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ABSTRACT. Let x be a binary graph operation. We call » a Cayley
operation if 'y «I"z is a Cayley graph for any two Cayley graphs I'y
and I';. In this paper, we prove that the cartesian, (categorical or
tensor) direct and lexicographic products are Cayley operations. We
also investigate the following question:

Under what conditions on a binary graph operation x and Cayley
graphs I'y and I'z, the graph product I'; x 'z is again a Cayley
graph.

The latter question is studied for the union, join (sum), replacement
and zig-zag products of graphs.

1. INTRODUCTION

Let G be a non-trivial group and let S be a non-empty subset of G
such that 1 € Sand S = §~! := {s7! | s € S}. The Cayley graph
I = Cay(G, S) is the graph whose vertex set V(I') is G, and the edge set
E(D)is {{g,95} | g € G,s € S}. Also Cayley graph Cay(G, S) is connected
if and only if S generates G, see [3, 6].

In [2] it is proved that the Cayley graph of the standard semi-direct
product A x B of finite groups A, B with certain choices of generators for
these three groups is essentially the zig-zag product of the Cayley graphs
of A and B. This invention used to construct expander graphs (see [2,
Theorem 4.2]).

We are motivated by the latter result to study the following question.

Question 1.1. Let x be a binary graph operation and I'1, 'y be two Cayley
graphs. Under what conditions on * and Cayley graphs I'1,I'2, the graph
product T'; x 'z is again a Cayley graph?

We prove that the cartesian product of any two Cayley graphs is again a
Cayley graph (see Theorem 3.1, below). The latter conclusion is also valid
for lexicographic and tensor products (see Theorems 4.1 and 6.1, below).
These such binary operations are called Cayley operations. For a binary
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graph operation x, we call x a Cayley operation if I'y I'; is a Cayley graph
for any two Cayley graphs I'; and I';. Of course, not all graph products are
Cayley: we find necessary and sufficient conditions on two Cayley graphs
I’y and I'; such that I’y » T’y is again a Cayley graph, where « is either the
union or sum products of graphs (see Theorems 7.2 and 8.1, below). We
also study Question 1.1, where « is the replacement or zig-zag operation.

All graphs considered in this paper are finite and simple. All graph
operations considered here are well known and we refer the reader to [4]
for more information on composite graphs.

In Section 2 we recall and fix some notation and results which we will
use in the sequel. In Sections 3 to 9 we study Question 1.1 for cartesian
product, categorical product, strong product, lexicographic product, union,
sum and replacement and zig-zag of two graphs.

2. Preliminaries

In this section, we give some necessary notation and results to define
ceratin graph products.

For any graph I', we denote by V(I') and E(T) the set of vertices and
edges of T, respectively.

Let A and B be two permutation groups acting on sets X and Y, re-
spectively.

(a) The direct product A + B is a permutation group on the disjoint
union X UY whose elements are ordered a + b for a € A and b € B, the

action is given by
_Joat) teX
(a+b)t_{b(t) tey

(b) The Cartesian product A x B is a permutation group on X x Y
such that for any z € X, y € Y we have

(a,b)(z,y) = (a(z), b(y))
(c) Foranya€ A, b€ Bandz € X, define a*(z',y') = (a(z'),y’) and
(o o) = d (E:0F) z=2
e ) ={ G o2
for all (z’,3¥') € X xY. Then the wreath product Al B is defined as follows:
Al1B=(a"b;|a€ A be B, z€X).

A permutation group A on a set X is called transitive if for each pair
z,y € X there exists a € A such that a(z) = y. If, in addition, such a
is unique for each (ordered) pair (z,y), then the permutation group A is
called regular.
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For g € G, the mapping p, : G = G, defined by p,(z) = gz, is called
the (left) translation of I' = Cay(G, S) by g. The set

G ={ps | 9 € G}

is a subgroup of the full automorphism group Aut(I') acting regularly on
V(I). We may identify G with G, in particular, Aut(T') is transitive on
V(I). The following characterization of Cayley graph is well-known (see

(8))-

Theorem 2.1. Let I be a graph. The automorphism group Aut(l') has a
subgroup G which acts regularly on V(T') if and only if T is a Cayley graph
Cay(G, S) for some subset S of G.

