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Abstract: Let G be a simple connected graph with the vertex set V(G). The
eccentric distance sum of G is defined as £4(G) = ZveviG) £(V)Dg(v), where &(v)
is the eccentricity of the vertex v and Dg(v) is the sum of all distances from the
vertex v. The Harary index of G is defined as H(G) = Su.icvie) gry; Where
d(u, v) is the distance between u and v in G. The degree powers of G is defined as
Fp(G) = Trevig) d(u)? for the natural number p > 1. In this paper, we determine
the extremal graphs with the minimal eccentric distance sum, the maximal Harary
index and the maximal degree powers among all graphs with given diameter.

1 Introduction

Let G be a simple connected graph with the vertex set V(G). For a vertex v € V(G),
we use N(v) to denote the set of vertices adjacent to v, N[v] = N(v) U {vl], dg(v)
(or d(v) for abbreviation) denotes the degree of v. For § ¢ V(G), N(S) denotes
the set of vertices adjacent to some vertex in S. For vertices u,v € V(G), the
distance d(u, v) is defined as the length of a shortest path between u and v in G,
and Dg(v) = YueviG) d(u, v) (or D(v) for short). The eccentricity £(v) of a vertex
v is the maximum distance from v to any other vertex. The diameter d(G) of a
graph is the maximum eccentricity of any vertex in G. Let S, and P, be a star and
a path on n vertices, respectively.

Let G, p be the set of connected graphs of order n with given diameter D. Let
G € Gnp. Obviously, if D = 1, then G is the complete graph K,. If D = n -1,
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then G is the path P,. Therefore, in the rest of this paper we always assume
2sD<n-2.

The eccentric distance sum of G (EDS) is defined as [13]

£(G) = Trevig) EV)Do ().

As a topological index, £%(G) was successfully used for mathematical models
of biological activities of diverse nature [27, 28]. In [30], the authors investigated
the eccentric distance sum of unicyclic graphs with given girth and characterized
the extremal graphs with the minimal and the second minimal eccentric distance
sum. Furthermore, the authors characterized the extremal trees with minimal ec-
centric distance sum of trees with given diameter. The present authors in [14, 18]
determined the extremal trees with maximal eccentric distance sum and estab-
lished various lower and upper bounds for the eccentric distance sum in terms of
many graph invariants.

The Harary index is defined as the half-sum of the elements in the reciprocal
distance matrix (also called the Harary matrix [16]), more precisely

H(G) = Zyupicvia) d(.:.v)'

After its appearance, research regarding to the Harary index of a graph attracts
much attention. Gutman [10] supported the use of Harary index as a measure
of branching in alkanes. In [34], Zhou et al. presented some lower and upper
bounds for the Harary index of connected graphs, triangle-free and quadrangle-
free graphs and established the Nordhaus-Gaddum type inequalities. Yu and Feng

{31] investigated the Harary index for a class of bicyclic graphs and characterized
the extremal graphs. Ili€, Yu and Feng [15] investigated the Harary index of trees
in terms of the number of pendent vertices and other graph invariants. For the
history of Harary index, one may refer to [23]. In [8], the authors obtained a few
lower and upper bounds for the Harary index of graphs in terms of diameter. But
they did not get the extremal graph with the maximal Harary index among all
graphs with given diameter.

The inverse degree r(G) of G is defined as 7(G) = ¥ ,ev(q) -d(‘—u). The inverse de-
gree first attracted attention through numerous conjectures generated by the Graf-
fiti [9]. Since then its relationship with other graph invariants, such as diameter
[5, 19, 24}, edge-connectivity [6}, matching number [33] is studied. Li and Zhao
[20], Zhang and Zhang [32], and Chen and Deng [4] obtained sharp upper and
lower bounds for the inverse degree of trees, unicyclic graphs and bicyclic graphs,
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respectively (see also [11, 29] for further results). Caro and Yuster [2] defined the
degree powers F,(G) of a graph G as

Fp(G) = Zieviydw)?
for the natural number p 2 1.

In light of the information available for the sums of degree powers, several
classes are considered such as trees, unicyclic graphs [11], bicyclic graphs [4],
(m, n) graphs [12, 25], graphs with extremal properties [1, 2, 3, 26], it is natural to
consider other classes of graphs. In [17], Li and Yan considered the degree powers
of graphs with k cut edges, this impulses us to consider the similar problem for
graphs with a given diameter. To the best of our knowledge, this is not considered
so far.

