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Abstract

Let R(G) be the graph obtained from G by adding a new vertex
corresponding to each edge of G and by joining each new vertex to
the end vertices of the corresponding edge. Let RT(G) be the graph
obtained from R(G) by adding a new edge corresponding to every
vertex of G, and by joining the end vertices of each new edge to the
corresponding vertex of G. In this paper, we determine the Laplacian
polynomials of RT(G) of a regular graph G. Moreover, we derive
formulae and lower bounds of Kirchhoff indices of the graphs. Finally
we also present the formulae for calculating the Kirchhoff indices of
some special graphs as applications, which show the correction and
efficiency of the proposed results.
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1 Introduction

All graphs considered in this paper are simple and undirected. Let
G = (V(G), E(G)) be a graph with vertex set V(E) = {v1,v2,...,vn} and
edge set E(G) = {e1,e2,...,em}. The adjacency matrix of G, denoted by
A(G), is the n x n matrix whose (%, j)-entry is 1 if v; and v; are adjacent
in G and 0 otherwise. Let B(G) denote the adjacency matrix and vertex-
edge incidence matrix of G, which is the n x m matrix whose (i, j)-entry
is 1 if v; is incident to e; and 0 otherwise. Denote D(G) to be the diago-
nal matrix with diagonal entries dg(v1), dg(v2),. . .,dc(vn). The Laplacian
matrix of G defined as L(G) = D(G) — A(G). The Laplacian character-
istic polynomial of L(G), is defined as ¢(L(G);z) = det(zl, — L(G)), or
simply ¢(L), where I, is the identity matrix of size n, and its roots, de-
noted by u1(G) 2 pa(G) > -+ 2 pn(G) = 0 are called the Laplacian
eigenvalues of G. The collection of eigenvalues of L(G) together with their
multiplicities are called the L-spectrum of G. Similar terminology will be
used for A(G). The adjacency characteristic polynomial of G, denoted by
¢(A(G); z), is defined as p(A(G); z) = det(zI, — A(G)), the eigenvalues of
A(G) are A\1(G) 2 A2(G) 2 -+ > A(G). The collection of eigenvalues of
A(G) together with their multiplicities are called the A-spectrum of G. For
other undefined notations and terminology from graph theory, the readers
may refer to (1, 2, 27] and the references therein.

Klein and Randi¢ (3] introduced a new distance function named resis-
tance distance based on electrical network theory. The resistance distance
between vertices i and j, denoted by r;;, is defined to be the effective
electrical resistance between them if each edge of G is replaced by a unit
resistor [3]. The resistance distances attracted extensive attention due to
its wide applications in physics, chemistry, etc. [4-7, 25]. For more infor-
mation on resistance distances of graphs, the readers are referred to the
recent papers [8, 9, 26]. A large amount of graph operations such as the
Cartesian product, the Kronecker product, the corona and neighborhood
corona graphs have been introduced in [17-21]. The following definition
comes from [1] (See the definition in p. 63 in [1]).

Definition 1.1. (See [1]) Let R(G) = (V(R(G)), E(R(G))) be the graph
obtained from G by adding a new vertex e’ corresponding to each edge
e = (a,b) of G and by joining each new vertex e’ to the end vertices a and
b of the corresponding edge e = (a, b). (See Fig. 1(a) and (b) for example).

From the above definition, it is obvious that R(G) is obtained from
G by “changing each edge e = (a,b) of G into a triangle ae’d”. Thus,
V(R(G)) = V(G)U{¢' | e € E(G)} and E(R(G)) = E(G)U{(v;, €'), (vj, €') |
e = (v;,vj) € E(G)}. A very elementary and natural question is what it
would be like if we change each edge and each vertex of G into a triangle,
which is stated as the following definiton.
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Figure 1: (a) The graph G. (b) The graph R(G). (c) The graph RT(G).

Definition 1.2. Let RT(G) = (V(RT(G)) E(RT(G))) be the graph ob-
tained from RG by adding a new edge e! = (wi, w}) corresponding to each
vertex v; of G and by joining the two vertlces of each new edge to each vertex
v; of G, RT(G) is obtained from G by “changing each edge and each vertex
of G into a triangle”. Thus, V(RT(G)) ={e' |e € E(G)}UV G)U{wl |i=
,2,...,n}u{w}|i=1,2,...,n} and E(RT(G)) = {(v,, y(vj,€) |e=
(v5,05) € E(G)} U B(G) U {(viy i), (vi, w}) | v € V(C), el = (wi,w}) €
E(RT(G)),i =1,2,...,n}. (See Fig. 1(a), (b) and (c) for example).

