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Abstract. A kernel in a directed graph D(V, E) is a set S of ver-
tices of D such that no two vertices in S are adjacent and for every
vertex u in V N\ S there is a vertex v in S, such that (u,v) is an
arc of D. The definition of kernel implies that the vertices in the
kernel form an independent set. If the vertices of the kernel induce
an independent set of edges we obtain a variation of the definition
of the kernel, namely a total-kernel. The problem of existence of a
kernel is itself a N P—complete problem for a general digraph. But
in this paper, we solve the strong total-kernel problem of an oriented
Circular Ladder and Mobius Ladder.in polynomial time.

Keywords: oriented graph, kernel, strong kernel number, N P-
complete, strong orientation

1 Introduction

The concept of kernel is widespread and appears in diverse fields such as
logic, computational complexity, artificial intelligence, graph theory, game
theory, combinatorics and coding theory (3, 4]. Efficient routing among a
set of mobile hosts is one of the most important functions in ad hoc wireless
networks. Dominating-set-based routing to networks with unidirectional
links is proposed in [1, 9]. A few years ago a new interest for these studies
arose due to their applications in finite model theory. Indeed variants of
kernel are the best properties to provide counter examples of 0 — 1 laws in
fragments of monadic second order logic (8].

A kernel [6] in a directed graph D(V, E) is a set S of vertices of D such
that no two vertices in S are adjacent and for every vertex u in V \ S there
is a vertex v in S, such that (u,v) is an arc of D. The minimum cardinality
of all possible kernels in a directed graph D is denoted by (D) and is called
the kernel number. Whereas an independent dominating set in an undi-
rected graph G(V, E) is a set S of vertices of G such that no two vertices of
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Figure 1: (a): v; = 2;(b): Kernel number =3

S are adjacent in G and for every vertex u in V' \. S, there is a vertex vin S,
such that there exist an edge between v and v in G. An independent dom-
ination number is the minimum cardinality of all independent dominating
sets of G and is denoted by 7;(G).The concept of kernels in digraphs was
introduced in different ways [10, 15]. Von Neumann and Morgenstern (15
were the first to introduce kernels when describing winning positions in 2
person games. They proved that any directed acyclic graph has a unique
kernel. Not every digraph has a kernel and if a digraph has a kernel, this
kernel is not necessarily unique. All odd length directed cycles and most
tournaments have no kernels (3, 4]. If D is finite, the decision problem of
the existence of a kernel is NP-complete for a general digraph [5, 14], and
for a planar digraph with indegrees < 2, outdegrees < 2 and degrees < 3
[7). It is further known that a finite digraph all of whose cycles have even
length has a kernel [12], and that the question of the number of kernels is
NP-complete even for this restricted class of digraphs {13].

In this paper we view the kernel problem from a different perspective.
In the literature, only the existence of kernel of a digraph G and its ap-
plications are extensively studied. Qur aim in this paper is to investigate
all strong orientations of a graph G and to determine the strong kernel
number of G. This number is different from the independent domination
number -; for undirected graphs where +; is the cardinality of a minimum
independent dominating set [2|. For the graph in Figure 1 (a), I’ = {3,4}
is an independent dominating set. Thus -y; = 2 where as it is easy to verify
that the kernel number is 3.

An orientation of an undirected graph G is an assignment of exactly one
direction to each of the edges of G. There are 2!E! orientations for G. An
orientation O of an undirected graph G is said to be strong if for any two
vertices z, y of G(O), there are both (z,y)-path and (y, z)-path in G(O)

16).
[ ]Let G be an undirected graph. Let O;(G) denote all possible orienta-
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tions of a graph G and O4(G) denote the set of all strong orientations of
G. For an orientation O € O, let G(O) denote the directed graph with
orientation O and whose underlying graph is G. The kernel number of
G(O) is denoted by «(G(O)).For convenience we write as x(0). We de-
fine the kernel number of G as follows.The kernel number of G is defined
as £;(G) = min {k(O) : O € O;(G)}. Similarly we define the strong ker-
nel number of G as x(G) = min{k(0) : O € O,(G)}. When there is no
ambiguity we refer to k4(G) as k,.

The strong kernel problem of an undirected graph G is to find a kernel K
of G(O) for some strong orientation O of G such that [K| = k,. An optimal
lower bound for k,(G) when G is a regular graph has been obtained in [11].