This paper is organized as follows. In Section 2, we present some preliminary
results that will be used later. In Sections 3, 4, 5, we study the eccentric dis-
tance sum, the Harary index and the degree powers of graphs with given diameter,
respectively.

2 Preliminaries

The following lemma is easy to verify.

Lemma 2.1. Let G be a non-complete connected graph and e is an edge in G (the
complement of G). Then £4(G) > £€4(G + ), H(G) < H(G +e), Fp(G) < F(G +e)

Lemma 2.2. [I7] Let u and v be two vertices of G. Suppose vi,v,,...,Vs €
NWAN[K (A €5 gdeV)and uy,uz, ..., 4 € Nu)\ Nv] (1 <t < dg(u)). Let
G =G - {v,vwa, ..., v} + {uv, uvy, ... uvgl, G’ = G — (uuy, uuy, . .., uu,} +
{vuy,vuz,...,vi;). Then we have, if dg(u) = dg(v) then F,(G') > Fp(G); if
dg(u) < dg(v) then Fy(G”') > Fp(G).

Lemma 2.3. Let G € G,p be a connected graph of order n with diameter D
(2 < D < n-2). If G has the minimal EDS (resp. maximal F,(G)), then G is
the graph obtained from the path Pp.\ by replacing the vertices by cliques, such
that the vertices in distinct cliques are adjacent if and only if the corresponding
original vertices in the path are adjacent. Moreover, the cliques corresponding to
the endvertices have size 1.

Proof. The proof of the result is similar to Lemma 1 in [7]. We only present the
proof regarding EDS. Consider a graph with minimal EDS among the graphs of
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order n with diameter D. Let vy and vp be the vertices of G at distance D. Let V;
be the set of vertices at distance i from v, i = 0, 1,..., D. If the graph is not of the
claimed form, then one of the sets V; contains two vertices that are not adjacent,
or there is a vertex in V; and a vertex in V;,; that are not adjacent, or the set Vp
contains more than one vertex. The first two cases are impossible, since adding
the missing edge decreases the EDS from Lemma 2.1 and leaves the diameter
unchanged. In the last case we get a contradiction, since adding edges between all
but one vertex of Vp and all vertices of Vp_, decreases the EDS, and leaves the
diameter unchanged. m]

Let G € G, p be the graph with minimal EDS (resp. maximal F »(G)). Ac-
cording to Lemma 2.3 it consists of "pathwise adjacent cliques”. Let us call these
cliques distance layers and denote by V;,i = 0, 1, ..., D, ordered such that all ver-
tices of V; are adjacent to all vertices of Vi, fori = 0,1,...,D — 1. Let n; be the
size of V;. From Lemma 2.3, we have ng = np = 1.

Suppose the vertex in Ny and Np is u and v, respectively.

From Lemma 2.1, if D = 2, then the graph with extremal F,(G) is the graph
obtained from the complete graph by deleting one edge. So in the rest of the
section, we assume that D > 3.

For Kz = {(u,v), I, 2 band ) + [ = D -2, the graph G, (as shown in
Fig. 1) is obtained from K,-p \/ K; (the join of K,p and K) by identifying one
endvertex of each path of length {, and I, with u and v, respectively. It is easy to
see that Gy, ;, has diameter D. If [} - ,; < 1, we denote the graph by Gj,.

Kn-D
Figure 1. The graph G;,,,.

For odd D, denote by G, the set of graphs obtained from K; \/ K,-p+1- by con-
necting an endvertex of a path P, = Pp_));; with all vertices from K; and connect-
ing an endvertex of a path P, = Pp_y)2 with all vertices from K,-p,1-x, where
1<k<n-D.
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3 Minimal eccentric distance sum of graphs

At first, we calculate the exact values of eccentric distance sum of G}, for even D

and G € G,

When D is even, assume that Pp,; = wv;---vp be a diametrical path in
Gp. We divide the vertex set V(G}) into three parts: Uy = {vo,V1,..., v_:zg_ll,
Uy = {V%,,] ,...,vp} and the central layer U3 = Vp. It follows that

e Forv; € Uj: &(v;) = D—i and D(v;) = 41 4 L=HD=i+1) 4 (B _jy(n—D-1);
e Forv; € Us: £(v;) = i and D(v;) = 1 4 LDQ-D o (j_ 2yn— D - 1);
o Forve Uy e(v)=2and D) = 252 4 n-D - 1.

