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Abstract

For two vertices u and v of a nontrivial connected graph G, the
set I{u,v] consists of all vertices lying on some u — v geodesic in G,
including u and v. For S C V(G), the set I[S] is the union of all sets
Ifu,v) for u,v € S. A set S C V(G) is a connected geodetic set of
G if I[S} = V(G) and the subgraph in G induced by S is connected.
The minimum cardinality of a connected geodetic set of G is the
connected geodetic number g.(G) of G and a connected geodetic set
of G whose cardinality equals g.(G) is 2 minimum connected geodetic
set of G. A subset T of a minimum connected geodetic set S is a
forcing subset for S if S is the unique minimum connected geodetic
set of G containing T. The forcing connected geodetic number f.(S)
of S is the minimum cardinality of a forcing subset of S and the
forcing connected geodetic number f¢(G) of G is the minimum forcing
connected geodetic number among all minimum connected geodetic
sets of G. Therefore, 0 < f.(G) < 9.(G). We determine all pairs a, b
of integers such that f.(G) = a and g.(G) = b for some nontrivial
connected graph G. We also consider a problem of realizable triples
of integers.
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1 Introduction

All graphs considered in this paper are finite, undirected, loopless, and
without multiple edges. We refer the reader to the book [14] for graph
theory notation and terminology not described in this paper. For vertices
v and v in a connected graph G, the distance dg(u,v) (or simply d(u,v))
is the length of a shortest u — v path in G. An u — v path of length d(u,v)
is called a u — v geodesic. The geodetic interval I[u,v] is the set consisting
of u, v, and all vertices lying on some u — v geodesic in G, while for a
set § C V(G), the geodetic closure of S is the set I[S] = U, ,es[us7].
A set S of vertices is called a geodetic set of G if I[S] = V(G) and the
minimum cardinality of a geodetic set of G is the geodetic number g(G) of
G. The geodetic sets of connected graphs were introduced in [7] by Harary
et al. as a tool for studying metric properties of connected graphs. The
complexity of the problem of finding the geodetic number has been studied
in (1, 5]. Dourado et al. [5] have shown that the corresponding GEODETIC
SET decision problem, namely “given a nontrivial connected graph G and
an integer k < |V(G)|, is there a set S C V(G) with |S| = k such that
I[S] = V(G)?” remains NP-complete even when restricted to chordal and
chordal bipartite graphs.

For a nontrivial connected graph G, a set S C V(G) is a connected
geodetic set of G if S is a geodetic set and the subgraph of G induced by S
is connected. The connected geodetic number g.(G) of G is the minimum
cardinality of a connected geodetic set of G. This concept was introduced
and studied independently by Mojdeh and Rad (8] and Santhakumaran et
al. [9, 10]. A connected geodetic set whose cardinality equals g.(G) is called
a minimum connected geodetic set. A subset T of a minimum connected
geodetic set S is a forcing subset for S if S is the unique minimum connected
geodetic set of G containing T. The forcing connected geodetic number
fe(S) of S is the minimum cardinality among all forcing subsets of S and
the forcing connected geodetic number f.(G) of G is the minimum forcing
connected geodetic number among all minimum connected geodetic sets of
G. In particular, f.(G) = 0 if and only if G has exactly one minimum
connected geodetic set. Forcing concepts have been widely investigated
in graph theory, such as forcing convexity numbers [4], forcing geodetic
numbers [3, 11, 12, 13, 15|, and forcing connected geodetic numbers [10].
The forcing geodetic sets and the forcing geodetic number of a graph were
introduced by Chartrand and Zhang [3].

If G is a nontrivial connected graph, then V(G) is certainly a connected
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geodetic set of G and so

2 < g:(G) < |V(G)I. 1)
Furthermore, by the definition of f.(G), it follows that

0 < fe(G) < 9e(G). (2)
It is then natural to ask which pairs of integers are realizable as

A : the connected geodetic number and the order, or
B : the forcing connected geodetic number and the connected
geodetic number,

respectively, of some graph. Problem A can be answered fairly easily with
an additional definition and result. A vertex in a graph G is simplicial if
the subgraph in G induced by its neighborhood is complete. In particular,
every end-vertex is simplicial.