2 Total-Kernel in Oriented Circular Ladder
and Mobius Ladder

The definition of kernel implies that the vertices in the kernel form an
independent set. If the vertices of the kernel induce an independent set of
edges we obtain a variation of the definition of the kernel, namely a total-
kernel. Here, we prove that the strong total-kernel problem is polynomially
solvable for Circular Ladder and Mobius Ladder.

3 Lower Bound for Strong Total-Kernel Num-
ber for r-regular Graphs

A total-kernel of a digraph D(V, E) is a non-empty subset K of V' such that
K induces an independent set of edges and for every vertex u in V \ K,
there is a vertex v in K such that (u,v) is an arc of D. See Figure 2. The
minimum cardinality of all possible total-kernels in a directed graph D is
denoted by £(D) and is called the total-kernel number.

Let G be an undirected graph. For an orientation O € O, let the
total-kernel number of G(O) be denoted by £(G(O)). For convenience we
write £(G(O)) as £(0). We define the total-kernel number £, of G as
€.(G) = min{&(0) : O € O,(G)}. Similarly we define the strong total-
kernel number of G as £,(G) = min{£(0) : O € O,(G)}. When there is
no ambiguity we refer to £,(G) as §,. A strong total-kernel problem of an
undirected graph G is to find a total-kernel K of G(O) for some strong
orientation O of G such that |K| = &,.
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Figure 2: Diagramatic representation of a total-kernel

Notation 1 For S C V, let N*[S] denote the set of all vertices in S to-
gether with vertices on the outgoing edges incident with vertices of S. Sim-
ilarly let N~[S] denote the set of all vertices in S together with vertices on
the incoming edges incident with vertices of S.

A major break through in the study of total-kernel of graphs is the
following theorem which derives a lower bound for the strong total-kernel
number for r-regular graphs.

Theorem 2 Let G be an r-regular graph onn vertices. Then&, > [n/(2r—
Dl

Proof. Let O € O, and K be a total-kernel of G(O). By definition, the
vertlces of K induce an independent set of edges in G[K]. Consider an edge
"€ = (&, 7) in this set. Since G(O) is strongly connected, there are at most
r—1incoming edges and at least one outgoing edge at every vertex of G(O).
But an outgoing edge at u may be an incoming edge at v. See Figure 3.
Hence [IN“[{uw}]| < 2r— L As |V]=n,§, > [n/(2r-1)]. =

4 Strong Total-Kernel Problem in Oriented
Circular Ladder

Definition 1 A circular ladder CL(n) is the union of an outer cycle T'o :
U 2. unty and an inner cycle L'y : vyve...vnvy with additional edges uvi,
i=1,2,..,n called spokes. For convenience u,,us, ..., u, are represented by
1,2,...,n and vy, vy,...,vn byn+1,n+2,...,2n respectively. Forl <i,j <
n, we call the oriented spoke (i,n + 1), an inward spoke and the oriented
spoke (n + j,7) an outward spoke. See Figure 4.

340



p =
-

u hasr-1incoming edges v hasr-2incoming edges excluding u

Figure 3: |[N~[{u,v}]|=2r -1

Lemma 1 Let G be the circular ladder CL(n),n > 4 with an inward spoke
and an outward spoke. Let the outer cycle I'o and the inner cycle I'y be
oriented in the clockwise and anticlockwise direction respectively. All other
spokes are oriented arbitrarily. Then G is strongly connected.

Proof. Let & = (i,n+1) and & = (n+j,7) for some 4,5,1 < i,j < n
be an inward spoke and an outward spoke respectively. For u,v € V, we
claim that there exist directed paths from u to v and from v to u. Suppose
both u,v lie on I'p or Iy, then our claim is true since I'p is oriented in the
clockwise direction and I'; is oriented in the anticlockwise direction.

Suppose u lies on 'o and v lies on I';. See Figure 5. The directed
(u,7)-path on T in the clockwise direction followed by €7, followed by the
directed (n + ¢, v)-path on I'y in the anticlockwise direction is a path from
u to v. In the same way we trace out a directed path from v to u. The
directed (v, n + j)-path on I'; in the anticlockwise direction followed by ez,
followed by the directed (7, u)-path on I'p in the clockwise direction is a
path from v to u. Thus G is strongly connected. =

Lemma 2 For m £ 0 (mod 5), let t be the least positive integer such that
5|(m — 4t). Then t+ {24 = [m/5].