Therefore, it lt)'ollows that
E(Gy) = T (D - i)[ 1451 + LAQ=D 4 (2 _ iy - D)

+ Zfig'” j[L(;Ll) + (D"'I)(ZD-!"P'I) + (j__ _?_)(n - D)] + D!nz—D! [Dg[:+2) +n- D_ 1]

=-&D [71)3 —(32n+ 28)D? + (24n — 28)D — 48n% + 32n + 16] .
Similarly, if D is odd, for any G € G}, one has
£4G) = — B4 [7D? - (32n + 23)D? + (44n + 1)D — 48n® + 36n + 15)].
ed by the union of the central layer

Theorem 3.1. Let G be a connected graph of order n with diameter D. Then
£4G) 2 ~ B [7D% — (32n + 23)D? + (44n + 1)D — 48n2 + 36n + 15, if D is odd;
£(G) 2 -B[7D* - (32n + 28)D? + (24n - 28)D — 48n* + 32n + 16), if D is even.
with equality holding if and only if G = G}, for even D and G € G}, for odd D.

Proof. Let Gy € G, p be a graph with the minimal eccentric distance sum. Let
Ppyi = vovy ... vp be the diametrical path in Go. From Lemma 2.3, the subgraphs
induced by the union of two neighboring distance layers in Gy are complete.

Assume that k € {1,..., [%1 — 1} is the smallest number such that |V;| > 1.
Let v be a vertex in Vi different from v,. We may construct a new graph G,
from Gy by removing v from V; to V,,; such that G; has the diameter D and the
subgraphs induced by the union of two neighboring distance layers in G; are com-
plete. From the definition, we have

£4Go) = Tuevou..uvi., EWDW) + Tueviam E@DW) + Tyev,. u..uv, E@DW)

+ e(v)D(v),
E(G)) = Tuevpu..uvie, EWNDW+ 1)+ T ey, DU+ ey, u..0v, E@ND(W)
= 1)+ (&) = YD) + k = |Visal =| Vias| = ... = |[VpD).
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Bear in mind thatk < [251]-1, and |Vj| > 1 fori = k+2,k+3,...,n, therefore
— |Vika2l =| Viess| — ... — |Vp| £ 0. Thus it follows that
£%(Go) = £4(Gy) = = Tuevou.. ¥y EW) + Tueviuru..uv, 80) + D)

— (&) = D(k = |Visal =| Viasl = ... = Vp])

> = TueVou.. 0y, M) + Zueviu..ov, ) 2 0.

This contradicts the fact that Gy has the minimal eccentric distance sum in
gn.D'

Next, we assume that k € {[22*—‘] + 1,..., D — 1} is the largest number such
that |V,| > 1. Let w be a vertex in V; different to v;. Then we may construct a new
graph Gy from Gy by removing w from V; to V;_; such that G has the diameter
D and the subgraphs induced by the union of two neighboring distance layers in
Gy are complete. Similar as above, we get that £4(Go) > ¢9(G) and this also
leads to a contradiction.

Therefore, G}, is the unique graphs with minimal eccentric distance sum in
Gnp for even D; it can be seen that all graphs from QB have the same eccentric
distance sum f"(Gb) and there are exactly [ %‘I extremal graphs with minimal
eccentric distance sum for odd D. a

4 Maximal Harary index of graphs

In [22] the authors obtained sharp lower bound for the Wiener index of graphs in
Gnp. Since that method can not be generalized, we use a different approach to
study the Harary index of graphs with given diameter.

The value H(C,) is well- known (see for example [8])
.._|l

H(C,) = { nz"'.’

k=1 k’

if n is even;
if n is odd.

Theorem 4.1. Let G € G, p be a connected graph of order n > 2 with diameter
n—22 D 2 2. Then H(G) < H(G}). The equality holds if and only if G = Gp.