Lemma 1.1 [9] Let G be a nontrivial connected graph. (a) If v is either
a cut-vertex or a simplicial vertex of G, then v belongs to every connected
geodetic set of G. (b) g.(G) =2 if and only if G = K.

Theorem 1.2 A pair a,b of integers is realizable as the connected geodetic
number and the order, respectively, of some nontrivial connected graph if
and only if either 2<a=bor3 <a<hb.

Proof. By Lemma 1.1(b), there is a connected graph of order b whose
connected geodetic number equals 2 if and only if b = 2. For @ > 3, let
G =K ifa =bwhile G =K,_1V Kp—ot1 ifa < b. Then G is a connected
graph of order b with g.(G) = a. Thus the result follows by (1). n

In contrast, only a partial result has been obtained for Problem B.

Theorem 1.3 (10] For every pair a,b of integers with 0 < a < b—4, there
exists a connected graph G such that f.(G) = a and g.(G) =b.

In this note we present in Section 2 a complete answer to Problem B
by determining all pairs a, b of integers for which there exists a nontrivial
connected graph G with f.(G) = a and g.(G) = b. We also investigate
another realization problem in Section 3.
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2 The result on realizable pairs

Recall that a nontrivial connected graph G has a unique minimum con-
nected geodetic set if and only if f.(G) = 0. Thus the following is an
immediate consequence of Lemma 1.1(a).

Corollary 2.1 For each integer n > 2, fo(K,) =0 and g.(K,) =n.

Suppose that G is a nontrivial connected graph and (f.(G), g.(G)) =
(a,b). Then by (1) and (2) it follows that b > 2and 0 < a < b. Furthermore,
Lemma 1.1(b) implies that either (a,b) = (0,2) or b > 3. It turns out that
the converse is also true. Thus the following is the complete description of
pairs a, b of integers such that f.(G) = a and g.(G) = a for some graph G.

Theorem 2.2 A paira,b of integers with0 < a < b and b > 2 is realizable
as the forcing connected geodetic number and the connected geodetic number,
respectively, of some nontrivial connected graph if and only if either (a,b) =
(0,2) orb > 3.

Proof. We consider the following four cases.

Case 1. a = 0. Then for each b > 2, the complete graph of order b has
the desired property.

Case 2. 1 <a <b—2. Let G, be the connected graph of order a + b
with V(Gep) = ViUV U---UVoyo, where [V} =b—a—1, |Vo42| =1, and
Vi = {u;, v} for 2 < i < a+ 1, such that two vertices z € V; and y € V
(1 £14,j < a+2) are adjacent if and only if |i — j| < 1. If S is a connected
geodetic set of G, 3, then V3 UV,42 C S by Lemma 1.1(a). Furthermore,
|SNVi| > 1 for 2 <4 < a+1since Gy (5] is connected. Thus g.(Gap) = b.
Since §* = V1UV,42U{u2,us, ..., us4+1} is clearly a connected geodetic set,
it follows that g.(G,,5) = b. Next let S be an arbitrary minimum connected
geodetic set. If T C Sand TNV, = @ for some i (2 < i < a+ 1), then
there exist at least two minimum connected geodetic sets containing T as
a subset and so T is not a forcing subset for S. Therefore, if T is a forcing
subset for S, then T contains one of u; and v; for 2 < i € a + 1, that is,
|T) > a. Since T* = {ug,us,...,uqs+1} is a forcing subset for S*, it follows
that fc(Ga,b) =a.