Proof. Let m =5k + 5,1 < s < 4. Then [m/5] = k+1.

It is enough to prove that ¢ + 1'—"—;-1‘1 =k+ 1L

Case 1 (m =1 (mod 5)):

Let m = 5k+1 for some integer k. Now 5|(m—4t) implies 5|(1—4t) which
inturn implies t = 4. Thus t + {2z40 =4+ B8 — 4 4 (k- 3) =k + 1.
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Inward spoke

Outer cyclely

Inner cycle [

> Outward spoke

Figure 4: CL(9), (2_,Tf) and (ﬁ,?)) represent inward spoke and outward
spoke respectively.

Case 2 (m =2 (mod 5)):

Let m = 5k+2 for some integer k. Now 5|(m—4t) implies 5|(2—4¢t) which
inturn implies ¢ = 3. ‘1‘hust+£-m;Jl =3+@°gﬁ1=3+(k—2)=k+1.

Case 3 (m = 3(mod 5)):

Let m = 5k + 3 for some integer k. Now 5|(m — 4t) implies 5|(3 — 4¢t)
which inturn implies t = 2. Thus t+{2z%) = 24 GE=8) — 94 (k—1) = k+1.

Case 4 (m = 4(mod 5)):

Let m = 5k + 4 for some integer k. Now 5|(m — 4t) implies 5/(4 — 4t)
which inturn implies ¢ = 1. Thust+£ﬂgﬁl =1+%=k+1

Thus the lemma is true in all cases. m

Theorem 3 Let G be CL(n),n > 4. Then &, = [2n/5].

Proof. Orient G as in Lemma 1. Since G is strongly connected, there is
at least one incoming edge and at least one outgoing edge at every vertex
of G. We note that two edges & = (p,4), & = (7, 8) of G are adjacent iff

(i)lp-rl=1land|g—s|=1,1<p,qr,s<norn+1<p,q,r,s<2n
See Figure 6.

(ii)lp—rl=1and |g—s|=n,1<p,gr<nandn+1< s < 2n. See
Figure 7 (a).

(iii) [p~r|=0and |g—s|=n—-1,1<p,gqr<nandn+1<s<2n
See Figure 7 (b).

(iv). [p—r|=n-land|g-s|=0,1<r<nandn+1<p,q,s<2n
See Figure 8 (a).
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Figure 5: Oriented Circular Ladder CL(9)

(V). [p—r|]=nand|g-s]=1,1<r<nandn+1<p,q,s < 2n. See
Figure 8 (b). :

(Vi) lp—r|=n+land|g—3]=0,1<p¢g,s<nandn+1<r<2n

(vii) |[p—r|=1and|g—s|=1,1<p,g,s<norn+1<r<2n

(viii) [p—r|=1end|g—s|=nn+1<pgr<2nandl<s<n

(ix) [p—r|=0and |[g—sj=n+1,1<s<nandn+1<pqr<2n

We consider two cases.

Case 1 (2n =0 (mod 5)):

Let K; = {5i — 4,5 — 3,n+ 5 — 2, n+51—1} 1 < i < n/5. Clearly
€ = (5i—4,5i—3) isan edge on I'p and f, (n+5i—2,n+5i—1) is an edge
onT;. Since|(n+ 5 —2) — (5¢ —4)] = n+2and |(n+ 5 — 1) — (5¢ — 3)| =
n+2, € and ?: are non-adjacent.

Now let K = UK;,1 <4 < n/5 We claim that K induces an inde-
pendent set of edges. Consider ¢, e_., € K. Then & = (5¢ — 4,5 — 3) and
ef = (5j—4,5j-3). Clearly |(55 — 4) — (5i —4)| = [5(j — )| =5]j —i| # L.
Similarly |(55 — 3) — (5i — 3)| = |5( — ¢)| = 5|7 — 4| # 1. Therefore € and
€; are not adj_agant. . .