Proof. If D = 2, since adding edges would decrease the distance of some pairs of
vertices and hence increase the Harary index, in this case, the extremal graph is
K, — e (obtained from the complete graph K, by deleting one edge). Therefore in
the sequel, we always assume that D > 3.
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We first prove the case when D is even. Let x and y be two vertices of G at
distance D. We distinguish in the following two cases.

Case 1. If x and y does not lie in a cycle, we suppose that P is a path
with D + 1 vertices connecting x and y. We label the vertices in P by x =
Wi, W2, Ws,...,Wpy = y. Let @ = V(G) \ V(P). Note that any vertex in Q
has at most three neighbors on P, and if a vertex in Q has three neighbors on P,
they must be consecutive.

For any pairs of vertices u,v € Q, d(x,v) > 1. The equality holds for all pairs
if and only if Q induces a complete subgraph in G. Since adding edges increases
the Harary index, for an arbitrary vertex v € Q, we can suppose that v is adjacent

tO Wy, Weep, Weaa. Let t = D — 5, and

Sz =11+ 3+ + 4144441

s142(14d+. 4 F).
with equality holding if and only if s = 1 = %.
Therefore it follows that
H(G) = Suser gy + Zuved Ty + Lveguer Touy

< HPpu) + ("2")+ (0= D~ 1)(1 +258,4)
=1+(D+1) T2, t+1m-D- 1)(n—D—2)+(n—D—1)(I 2358, %)

=-D+(D+1)EL, L +Ln-D-1)n-D)+21-D- DL, }
= H(Gp),
with equality holding if and only if G = GJ,.

Case 2. If x and y lie in a cycle C, then C has 2D or 2D + 1 vertices.
Let U = V(G)\ V(C). As in Case 1, for any pairs of vertices u,v € U, d(u,v) =
1. The equality holds if and only if the subgraph induced by U is complete.

Subcase 2.1. If C has 2D vertices, then any vertex u in U has at most three
neighbors on C. Moreover if u has three neighbors on C, they must be consecutive,
or otherwise one can see that the diameter will be decreased.

For any vertex v € U, we have

1 1 1 1 1
2ueC Foumy <1 +(1 +§+...+—D-)+(1 +3+...+ 57
_ D-11 . 1
=3+2N. 51+
Therefore, for n > 2D,
1 1 1
HG) = Zu.vec duy) + Zu.veU Huvy + ZveU.ueC du,v)

e

275



sH(cw)+("-;D)+(n 2D)(3+2327 1+ )
=2D 305 1 +1+3(n-2D-1)(n-2D)+(n-2D)(1+2 307 L + 4)
=2(n—D)Z‘,f_‘,‘,"+]+2(n 2D - 1)(n - 2D) + (n-2D)(1 + %)
=2n-D)T.), t+1+4(n-2D+1)n-2D)- &
<-D+(D+ 1)t +3(r-D-1)(n-D)+2(n-D-1) T}
We are now to show the last inequality holds. Let M = Zk—l o N=22,
SEiE=1T=M-N=32, L <32, %=1 Thenwehave
(2(n—D)z,‘3=,-,‘;+l+%(n—20+l)(n—20)——"5)
-(—D+(D+1)z,?=,§+%(n-D-1)(n-D)+2(n—D—1)zf=l{)
= (201 - DM + 1+ {(n = 2D + 1)(n - 2D) - 5)
~(-D+ @+ DM +4(n- D~ 1)n- D) +2(n1- D~ 1)N)
=(2n-3D-1)M-2(n-D~-1)N+1~45+D- 3(2Dn-2n-3D* +3D)
=(-D+1)N+2n-3D-1)T +1- %+ D - 4(2Dn-2n-3D? +3D)
<(-D+1)+(@2n-3D-1)+1-4%+D-4(2Dn-2n-3D?+3D)
=%(2—9D+3Dz+6n—2Dn)—%
< $(2-9D+3D%+ (6 -2D)2D) -2
=-4(D-3)D+1)-2<0 forD>3andn2D.
Therefore, in this case, we get that H(G) < H(Gp).

E o
T ) i ]

1
1k
i
152

Subcase 2.2. 1If C has 2D + 1 vertices, by a similar reasoning as in Subcase
2.1, we conclude that H(G) < H(Gp).