Case 3. b is odd and a € {b—1,b}. First suppose that b = 3. Then one

can verify that (fc(WlA)’gc(Wl.‘l)) = (2,3) and (fC(C4)’QC(C4)) = (3a 3)’
where W 4 = C4 V K is the wheel of order 5.
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Therefore, assume that b = 2n + 1 for some integer n > 2. We first
construct the connected graph Gap 2n+1 of order 3n + 1 from n copies
P, P,,...,P, of paths of order 3, where P, = (u;,v;,w;) for 1 < i <
n, by adding a new vertex z and joining z to u; and w; for 1 < i <
n. Since §* = V(Gan an+1) — {v1,v2,...,v,} is a connected geodetic set,
9:(Gana2nt+1) < |S*| = 2n + 1. On the other hand, if S is an arbitrary
connected geodetic set, then z € S and at least two of the three vertices u;,
v;, and w; belong to S for 1 < ¢ < n. Therefore, |5} > 2n+ 1, implying that
9c(G2n,2n+1) = 2n+1. Furthermore, we see that S is a minimum connected
geodetic set of G2y, 2n+1 if and only if (i) z € S and (ii) |{ui, vi, ws}NS| =2
for 1 <i < mn. If T is a forcing subset for a minimum connected geodetic
set S, then |{u;,v;,w;} NT| =2 for 1 < i < n. Thus |T| > 2n. Since
T* = 8* —{z} is a forcing subset for $*, it follows that f.(Gan2n+1) = 2n.

Now obtain the graph Gan41,2n+1 from Gap, 2541 by adding a new vertex
y and joining y to u; and w; for 1 € ¢ < n. Then every connected geodetic
set S contains one of z and y and at least two of the three vertices u;, v;, and
w; for 1 < i < n. Since S* is a connected geodetic set, gc(Gan+1,2n+1) =
2n + 1. In fact, S is a minimum connected geodetic set if and only if (i)
{z,y} N S| =1 and (ii) |{ui,vi,ws} N S| =2 for 1 < i < n. Therefore, for
an arbitrary minimum connected geodetic set S, a subset T C S is a forcing
subset for S if and only if T = S. Thus, fe(Gon+1,2n+1) = 9e(Gon+1,2041) =
2n + 1.

Case 4. b is even and a € {b —1,b}. Suppose first that b = 4. Then
we have (fc(K2DP3)1gc(K2DP3)) = (3,4) and (fc(C5)agc(C5)) = (4,4),
where K3(P; is the cartesian product of K; and P;.

Hence, assume finally that b = 2n for some integer n > 3. We first
construct the connected graph Ga,_1,2, of order 3n — 1 from a path P =
(uo, vo, wo, ZTo) of order 4 and n—2 copies Py, P,, ..., P,_5 of paths of order
3, where P; = (u;,v;,w;) for 1 £ i < n —2, by adding a new vertex = and
joining z to (i) up and ¢ and (ii) u; and w; for 1 < i < n—2. Also, construct
the graph Gan,2n from Ga,_1,2, by adding a new vertex y and joining y to
(i) uo and g and (ii) »; and w; for 1 < i < n—2. Then one can verify in a
similar manner as in Case 3 that (fc(G’zn_l,z,,), gc(ng_llgn)) = (2n-1,2n)
and (fe(Gzn,2n)) 9c(G2n,2n)) = (2n,2n). This completes the proof. .
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3 On realizable triples

Recall the inequalities (1) and (2) in Section 1. Combining the two, we see
that if G is a nontrivial connected graph, then 0 < f.(G) < g.(G) < [V(G)].
This suggests another realization problem.

A triple (e,b,¢) of nonnegative integers is said to be realizable if there
exists a connected graph G for which f.(G) = a, g.(G) = b, and |V(G)| = c.
Therefore, if (a, b, c) is a realizable triple, then either (i) (a,b,¢c) = (0,2,2)
or (ii) 0 <a <b<cand b > 3 by Theorems 1.2 and 2.2.