3. Cartesian product

For given graphs G, and G, we define their cartesian product G10G2
as the graph whose vertex set is V(G1) x V(G2) and two vertices u =
(u1,u2) and v = (v;,v2) are connected by an edge if and only if u; =
v; and {uz,'vz} € E(Gz) or us = vy and {ul,vl} € E(Gl) Obviously,
|E(G,0G3)| = nimg + nagm,, where n; and m; denote the number of
vertices and edges of G;, respectively. The cartesian product of two graphs
is connected if and only if both components are connected. We now prove
that O is a Cayley operation.

Theorem 3.1. Let G = Cay(A, S4) and H = Cay(B, Sg) be two Cayley
graphs. Then the Cartesian product GOH is the Cayley graph of the direct
product A x B and with the generating subset (S4,1) U (1,S5p).

Proof. By Theorem 2.1, it is enough to show that there exists a subgroup Y’
of Aut(GOH) isomorphic to A x B acting regularly on V(GOH) = V(G) x
V(H). According to the definition of Ay and By, we have A < Aut(G)
and B < Aut(H). It is easily to see that for (a,b) € A x B we have
(Paspb) € Aut(GOH). Let (z,y),(z',y") € V(G) x V(H); since A and B
acts regularly on V(G) and V(H), respectively. Then there exist unique
pa and py such that p,(z) = 2’ and ps(y) = y'. Thus A x B acts regularly
on V(GOH) and by Theorem 2.1 we have

Cay(A,Sa)DCay(B,SB) = Cay(A x B,T)
for some subset T' of A x B. It is easy to see that T may be taken as
{(s,1),(1,¢)|s € Sa,t € Sg}. This completes the proof. O
4. Direct product

For any two graphs G; and G2, we define their direct (or categorical)
product Gy x G2 as the graph on the vertex set V(G,) x V(G2) and two
vertices u = (u;,ue) and v = (v1,v2) connected by an edge if and only
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if {u1,v1} € E(G1) and {uz,v2} € E(Gs). Obviously, |E(G; x G3)| =
2mym,, where m; denote the number of edges of G;. The direct product of
two graphs is sometimes also called tensor product or categorical product
and is denoted by G; xGs.

Similar cartesian product, direct product is Cayley operation and can
preserve Cayley graphs. In this product Az x By, is subgroup of Aut{G x H)
that acts regular on V(G x H) and we have

Theorem 4.1. Let G = Cay(A,S4) and H = Cay(B, Sg) be two Cayley
graphs, then the direct product G x H is the Cayley graph of the direct
product A x B and with the generating subset S4 x Sp.

Proof. The proof is similar to 3.1. O

5. Strong product

The strong product G; ® G3 of two graphs G; and G is the graph
with vertex set V(G;) x V(G2) in which v = (u;,uz) is adjacent with
v = (v1,v2) whenever ({u;,v1} € E(G1) and uz = ) or (u; = v; and
{uz2,v2} € E(G?)) or ({w1,v1} € E(G:) and {uz,v2} € E(G2)). In this
product the number of edges is equal to nymy + namy + 2mims.

Definition 5.1. Let G and H be two graphs such that V(G) = V(H).
Then we define graphs GUH and GNH as follows.

V(GUH) = V(GNH) = V(G) and E(GUH) = E(G)UE(H), E(GNH) =
E(G)Nn E(H).
Lemma 5.2. If G = Cay(A,S) and H = Cay(A,S'), then GUH =
Cay(A,SUS") and if SNS' #0, then GAH = Cay(A,SNS").
Proof. Let e be an edge of Cay(A,S U S’). Then there exist a € A and
s € SU S’ such that e connects two vertices a and as. Since s € SU S,
then s € S or s € S’, which means that e € E(G) or e € E(H). Therefore,
by definition, e € E(GUH). Conversely, in the similar way, any edge of
E(GUH) is an edge of Cay(A, SUS'). This result together with V(GUH) =
V(Cay(A,SUS')) = A means that GUH = Cay(A,S U S’). Similarly we
can see that GNH is Cayley graph and GNhH = Cay(4,5N S"). a