For D odd, justlet s = 28!, r = 251 and the remammg is similar. In this case
H(Gp) = Zuper 1o; + Zu veQ Ty + DveQuep d(u 7

= HPpu) + ("2 + (- D - 1)(1 RN S s k)

=1+@+1)ZP, +im-D-1)n-D~2)

+(n—D—l)(l +z;f__?}'%+>:fj‘;%)
= -D+(D+1) 32, %+%(n—D—l)(n—D)+(n-D—l)(Zfi Ligad

Combining the above cases and the definition of H(G), we get theresult. O

From the proof of the above theorem, we have
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-D+(D+ X2 L+ 3n-D-1)n-D)
+2(n-D- I)Zi, 1 if Diseven;
-D+(D+ 1) 1 +3(r—D-1)n-D)
#Hn-D-1D(5 L+ 25 1), ifDisodd.

H(G}) =

5 Degree powers of graphs with fixed diameter

Lemma 5.1. For D = 3, the graph G, has maximal degree powers.

Proof. Let G be the extremal graph having diameter 3. By Lemma 2.3, ny + n2 =
n-2,1<n; €n-3,thus it follows that
Fy(G) < nf + ny(m) + ) + na(my +m2)’ +nf)
=nl +(n +m)P* +nf
=l + (-2 +(n-2-m)".
Now we consider the function f(x) = x” + (n—2 - x)?, where ] < x < n-—3.Itis
easy to check that
%’—) =pp-DP2+@n-2-x%>0,
therefore the maximum value of f(x) is obtained for x = 1,n—3.
It follows that
n+ (=2 + (n-2-m) <1+ @-2)"* +(@n-3) = Fp(Gp).
The inequality is equality if and only if ny = 1 orn; = n - 3. o

Theorem 5.2. Let G € G, p be a connected graph of order n with diameter D > 4.
If G has the maximal degree powers, then G is isomorphic to Gy, , (as shown in
Fig. 1).

Proof. Let P = xox)x;...xp_1xp be a diametral path with D+ 1 vertices connect-
ing the vertices xo = u and xp = v. Let U be the set of neighbors of P outside P,
ie., U=NP)\ V(P), W = V(G) \ {U U V(P)}. Note that any vertex not in P has
at most three neighbors on P, and if a vertex not in P has three neighbors in P, the
neighbors must be consecutive. For x € V(P), let Ny(x) be the neighbor set of x
inU.

We now use the following operation. For any pair of vertices xj, xx € V(P)
(0 < i, j < D) such that d(x;) = 3, d(x) 2 3, if Ny(x;) # Ny(x), then we can
delete edges between x; and Ny(x;) \ Ny[x:] and then add edges between x; and
Ny(x;) \ Nyl[x); or delete edges between x, and Ny(xi) \ Ny[x;] and then add
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edges between x; and Ny (xx)\ Ny[x;]. Then the number of vertices in P of degree
at least three decreases. From Lemma 2.2, this operation increases F,(G) while
keeping P fixed.

By performing the above operation several times, we finally get a graph H
with diametral path P without two vertices x;, x; € V(P) such that d(x;) > 3,
d(x) 2 3 and dp(x;, xx) = 4. That is, there are at most three vertices in P having
degree at least 3. Now adding all possible edges between vertices in V(G) \ V(P),
the value F, increases, and we get the extremal graph is G, ,.

From the above cases, we complete the proof. o

For D > 4, we have
FpGuin)=(n=D+2)n—D+ 1)’ +(D-4)2° +2.
Finally we summarize the results of this section.

Theorem 5.3. Let G € G, p be a connected graph of order n > 3 with diameter
3 < D < n-2 and maximal degree powers. Then G must be of the form Gy, ;, and
Surthermore

(1) IfD=3,thenly=1,1, =0;

(2) IfD=4,thenl, =L =1;

(3) IfD=5,thenly =2, = 1;

(4) fD>6,thenly 22,1, >2.

Remark. Li and Zheng [21] defined the so called zeroth-order general Randi¢
index R3(G) of a graph G as
RY(G) = Tyev() du)*
for general real number a.
In fact, the result in Theorem 5.3 holds for any positive real number o of

R3(G).
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