As an example, we show that those triples (a,b,¢) of positive integers
with b > a 42 and ¢ > a + b are realizable.

Proposition 3.1 The triple (a,b,c) of positive integers is realizable if
b>a+2andc>a+b.

Proof. Consider the connected graph G of order ¢ with V(G) = V; U
VaU- - UVayg, where [Vi|=b—a-1,|Vol =c—a—-b+2, |V| =2 for
3<i<a+1 (ifa>2), and |Vo42| = 1, such that two vertices z € V; and
y€V; (1 £4,j <a+2) are adjacent if and only if |i — j| < 1. Then one
can verify that f.(G) = a while g.(G) = b. ]

Before continuing our discussion, let us present several additional re-
sults.

Lemma 3.2 Let G be a nontrivial connected graph. Then g.(G) = |V(G))|
if and only if every verter is either a cut-vertez or a simplicial vertez.
Furthermore, if g.(G) = |V(G)|, then f.(G) = 0.

Proof. Theorem 1.1(a) implies that g.(G) = |V(G)| is a necessary con-
dition. Also, if g.(G) = |V(G)|, then f.(G) = 0 since V(G) is the unique
minimum connected geodetic set. For the converse, suppose that G con-
tains a vertex v that is neither a cut-vertex nor a simplicial vertex. Then
there are two nonadjacent vertices x and y such that vz, vy € E(G). Hence
v belongs to an z — y geodetic and so V(G) — {v} is a connected geodetic
set of G. Therefore, g.(G) < |V(G)| - 1. n

Lemma 3.3 The connected geodetic number of a graph G equals 3 if and
only if either G = K3 or G = K2V H for some graph H.

Proof. The necessity of g.(G) = 3 immediately follows. Suppose that
9c(G) = 3 and let S be a minimum connected geodetic set. If G[S] = K3,
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then clearly G = Kj;. Otherwise, G[S] is a path of order 3, say G(S] =
(v1,v2,v3). Therefore, each vertex in V(G) —~ {v;,v3} must be adjacent to
both v; and vs, which is the desired result. s

Corollary 3.4 IfG is a connected graph of order at least 4 with g.(G) = 3,
then f.(G) > 1.

We are prepared to determine all realizable triples (a,b,¢) where 0 <
a<2.

Theorem 3.5 Leta, b, and ¢ be integers with0 <a<b<candb>2. If
(a,b,c) is realizable, then either (a,b,c) = (0,2,2) or b > 3. Furthermore,

(a) (a,b,b) is realizable if and only if a = 0.

(b) (0,b,c) is realizable if and only ifb=c or4 <b<ec.
(¢) (1,b,¢) is realizable if and only if 3 <b < c.

(d) (2,b,c) is realizable if and only if 3 < b < c and c # 4.

Proof. We may assume that b > 3. We first verify (a). By Lemma 3.2, if
(a,b,b) is realizable, then a = 0. Also, Corollary 2.1 shows that (0,b,b) is
realizable for each integer b greater than 1. Furthermore, (c) is an imme-
diate consequence of (a) and Proposition 3.1.

For (b), we may assume that 3 < b < c by (a). If 4 £ b < ¢, then
consider the graph G obtained from H 2 K, _,4; by adding b — 1 new
vertices v;,v2,...,v_1 and joining (i) v1,vs,...,vp_2 to every vertex of
H and (ii) vs—1 to exactly one vertex of H. Then one can verify that G
is a connected graph of order ¢ with f.(G) = 0 and g.(G) = b. For the
converse, observe that the triple (0, 3, ¢) is realizable if and only if ¢ = 3 by
Corollary 3.4.