Theorem 5.3. Strong product is a Cayley operation.
Proof. Let G = Cay(A,S4) and H = Cay(B, Sg) be two Cayley graphs;
then by Theorems 3.1 and 4.1 we have
GOH = Cay(A x B,(54,18)U(14,SB))
GxH = Cay(AxB,(S4,S8B))

Therefore we have G ® H = (GOH)U(G x H). Now Lemma 5.2, implies
that; G ® H is a Cayley graph. ]
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6. Composition

The composition G;[G2] of graphs G1 and G2 with disjoint vertex sets
and edge sets is again a graph on vertex set V(G;) x V(G2) in which
u = (uy,u2) is adjacent to v = (v;,v2) whenever u; is adjacent to v; or
u; = v; and us is adjacent to vo. We have G1[G2] = G2[G1] if G; and
G, are complete graph or totally disconnected graph. The easiest way to
visualize the composition G1[G?] is to expand each vertex of G into a copy
of G2, with each edge of G, replaced by the set of all possible edges between
the corresponding copies of G;. Hence the number of edges in G1[G3] is
given by |E(G1[G2])| = nimz + min}. The composition of two graphs is
sometimes also called lexicographic products and it is denoted by G o G2,
see [1].

Theorem 6.1. Let G = Cay(A,S) and H = Cay(B,T) be two Cayley
graphs; then the composition G[H] = Cay(A x B,S x BU {14} x T).

Proof. It is an easy exercise to show that G[H] = (GOH) U (G x K|v(m),
X Y

where Ky (x)) is the complete graph with |V (H)| vertex. If we show that

X and Y are Cayley graphs then Lemma 5.2 completes the proof. Assume

K\yzy = Cay(B,B — 1p) then by Theorems 3.1, 4.1 we have G[H] is

a Cayley graph and a similar proof to Theorem 3.1, implies that G[H] =

Cay(Ax B,Sx BU{14} xT). O

7. Union

The simplest operation we consider here is a union of two graphs. A
union G; U G2 of two graphs G; and G2 is the graph with the vertex set
V(G1) U V(G2) and the edge set E(G1) U E(G;). Here we assume that
V(G1) and V(G;) are disjoint. If G; and G, are two connected graphs
then, it is well-known that

S2 1 Aut(Gh) G, =Gy
Aut(Gy) + Aut(G3) else

Lemma 7.1. If two permutation groups A and B acting transitively on the
sets X and Y, then the wreath product Al B acts transitively on X X Y.

Aut(GLUG») = {

Proof. Let (z,y),(z',y’) be two arbitrary elements of X xY; we show there
ist € Al B that t(z,y) = (z',y'). Since z,2' € X (y,y' € Y) and A acts
transitively on X (B acts transitively on Y'), then thereis a € A (b € B)
that a(z) = z' (b(y) = y'). Thus for t = b},a* we have

t(z,y) = b.a”(z,y) = b (a(z),y) = bz (2',9) = (¢, b(y)) = (=',¥')
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Theorem 7.2. Let G and H be two graphs. Then Aut(G U H) acts tran-
sitively on V(GUH) ifand only if G= H

Proof. If G = H then Aut(GU H) = S ! Aut(G) and by Lemma 7.1,
Aut(G U H) acts transitively on V(G U H).

For the converse, let Aut(GUH) act transitively on V(GUH). G 2 H
then Aut(G U H) = Aut(G) + Aut(H) and for z € X, y € Y there is no
t € Aut(G) + Aut(H) such that ¢(z) = y; a contradiction. This completes
the proof. o

Lemma 7.3. If permutation groups H and K acts regularly on sets X
and Y, respectively. Then the wreath product H} K contains a subgroup T
acting regularly as a permutation group on X x Y.

