(n_1 - 2\gamma(\Gamma_1)) + \gamma(\Gamma_1)(n_2 - 2|S_2|) + \gamma(\Gamma_1)|S_1| \\ = |S_2|(n_1 - \gamma(\Gamma_1)) + \gamma(\Gamma_1)(n_2 - 2|S_2|) \end{array}$$

It is known that if Γ is a graph of order n, then $\gamma(\Gamma) \leq \lfloor \frac{n}{2} \rfloor$. Note that if S_2 is a dominating set of Γ_2 such that $|S_2| = \lfloor \frac{n}{2} \rfloor$, then $\gamma(\Gamma_1)(n_2 - 2|S_2|) \geq 0$ and $\partial(\Gamma_1 \times \Gamma_2) \geq \lfloor \frac{n}{2} \rfloor (n_1 - \gamma(\Gamma_1))$. Therefore,

$$\partial(\Gamma_1 \times \Gamma_2) \ge \max\{\frac{n_1}{2} \lfloor \frac{n_2}{2} \rfloor, \frac{n_2}{2} \lfloor \frac{n_1}{2} \rfloor\}$$

It is easy to see that $\partial(\Gamma_1 \times \Gamma_2) \leq \partial(K_{n_1} \times K_{n_2})$. Let $\{u_1, u_2, \ldots, u_{n_1}\}$ be the vertices of the graph K_{n_1} and let $\{v_1, v_2, \ldots, v_{n_2}\}$ be the vertices of the graph K_{n_2} , and suppose that $n_1 < n_2$.

The degree of (u_1, v_1) in $K_{n_1} \times K_{n_2}$ is $\delta(u_1, v_1) = n_2 - 1 + n_1 - 1$. Taking (u_2, v_2) , we have that the number of vertices adjacent to (u_2, v_2) in $V(K_{n_1} \times K_{n_2}) \setminus N[(u_1, v_1)]$ is $n_2 - 2 + n_1 - 2$. Following this line of reasoning on the vertices (u_i, v_i) of $K_{n_1} \times K_{n_2}$ for $3 \le i \le n_1$, we have that the maximum differential is obtained when $S = \{(u_1, v_1), \ldots, (u_{n_1}, v_{n_1})\}$. Thus,

$$\partial(S) = (n_2 - 1 + n_1 - 1 + n_2 - 2 + n_1 - 2 + \dots + n_2 - n_1) - n_1$$

$$= \sum_{i=1}^{n_1} (n_1 + n_2 - 2i) - n_1 = n_1(n_1 + n_2) - n_1 - 2 \sum_{i=1}^{n_1} i$$

$$= n_1(n_1 + n_2) - n_1 - n_1(n_1 + 1) = n_1n_2 - 2n_1 = n_1(n_2 - 2).$$

If $n_1 = n_2$ then the maximum differential is obtained when $S = \{(u_1, v_1), \ldots, (u_{n_1-1}, v_{n_1-1})\},\$

$$\partial(S) = (n_1 - 1 + n_1 - 1 + n_1 - 2 + n_1 - 2 + \dots + n_1 - n_1) - (n_1 - 1)$$

$$= \sum_{i=1}^{n_1 - 1} (2n_1 - 2i) - (n_1 - 1) = (n_1 - 1)(2n_1) - (n_1 - 1) - 2 \sum_{i=1}^{n_1 - 1} i$$

$$= 2n_1(n_1 - 1) - (n_1 - 1) - (n_1 - 1)n_1 = (n_1 - 1)^2.$$

The lower bound is sharp for the graphs $\Gamma = P_3 \times P_2$ and $\Gamma = C_3 \times P_2$. The following result is a consequence of the above proof.

Corollary 12.

$$\partial(K_{n_1} \times K_{n_2}) = \begin{cases} n_1(n_2 - 2) & \text{if } n_1 < n_2 \\ (n_1 - 1)^2 & \text{if } n_1 = n_2 \end{cases}$$

Theorem 13. If Γ_0 is a graph with minimum degree δ_0 such that $\partial(\Gamma_0) > n - 2\gamma(\Gamma_0)$, then for any graph Γ with minimum degree δ

$$\partial(\Gamma_0 \times \Gamma) \ge \partial(\Gamma_0) + \partial(\Gamma) + \delta_0 + \delta$$

Proof. Notice that $\partial(\Gamma_0) = n - 2\gamma(\Gamma_0)$ if and only if, any minimum ∂ -set is also a dominating set of Γ_0 . Hence, if $\partial(\Gamma_0) > n - 2\gamma(\Gamma_0)$, then there exists a minimum ∂ -set which is not a dominating set. By Proposition 2, the result follows.