For (d), first one can verify that (2, b, 4) is not realizable by inspecting all
connected graphs of order 4. We therefore show that (2,4, ¢) is realizable
f3<b<candc>5 Ifb=3, thenlet G = Ky3.4 if ¢ # 6 and
G =Kj22ifc=6. If b > 4 and ¢ = b+ 1, then let G be the graph
obtained from the 4-cycle (v1,vg, v, v4,v1) by adding b — 3 pendant edges
at v;. If b > 4 and ¢ > b + 2, then the result follows by Proposition 3.1. =

Next we determine all realizable triples (3, b, ¢).

Lemma 3.6 Let G be a connected graph of order n > 4. Then f.(G) =
9c(G) = 3 if and only if G is (n — 2)-regular, that is, G = Ky3,... 2.
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Proof. It is straightforward to verify that f.(Kap2,. . 2) = gc.(Kap2,..2) =
3. Now assume that G is a connected graph of order n > 4 with f.(G) =
9:(G) = 3. By Lemma 3.3, there are two nonadjacent vertices = and y with
degz = degy = n — 2 and every 3-set containing z and y is a minimum
connected geodetic set of G. If A(G) = n — 1, then let z be a vertex whose
degree equals n — 1. Then {z,z} is a forcing subset for {z,y,z2} and so
fe(G) < 2. Therefore, A(G) = n—-2. If §(G) < n -3, then let z be
a vertex with degz = §(G). We claim that {z, 2} is a forcing subset for
{z,y,2z}. Assume, to the contrary, that there exists a minimum connected
geodetic set S = {z,2,y’} where ¥’ # y. Since zy’ € E(G) and G[S]
cannot be a triangle, it follows that zy’ ¢ E(G). Furthermore, every vertex
v € V(G) — {z,y'} must be adjacent to both z and y’. However, this is
impossible since degz < n — 3. Thus, we conclude that A(G) = §(G) =
n—2. ]

Corollary 3.7 IfG is a connected graph of odd order and g.(G) = 3, then
0<f(G)<2.

Theorem 3.8 Let b and ¢ be integers with 3 < b < ¢. The triple (3,b,c)
is realizable if and only if b > 4 or c is even.

Proof. By Lemma 3.6 and Corollary 3.7, the triple (3,3, ¢) is realizable
if and only if c is even.

For b = 4, first observe that the graphs Cs + e and Cg show that the
triples (3,4,5) and (3,4, 6) are realizable, respectively. For ¢ > 7, consider
the graph G of order c obtained from the 6-cycle (vy,vs,...,v6,v1) by
adding ¢ — 6 new vertices and joining each of these new vertices to the
three vertices vy, vs, and vs. One can then verify that f.(G) = 3 and
gc(G) =4.

Next suppose that b > 5. By Proposition 3.1, we may assume that
ce{b+1,b+2}. If c=b+1, then let G be the graph obtained from the
5-cycle (v1,vg,...,vs,v1) by adding b —4 pendant edges at v;. Ifc =042,
then let G be the connected graph with V(G) = VUV, U..- U V5, where
Vil = |Va]| = 1, |Va| = |V4| = 2, and |V5| = b — 4, such that two vertices
ze€V;and y € V; (1 <4,j <5) are adjacent if and only if either i = j =4
or |¢ — j| = 1. Then in each case, f.(G) = 3 while g.(G) = b. ]

Hence, it remains to investigate those triples (a,b,c), where 4 < a <
b < c. For a = 4, we have the following.
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Proposition 3.9 Let b and c be integers with 4 < b < c. The triple
(4,b,¢) is realizable if one of the following occurs: (a) b= 4, (b) > 9 and
c=b+1,(c)b>5andec>b+2.

Proof. For (a), observe that Cs has the desired property for the triple
(4,4,5) while K3 ._3 shows that (4,4, ¢) is realizable for ¢ > 6.

For (b), let G be the connected graph of order b + 1 obtained from the
5-cycle (v1,ve,...,Vs,v1) by adding b — 4 new vertices u;, ug, ..., up_q and
joining (i) u; to both v; and v;4; for 1 <4 < 4 and (ii) u; to both v; and
vgfor5<i<b-—4.