T={kyks,...k;h" |heH, keK, | X|=n}
Proof. we show now that T is subgroup of H1 K. To see this, assume
t=k; ki, ...k h*andt' =K', k';,...k';_h'" be two arbitrary elements
of T'; thus we have:
t' = kpki,...K Rk KL, . K R
= k3 ki, ...k (hK'S K, .. k' h*"T)R*R”

T2

=1
= Kk .k (KK KN AR

Z1T2
w« h*71 e R « h*? *
= KLk kR TRk M e

= K3k, K K et K ne 1o - - K e gy (RR)”

= (kK), (kK')3, - (K3, (AR € T
€K €H
If (a,b),(a’,b’) be two arbitrary elements of X x Y then a,a' € X and
H acts regularly on the set X. Thus there is a unique h € H such that
h(a) = a’; similarly there is a unique k& € K such that k(b) = &’. Therefore
@’ € X and for some j € [n] we have o’ = z;. It is easy to see that
k:,kz, ...k, ...k; h" is a unique in T and

koKl .. k. kD h(a,b) = kLK. kS ...kS (h(a),b)

Ty T2 *
= ky(a',b) = (a', k(b))
~—
b
O

Note that if G = Cay(A,S) then Ay acts regularly on V(G) = A. By
Lemma 7.3 we have the following corollary.
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Corollary 7.4. If G = Cay(A,S) then group S, 1 Aut(G) acts transitively
on [n] x {@1,az,...an}, where [n] = {1,2...n} and A = {a1,a2,...an}.
Therefore by Lemma 7.3, the wreath product ((123...n)) 1 AL contains a
subgroup T acting regularly as a permutation group on [n] X A, where

T ={ a1 Paz---Pan® | ¥ €((123...7)), 4, € AL }
In the next theorem we show that the union is a Cayley operation when-
ever all component are isomorphic.

Theorem 7.5. If G; = Cay(Ai,Si), 1 <i<t. Then G = U:=1 G; is
Cayley graph if and only if G; = G, for any i,j € [t].

Proof. If for i and j we have G; 2 G;j. Then by Theorem 7.2, Aut(G)
has not subgroup that acts transitive on |Ji_, 4;. If all component are
isomorphic with graph H then Aut(G) = S, Aut(H). By before corollary
there is subgroup of Aut(G) that acts regular on V(G). In this case union
is cayely operation. O

8. Sum (join)

A sum G; + G of two graphs G; and G2 with disjoint vertex sets V(G1)
and V(G2) is the graph on the vertex set V(G1) UV (G;) and the edge set
E(G1) UE(G2) U { {u1,u2} | w1 € V(G1),u2 € V(G2)}. Hence, the sum
of two graphs is obtained by connecting each vertex of one graph to each
vertex of the other graph, while keeping all edges of both graphs. The sum
of two graphs is sometimes also called a join, and is denoted by G;1VGa.
Therefore G; + G2 = G, UG:.

If G, and G, be two graphs then Aut(G, + G2) = Aut(G;: +Gz2) =
Aut(G1UG?), on the other hand Aut(G1) + Aut(G2) = Aut(G))+ Aut(Gz).
Then if no component of G, is isomorphic with a component of Gz, then
Aut(Gy + G2) = Aut(G)) + Aut(G2) and we have next theorem:
Theorem 8.1. Let G = Cay(A,S) and H = Cay(B,T), then G + H is
Cayley graph if and only if one of the following two conditions is satisfied:

(i) G and H are two complete graphs.

(i) G=H.

Proof. f S=A-14and T = B—1p then G & K4 and H = K|p|. Thus
G+ H = K| 514B), that it is a Cayley graph. Also we know Aut(G + H) =
Aut(GUH) and by Theorem 7.5, Aut(G U H) has regular subgroup if and
only if G & H. m]

9. Replacement and Zig-Zag

In this section we describe the replacement and Zig-zag product and
investigate Cayley operation for zig-zag and replacement product.

307



Let G be any (n, k)-graph, G is k-regular with n vertex. By a randomly
numbering of G we mean a randomly numbering of the edges around each
vertex of G by the numbers in {1,...,k}. More precisely, a randomly
numbering of G is a set g consisting of bijection maps @& : Ng(z) - [k]
for any z € V(G), where Ng(z) = {y € V(G) | zy € E(G)}.

Example 9.1. Suppose G = Cay(A, S), then the edges around each vertex
of G are naturally labeled by the elements of S and we have: if zy € E(G)
then % (y) = f(z~'y) where f is a bijection map from S to [|S]).