As the authors of {11] pointed out, it is an interesting problem to study
the Kirchhoff index of graphs derived from a single graph. In [12], the
authors obtained formulae and lower bounds of the Kirchhoff index of some
graphs. In [13], Wang et al. determined the Laplacian polynomials of R(G)
and Q(G) of a regular graph G, they also derived formulae and lower bounds
of the Kirchhoff index of those graphs. Motivated by the results, in this
paper we further explore the Laplacian polynomials of RT(G) of a regular
graph G. Moreover, we derive the formulae and lower hounds of Kirchhoff
index of the graphs. In particular, special formulae are proposed for the
Kirchhoff index of RT(G), where G is a complete graph K,, a cycle C,
and a regular complete bipartite graph K, ».

2 Preliminaries

At the beginning of this section, we review some concepts in matrix theory.
The Kronecker product A ® B of two matrices A = (@ij)mxn and B =
(bij)pxq is the mp x ng matrix obtained from A by replacing each element
aij by ai;B. The readers are referred to [22] for other properties of the
Kronecker product not mentioned here.

The symbols 0,, and 1, (resp., Omn and 1,,,) will stand for the length-n
column vectors (resp. m X n matrices) consisting entirely of 0’s and 1’s.

Lemma 2.1. (See [10]) Let M), M3, M3 and My be respectively p x p,

291



P X q, g X p and g x ¢ matrices with M, and M, invertible, then

M, M,

det[ Ms M,

] = det(My) - det(My — MyM; ! Ms) )
= det(M,) - det(My — MsM['My),  (2)

where M; — M2M4'1M3 and M, — M3M1"1M2 are called the Schur com-
plements of M, and M), respectively.

3 The Laplacian polynomials of RT(G)

For a regular graph G, the following theorem gives the representation of the
Laplacian polynomial of RT(G) by means of the characteristic polynomial
and the Laplacian polynomial of G, respectively.

Theorem 3.1. Let G be an r-regular graph with n vertices and m edges,
then (i) §(RT(G)i) = (= 1)"(u = 2™"(u = 3)"(3 - )"
-2)? |, r(2u-3 2(u-2
) ‘P(G; (,?i—u) + J#L—ﬁ—l + (u-fl‘;(#-)-:i))'
(i4) $(RT(G); 1) = (1 = 1)"( = D)™ (u — 3

-¢(G- 1=2? _ rp 2(u—2) )

' p-3 =3 " (u—1)(u-3)

Proof. (i) Let G be an arbitrary r-regular graph with n vertices and m
edges. Label the vertices of RT(G) as follows. Let I(G) = {e), €2,.-.,em},
V(G) = {v1,v2,...,v,} and V(e”) = {w;y, w}, and let wi,wi denote the

vertices of the i-th copy of e” for i = 1,2,...,n, with the understanding
that w; is the copy of w; for each j. Denote W; = {w},w?,...,wl}, for
j=1,2, then

16 Uve)JmJwl 3)

is a partition of V(RT'(G)). Obviously, the degrees of the vertices of RT(G)
are: dRT(G)(e,-) =2, fori=12,...,m, dRT(G)(vi) = 2dg(v;) + 2, for
= 1,2,...,n, and dRT(G)('w;) = 2, fori = 1,2,...,n,j = 1,2.

Let B denotes vertex-edge incidence matrix of G. Since G is an r-
regular graph, we have D(G) = rI,. With respect to the partition (3),
then the Laplacian matrix of RT(G) can be written as

2Im -‘BT 0mx2n -
-B LIGY+ (r+2)I, -I,®1
02nxm _In ® 12 In ® [ -1 9 ]

where 1,, denotes the all-one column vector with size n.
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By Lemma 2.1, we have ¢(RT(G); ,u)

(k=2 BT | O
o B (w~r-2IL,-LG)  L,®if ,
= -2 1
O2nxm In®12 I"®[#1 H‘?J
_ p=2 1 :
= det In®[ 1 #—2] det S
=(-1)"u—-3)"det S, @
B (# _ 2)Im BT _ 0mx2n
where S = [ B (p—r—=2)I, - L(G) I, ®1]

i p-2 1 -
‘.In®|: 1 “__2]] [02n><m In®12}

- [ b= 2 (#_,._g;ﬂ_L(G) ] - [ I?.médl’;T ]

i -1
In®[#—2 ! ] ][02nxm In®12]

1 n—2

_ | (=2} BT
- B (u—1 —2)I, - L(G)

Omxm Omxn

r[w-2 1 77

Onxm In®12 [ 1 “_2] 12
_ (ﬂ - 2)Im BT _ Omxm Omxn
- B (p—r—2)I,, - L(G) Onxm [n® 323
_ [ (b= 2)Im BT
B -r-2-RL-LO) |

Let {G) be the line graph of G, it is well-known [23] that for a graph
G,
BBT = D(G) + A(G), BT B = 2I,,, + A({(G)).