Finally, we consider (c). If b > 6 and ¢ > b + 4, then the result holds
by Proposition 3.1. If b > 5 and ¢ = b + 2, then let G be the connected
graph of order b + 2 obtained from the 7-path (v, vs,...,v7) by (i) joining
each of v; and vy to v4 and (ii) adding b — 5 pendant edges at v4 (if b > 6).
Similarly, if b > 6 and ¢ = b+ 3, then let G be the connected graph of order
b+ 3 obtained from the 9-path (v1,vs,...,v9) by (i) joining each of v; and
vg to v4 and (ii) adding b — 6 pendant edges at vy (if b > 7).

Thus it remains to consider the triples (4,5,c) where ¢ > 8. For the
triple (4,5, 8), let G be the connected graph of order 8 obtained from two
disjoint copies (v1, ve, v3,v4, v1) and (u1, ug, ug, ug, u1) of Cy by joining each
of v; and v to u; for 1 < ¢ < 4. For ¢ > 9, let G be the connected graph
of order ¢ obtained from the 4-cycle (vq,v2,vs,v4,v1) and H & K._4 with
V(H) = {uy,u2,...,u.—4} by joining (i) each of v; and v3 to both u; and

ug and (ii) each of v, and vy to the ¢ — 7 vertices ugz, uq,. .., Uc—s.
In each case, one can verify that G shows the realizability of the corre-
sponding triple. »

By inspecting all connected graphs of order 6 (see [6] pp.218-224), we
see that neither (4, 5, 6) nor (5, 5, 6) is realizable. Thus, we have only three
triples (4,b, c) whose realizability remain unknown, namely (4,b,b+ 1) for
6 < b < 8. In fact, for each integer a > 4, the triple (@, b,b+ 1) is realizable
with at most finitely many exceptions.

Proposition 3.10 The triple (a,b,b+ 1) of positive integers is realizable
ifb>2a+1.

Proof. Since the result has been verified for 1 < a < 4, assume that a > 5.
Let G be the connected graph of order b + 1 obtained from the (a + 1)-

cycle (vy,v2, . ..,Va+1,v1) by adding b — a new vertices u;, ug, ..., up—q and
joining (i) u; to both v; and v;4+; for 1 £ ¢ < a and (ii) u; to both v; and
V41 for a+1 < i < b—a. Then f.(G) = a while g.(G) = b. =
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In general, it is unknown which triples (a,b,b+ 1) with a < b < 2a
are realizable for a > 4. However, we are able to show that each triple
(a,a,a + 1) is not realizable if a > 5. In order to do this, we first present
an additional result. Let x£(G) denote the connectivity of G.

Lemma 3.11 If G is a nontrivial connected graph that is not complete,
then g.(G) < |V(G)| — &(G) + 1.

Proof. Since the result is immediate if G' contains cut-vertices, assume
that £ = k(G) 2 2. Let u and v be nonadjacent vertices in G. Thus by
Whitney’s Theorem, there are at least x internally disjoint u — v paths
each of which has length at least 2. Let Py, P,,..., P, be internally disjoint
u— v paths such that "7, |V(P;)| is minimum. Then for 1 < i < &, if the
first three vertices in P; are u,z;,¥:, then v # z; and uy; ¢ E(G). Thus
V(G) — {z1,%2,...,2x_1} is a connected geodetic set of G. ]

Theorem 3.12 If G is a connected graph and g.(G) = |V(G)| -1 2 5,
then fo(G) < 9.(G) — 1. Furthermore, if &(G) =1, then fo(G) < 9.(G)—2.

Proof. By Lemma 1.1(a), if G is a nontrivial connected graph containing
¢, cut-vertices and £, simplicial vertices, then f.(G) < g.(G) — (€1 + £2).
Therefore, it suffices to show that if G is a connected graph with g.(G) =
|[V(G)] —1 = 5, then G contains a simplicial vertex. By Lemma 3.11, we
may assume that x(G) € {1,2}.