Definition 9.2. Let G be an (n, k)-graph and let H be a (k, k')-graph
with V(H) = [k] = {1,...,k} and fix a randomly numbering yg of G. The
replacement product G®,,, H is the graph whose vertex set is V(G) x V(H)
and there is an edge between vertices (v, k) and (w,!) whenever v = w and
kl € E(H) or vw € E(G), p&(w) = k and pg(v) = l. Also the zig-zag
product of two graphs G' and H with above properties show with GZ,, H
and define as follow:

The vertex set GZ,,H is V(G) x [k] and two vertices (u,i) and (v, j)
are adjacent if {u,v} € E(G) and there are ¢’,j' € V(H) = [k] such that
{6, 4,3"} € E(H) and g (v) = #, 04 (u) = '

Note that the definition of G®,, H and GZ,, H clearly depends on ¢g.
It follows from the definition that G®,,, H and GZ,, H are a regular graph
and in fact G®,,; H is a (nk, k' +1)-graph and GZ, H is a (nk, k'?)-graph
(see [2, 5, 7]).

Definition 9.3. An action of a group B on a group A is a group homomor-
phism 0 : B — Aut(A). In other words, each element b € B corresponds to
an automorphism 0, of A. Let A x B set of pairs (a,b) of elements a € A
and b € B, with the following operation for the product of two elements

(a,b)(a',b") = (a.6s(a"),b.d")

Then A » B forms a group of order |A||B| with identity element (14,15)
and inverse (a,b)~! = (6_p(a~'),b~!). This group is called the semidirect
product of A and B with respect to the action 8.

Note the direct product of two groups A x B is a special case of a
semidirect product where 6, is the identity automorphism of A for all b € B.

We now consider the case when the two components of the product
graph be Cayley graphs of the type G = Cay(A,S) and H = Cay(B,T).
Furthermore, suppose that B acts on A in such a way that S = af =
{ 6s(a) | b € B} for @ € S. So the edges around each vertex of G are
naturally labeled by the elements of B for example if zz' € E(G) then
z-'z’ € S = af. This enables us to define the replacement and zig-zag
products of G and H. In this case for any edge (z,y)(z',y") of GRH
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we have £ = z’ and yy' € E(H) or zz' € E(G) and ¢*(z') = 6,(a),
¢* () = b, (a).

Theorem 9.4. Let G = Cay(A,S) and H = Cay(B,T) be two Cay-
ley graphs and S = aP, then G®H = Cay(A » B,M) and GZH =
Cay(A » B,M'). Where M = {(14,8) U (a,18) | s € S} and M' =
{(IA,S)(Q, 13)(1.413’) I 8, s'€ S}

Proof. The only important detail to prove is that we show A B is subgroup
of Aut(G®H) and acts regularly on V(G®H) = Ax B. For any a € A and
b € B define (g ) (z,y) = (abs(z), by), we first show ¢(a ) € Aut(G®H)
and after A @ B = {p(,) | @ € A,b € B} is regular in A x B. We prove
if (z,y)(z',y') € E(G®H) then (aby(z), by)(abs(z'),by’) € E(GOH). It
is easily to see that if = z' and y~'y’ € T then afy(z) = abs(z') and
by~ by =y~ 'y’ € T, also if zz' € E(G) then by S = o we have:

afs(z) " aby(z') = 6y(z) "106(z") = Oh(z™'a') = B(z'z)) € S
€S
Therefore from ¢*(z') = 6,(a) we have z' = 26, (a),
afy(z') = aby(a8, () = a(Bu(z)Bu8y (@)) = aBh(z)Psy ()

Thus ¢**(az’) = Oyy(a) and (afs(z),by)(abs(z'), by’) € E(G®H). Let
(z,¥),(z',y') € V(G®H), we show there is unique ¢(a, b) that @(a ) (T, y) =
(z',y'). Because y,y' € V(H) and B acts regularly in V(H), then there is
unique ¢, € By, that pu(y) = by =y'. If a = 2'8(z~) then

‘p(a,b)(xa y) = (aeb(z)a by) = (xlob(z—l)ob(x)vy') = (x')yl)

Similar proof to Theorem 3.1, implies that generating subset is (14,S5) U
(a,1p). Similarly GZH = Cay(A x B, M'),where

M' = {(14,8)(e,18)(14,5") | 5,5’ € S}.
a
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