Corollary 14. If $\partial(\Gamma_1 \times \Gamma_2) < \partial(\Gamma_1) + \partial(\Gamma_2) + \delta_1 + \delta_2$, then $\partial(\Gamma_1) = n - 2\gamma(\Gamma_1)$ and $\partial(\Gamma_2) = n - 2\gamma(\Gamma_2)$.

Theorem 15. Let S_i be a minimum ∂ -set of the graph Γ_i de orden n_i for i = 1, 2. If $S_1 \times S_2$ is a minimum ∂ -set of the graph $\Gamma_1 \times \Gamma_2$, then

- (a) S_1 is a dominating set of Γ_1 ,
- (b) S_2 is a dominating set of Γ_2 ,
- (c) $|S_i| = \frac{n_i}{3}$ for i = 1, 2,
- (d) $\partial(\Gamma_1 \times \Gamma_2) = \frac{n_1 n_2}{3}$.

Proof. If $S_1 \times S_2$ is a minimum ∂ -set of $\Gamma_1 \times \Gamma_2$, then we have

$$\partial(\Gamma_1 \times \Gamma_2) = \partial(S_1 \times S_2) = |B(S_1)||S_2| + |S_1||B(S_2)| - |S_1||S_2|.$$

Since $|S_1| \leq \partial(\Gamma_1)$, by Lemma 6, we conclude that $\partial(\Gamma_1 \times \Gamma_2) \leq (|S_2| + |B(S_2)|)\partial(\Gamma_1)$. Using now that $|B(S_2)| \leq n_2 - |S_2|$, we obtain $\partial(\Gamma_1 \times \Gamma_2) \leq n_2 \partial(\Gamma_1)$. Following the same line of reasoning, we get the upper bound $\partial(\Gamma_1 \times \Gamma_2) \leq n_1 \partial(\Gamma_2)$. By Theorem 9, we have

$$\max\{n_1\partial(\Gamma_2),n_2\partial(\Gamma_1)\} \leq \partial(\Gamma_1\times\Gamma_2) \leq \min\{n_1\partial(\Gamma_2),n_2\partial(\Gamma_1)\}.$$

Consequently, all the previous inequalities are equalities. Thus, $|S_i| = \partial(\Gamma_i)$ and $|B(S_i)| = n_i - |S_i|$. Note that $|B(S_i)| = n_i - |S_i|$ if and only if S_i is a dominating set. By Lemma 6 and $|S_i| = \partial(\Gamma_i)$, we have that $|S_i| = \frac{n_i}{3}$ for i = 1, 2. Using the previous results we can conclude that $\partial(\Gamma_1 \times \Gamma_2) = \frac{n_1 n_2}{2}$.

4 Acknowledgements

We would like to thank the referee for a careful reading of the manuscript and for some helpful suggestions. This work was partly supported by the Spanish Ministry of Science and Innovation through project MTM2009-07800 and grant from CONACYT-UAG I0110/62/10, México.

References

- [1] S. Bermudo J. M. Rodríguez and J. M. Sigarreta. On the differential in graphs, Submitted 2010.
- [2] W. Goddard and M. A. Henning. Generalised domination and independence in graphs, Congr. Numer., 123, 161-171, 1997.

- [3] T. W. Haynes, S. Hedetniemi and P. J. Slater. Fundamentals of Domination in Graphs, Marcel Dekker, 1998.
- [4] T. W. Haynes, S. Hedetniemi and P. J. Slater. Domination in Graphs: Advanced Topics, Marcel Dekker, 1998
- [5] J.L. Mashburn, T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi and P.J. Slater, Differentials in graphs, Utilitas Mathematica, 69, 43-54, 2006
- [6] P. Roushini Leely and D. Yokesh. Differential in certain classes of graphs. Tamkang Journal of Mathematics, 41(2), 129-138, 2010.
- [7] P. J. Slater. Locating dominating sets and locating-dominating sets. In Graph theory, combinatorics, and algorithms, Vol. 1, 2 (Kalamazoo, MI, 1992), Wiley-Intersci. Publ., pages 1073-1079. Wiley, New York, 1995.
- [8] J. M. Sigarreta and J. A. Rodríguez-Velázquez. On the global offensive alliance number of a graph. Discrete Applied Mathematics, 157(2), 219-226, 2009.
- [9] V. G. Vizing, Some unsolved problems in graph theory. (Russian) Uspehi Mat. Nauk 23 6 (144), 117-134. 1968.
- [10] C. Q. Zhang. Finding critical independent sets and critical vertex subsets are polynomial problems. SIAM J. Discrete Math., 3(3), 431-438, 1990.