If K(G) = 1, then let = be a cut-vertex and assume that deleting z
from G results in k components G,,Gy,...,Gk. Let S = V(G) — {v} be
a minimum connected geodetic set. Without loss of generality, we may
assume that v € V(G,). Note that each of G2,Gs,...,Gr must contain
vertices that are not cut-vertices. Furthermore, each of these vertices must
be a simplicial vertex since no proper subset of S is a geodetic set. Thus
f(€) S V(G| =1 V(@) — k=1 = gu(C) — k < g:(G) — 2.

We next assume that x(G) = 2. Thus §(G) > 2. If there exists a 2-
subset {1, 2} of nonadjacent vertices that is not a vertex cut of G, then at
least one of z; and z; must be a simplicial vertex since V(G) — {z1,z,} is
not a geodetic set. Therefore, assume that if {z,,z} is a 2-subset of V(G)
that is not a vertex cut, then =z, € E(G). Since g.(G) = |V(G)| -1 =5,
we may assume that A(G) > 3. Let vg be a vertex whose degree equals
A(G). Then there is a spanning tree T of G such that degrvo = A(T) =
A(G). Let Ng(vw) = Np(vo) = {v1,v2,...,va}, where A = A(G) 2> 3.
Furthermore, let u;,us,...,ua be end-vertices in T such that v; lies on
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the unique vo — u; path in T for 1 < i < A. Since no 2-subset of U =
{u1,uz,...,ua} is a vertex cut of G, it follows that G[U] is complete by
the assumption. This in turn implies that no two vertices in Ng(vp) form
a vertex cut of G and so every two vertices in Ng(vo) are adjacent in G
again by the assumption. Therefore, vo is a simplicial vertex in G. .

Corollary 3.13 The triple (a,a,a+1) is realizable if and only ifa € {3,4}.

For a > 5, we obtain the following by modifying the graphs constructed
in the proof of Theorem 2.2.

Proposition 3.14 The triple (a,b,c) of integers is realizable if 5 < a < b
and c > [a/2] +b.

Proof. Let Hy = |a/2]P; if a is odd and Hy = (a/2 - 2)P; + P, if a
is even. (Hence H; is a disconnected linear forest.) Obtain G from H,
by (i) adding Hz = K__[4/2]-b+2 and joining each vertex in Ha to every
end-vertex in Hy and (ii) adding Hs = K;_, and joining each vertex in Hj
to every vertex in Hz (if a < b). Then G is a connected graph of order ¢
with f.(G) = a and g.(G) = b. |

It appears that characterizing realizable triples is much more challeng-
ing than characterizing realizable pairs done in Theorems 1.2 and 2.2. We
conclude this section by summarizing the results obtained thus far on real-
izable triples.

Theorem 3.15 Let a, b, and ¢ be nonnegative integers. If (a,b,c) is
realizable, then 0 < a < b < ¢ and b > 2. Furthermore,

e (a,b,b) is realizable if and only if a = 0.

e (0,b,c) is realizable if and only ifb=cord <b<e.
e (1,b,c) is realizable if and only if 3 <b < c.

e (2,b,c) is realizable if and only if 3 < b < c and c # 4.

e (3,b,¢) is realizable if and only if (a) 4 <b<cor(b) b=3 andc is
even.

e (4,b,c) is realizable if one of the following occurs: (a) 4 =b < ¢, (b)
b>9andc=b+1,(c) b=>5andc>b+2. Also (4,5,6) is not
realizable.
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e (a,a,a+1) is realizable if and only if a € {3,4}.
o (a,b,b+1) is realizable ifa > 1 and b > 2a + 1.
o (a,b,c) is realizable ifa >1,b>a+2, andc> a +b.

o (a,b,¢) is realizable if a > 5 and ¢ > [a/2] +b.
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