293



Consequently, det S
1 T
)1,, -L©G)- _,BB )]

=det[(y,—2)[m] ~det[(p.—r—2— #31

=(;,L—2)"‘-det[(y.—'r—2- 2 _ - )1,. “ 3A(G)] (5)

y—l n— 2
= (=2 - )"
. (=2  r(2u-3) 2(p - 2)
ety T Dty )~ 4O
= (1= 2" (3 - )"
(p—2)?  r(2u-3) 2(p—2)
‘P(G’ R +(u—1)(u—3))' (©)

Actually, by virtue of (4) and (6) we have already established the statement

(i) in Theorem 3.1.
(i) Recall that L(G) = I, — A(G). It follows from (5) that

det S

=(y—2)m.det[(u—r—2—#31 _ (l;—_12)T)In+z—:§A(G)]

=(p-2)"""(p-3)"
(b= 2) Ty 2(p—2)
det[ Bl Sl v 3)) D(G)+A(G)]
=(p- 2)’“‘"(# 3"
) (k=22 ru 2(p—2)
et 723 Gty o)~ 1)

m-—-n n (p‘ 2) TH 2(/"_2)
= (=" (1 - 3)"¢(G; - #_3-(#_1)(ﬂ_3)).(7)

By combining (4) and (7), we get
¢(RT(G)ip) = (1 — 1)"(s — 2)™"(n — 3)2
=2 2(pu—2
$ G LT——L e Bl s (u—3))’
Thus the statement (ii) in Theorem 3.1 is proved.

4 The Kirchhoff index of RT(G)

In this section, we will explore the Kirchhoff index of the RT(G) of a regular
graph G.
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Zhu [14], Gutman and Mohar [15] proved that the relationship between
Kirchhoff index of a graph and Laplacian eigenvalues of the graph as follows.

Lemma 4.1. ([14, 15]) Let G be a connected graph with n > 2 vertices,
then

n-1
KfG) =n)_ : (8)
i=1 t

Denote by &; the degree of vertex v; € V(G). Zhou and Trinajsti¢ [16]
proved that

Lemma 4.2. ([16]) Let G be a connected graph with n > 2 vertices, then

K@) 2-1+(-1) ¥ 7 ©)

wEV(G) *

with equality attained if and only if G = Kpoor G = Ky ny for1 <t < | 2.
The following lemma will be used later on.

Lemma 4.3. ([12]) Let G be a connected graph with n > 2 vertices and
$(G; p) = p+arp™ M agp 24 +an_yp, then £ = 02 (g, , =
1 whenever n = 2), where an_1, an—2 are the coefficients of 4 and u? in
the Laplacian characteristic polynomial, respectively.

Let K, be the complete graph with n (n > 2) vertices. The follow-
ing theorem shows that K f(RT(G)) can be completely determined by the
Kirchhoff index K f(G), the number of vertices and the vertex degree of

regular graph G.

Theorem 4.4. Let ? be a connected 7-regular graph with n vertices, then
r n T n—4)n r— 2

Kf(RT(G)) = (7'-;6) Kf(G) + ( +25) + ¢ +6)(2 g 2)(;'4-6)" .

Proof. Suppose first that r = 1, i.e. G = Kj. Since K f(RT(K3)) = 4. It
is easy to check that the result holds in this case. Suppose now that r > 2.
Let

$(Gip)=p" +arp™ T a4t anap (10)

It foliows from Theorem 3.1 (ii) that

¢>(RT(G); u)

— n m-n n .(#_2)2 TH 2(#_2)
=(p=-1"r-2)""(u-3)? ¢(G’ p—3 ~u—3—(u—1)(u—3))

e = (r+5)p+(r +6)]

===y = yme(e M T ) an
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Combining (10) with (11), one can obtain that

#(RT(C)in)

P - +5u+r+6)]"
(e —1) (= 3)"

=(p-)"(e-2)"" - 3)2"{
p2 e = (r +5)u+ (r +6)°
(1 —1)2(p —3)2

Ll — (r+5)u+ (r +6)]
(b —1)(p-3)

=(p=2)""(u— 3)"{#" 2= (r 45+ (r+6)]" +---
+an-ap?(p = 1)"2(u = 3)"2[4® — (r + 5)u + (r +6))°
+anp(p = )" (0= 3" P — (r+)u+ (r+6)] .

+an_2

+an-y

where p # 1,3. So the coefficient of 2 in ¢(RT(G); p) is

(~2)""(=3)" [en-a(r + 6)*(~1)""2(=3)""2 + ap_y(~r ~ 5)(=1)""*
(=3)"" + an_1(r + 6)(n — 1)(=1)""2(=3)""! + @p_1(r + 6)(~1)""?
(= 1)(=3)""2] + (m — n)(=2)™"H(=3)"apy (r + 6)(~1)"""

(=3 4 n(=8)" " (D) e (r + (-3, (12)

and the coefficient of i in ¢(RT(G); 1) is

(=2)™""(=3)"an_1(r + 6)(—=1)""1(-3)*~1, (13)

Notice that RT(G) has 3n + m vertices. It follows from Lemma 4.3,
(12) and (13) that

Kf(RT(G))__an_2r+6 r+5 Sm—4 m-—n
3n+m  an_, 3 r+6 3 2

Substituting the result of Lemma 4.3 and m = % into the above equation.

Kf(RT(G)) _r+6Kf(G) r+5 5n—4 % -n
3n+3% 3 n r+6 3 2

Simplifying the above rgsult, one can obtain that \
Kf(RT(G)) = K f(G) + (rt8)n | (r+6)(En=d)n | (r—2)(;+6)n .
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Summing up, we complete the proof. O

Remark 4.5. Comparison to the Laplacian polynomials and its Kirchhoff
indices of R(G) and Q(G) in [13], the graph RT(G) has more vertices and
edges. It is clear that handling the problems of Laplacian polynomial and
Kirchhoff index are more difficult and complex, but we deduce those with
a simple approach.

In what follows, we propose a lower bound for the Kirchhoff index for
RT(G) in terms of the number of vertices and the vertex degree of a con-
nected regular graph.

Corollary 4.6. Let G be a connected r-regular graph with n vertices, then
Kf(RT(G)) > (r+6)% (n —-n—r) + (r+i L+6)(5n-4)n + (r— 2)(r+6)n , and

the equality holds if and only if G & Kn or G K 2,2 and n 1s even.

Proof. It follows from Lemma 4.2 and Theorem 4.4 that
Kf(RT(G)) > !r+6! (gn—IZn 1)+ (r+5)n+(r+6)(5n—4)n+ !r-2!!r+6!n

('r+6) (n?—n—r) + (r+5)n (r46)(5n—-4)n + (r-2)(r+6)n

6r p)
Clearly, the equality holds if and only if G & K or G Ky 3 andn
is even. O

5 Some applications

In this section, we discuss some special graphs and give formulae for their
Kirchhoff indices.

5.1 Complete graph K, (n > 2)

It is well known that K, is (n — 1)-regular and K f(K,) =n — 1.
It follows from Theorezzm 4.4 that )
Kf(RT(Kn)) — $r+6! Kf(K )+ (r+5)n + (r+6)(2n—4)n + (1'—-2)(;-{-6)11
(r+6) (n—l) + (r+5)n + (r+6)(5n—4)n + (r—2)(r+6)n
6

Partlcularly, if G = Kz, one can obtain K f(RT(Kz)) = % by substi-
tuting n = 2,7 = 1 into above formula. In order to illustrate the correction
and efficiency of the above results, one can check K f(RT(K,)) for simplic-
ity, see Figure 2 (a). It is easy to obtain ry3 =713 = 5,TIa =115 =716 =
T = g;rzs =T2q = T26 = %ﬂ‘zs =T27r = %; T34 = T36 = %J‘as =Tr37r =
§,T45 =T47 = % T46 = 3 7‘56 =351 = 5767 = 3

Hence, K f(RT(K,)) = %%, which coincides with the above result.
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Figure 2: (a) The graph RT(K3). (b) The graph RT(C3).

5.2 Cycle C, (n>3)

It was reported in [24] that K f(C,) = "31'2"‘. It follows from Theorem 4.4
that

K f(RT(Cy))

r 2 r —4n (r- 2
R PR L) N ) D e
_(r+6)%(n*=n) (r+5n  (r+6)(5n—4)n (r—2)(r +6)n?
= 72 te 6 + 8 ‘

Similarly, for graph RT(C3), see Figure 2 (b). One can obtain
Kf(RT(C3)) = % which also coincides with the above formula.
5.3 Complete bipartite graph K, ,
Note that K, , is n-regular with 2n vertices. Recall from [12] that
Kf(Knn)=4n-3. (14)

It follows from (14) and Theorem 4.4 that
r 2 T -2n T n— — 2
Kf(RT (Knn) = 2 K f(Kp )+ 22 4 €100t | =200
— (r+6) 6!411—3[ +(r+5)n+ (r+6)(130n—4)n +§r—2)(;‘+6)n )

6 Conclusions

In this paper, based on the earlier definition R(G), we introduce a novel
graph operation RT(G), and explore its Laplacian polynomial and Kirch-
hoff index. By utilizing the spectral graph theory, we establish the explicit
formula for K f(RT(G)) in terms of K f(G), the number of vertices and
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the vertex degree of regular graph G, based on which we propose a lower
bound for the Kirchhoff index for RT(G) with respect to the number of
vertices and the vertex degree.
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