Consider f; and f; € K. Then f; = (n+5i - 2,n+5i — 1) and f; =
(n+5j—2,n+55—1). Since |(n + 55 — 2) ~ (n+5z 2)| =5|j - #1and
[(n+5j-1)— ('n.+5z -1)|=5|j- z| #1, f, and j’_7 are non-adjacent

Consider €; and fJ € K. Then & = (5i — 4,5 — 3) and fJ (n+
5j —2,n+5j —1). Since |(n+5j—-2)— (5 —4)| = |[n+5(j —%) +2| #
n+1and |[(n+5i—1)—(5i—3)| = |n+5( —1)+2| # n+1,& and
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Figure 6: (5,9) = (5,1 +1),(73) = ({+1,i+ 3). For both cases (a) and
(b)7 |P"‘I‘| =1and Iq—sl =1

f, are non-adjacent. In the same way, consider f, and &; e € K. Then

=(n+5 —2n+5 —1) and & = (55 — 4,55 — 3). Clearly f, and
eJ are not adjacent since |(55 —4) —(n+5t —2)| = [n—5(j —i) + 2| #
n+1;|(55—3) - (n+5 —1)| = |n—5( —i) + 2| # n+ 1. Hence ?: and
e; are non-adjacent. This proves our claim.

The orientation of G yields one incoming and one outgoing arc at every
vertex of K;. As G is 3 regular, orient the third edge incident at every vertex
of K; as an incoming arc. See Figure 9 (a). Since 2n = 0 mod 5, there exist
an integer k such that k = 2n/5. Since K induces an independent set of
edges |K| = 2n/5.

Case 2 ( 2n #0 (mod 5)):

By lemma 1 we find the least positive integer ¢ such that 5|(2n — 4t).
Let (2n—4t)/5=r.

The set K’ = UK; where K; = {2i — 1,n+ 2 - 1},1 <4 < ¢ induce
non-adjacent edges in G as the edges are spokes in G.

We claim that K; = {2t + 55 — 4,2t +5j —3,n + 2t + 55 — 2,n +
2t +5j —1},1 < j < r/2 induce tvlc)w non-adjacent edges in G. Clearly

= (2t +5j —4,2t+5j—-3) and f; = (n+2t+5j —2,n + 2t + 55 —
1),1 < 7 < r/2 are edges in the outer cycle I'c and in the inner cy-
cle 'y respectively. Since |[(n+ 2t + 55 — 2) 2t + 53 4) =n+2 and
[(n+2t+5j—1)—(2t+5 —3)| =n+2, & and fJ are non-adjacent.

Now let K” = UKj,1 < j < r/2. We claim that K” induces an inde-
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4 p
P 7 q
. j+2 i+2

Figure 7: (a):(p,9) = (i,i + T),(ﬁé) = (m) where [p—7| =
Lig—s| =mn; (b): (p,9) = (i+1,i+_2)),(1ﬁ) = (z'+1,n+z'+f) where
lp—r|=0and|g—s|=n-1

pendent set of edges. Let € € K and f € K}, without loss of generality
let j < k.

Suppose € and 7 are on the outer cycle ['p. Then € = (2t+55—4, 2t+
5j~3) and T = (2t+5k—4, 2t+5k—3). Clearly | (2t + 5k — 4) — (2t + 5j — 4)]

= |6(k—-3j)| = 5|k—j| # 1. Sumla.rly |(2t+5k HN-(2+5-3) =
|5(k—35)| =5 |k 3 ;é 1. Therefore € and f are not adjacent

Suppose & and f are on the inner cycle I';. Then & = (n + 2t +
5]—2,n+2t+5j—1)andf (n+2t+ 5k — 2,n + 2t + 5k — 1). So
we have |(n+2t+5k-2)-(n+2t+5j-2)| = 5|k-j| #1. Sumlarly
(mn+2t+5k—1)—(n+2t+5j—1)] = 5|k—j| # 1. Hence € and f
are non-adjacent

Suppose e lies on the outer cycle T'o and f lies on the inner cycle I';.
Then & = (2t+5j—4, 2t+5j—3) and f = (n+2t-+5k—2, n-+2t+5k—1). The
conditions |(n +2t +5k ~2) — (2t +5j —4)| = [n+5(k—j) + 2| #n+1
and |(n+2t+5k-—l) —(2t+55-3)| =|n+5k—-17) +2| #n+1, imply
that € and f are non-adjacent. In the same way, nf € lies on the inner
cycle I'y and f on the outer cycle I'o, then € and f are non-adjacent.

Let K = K'UK". We claim that K induces an independent set of
edges. Let € € K’ and f € K",

Without loss of generality let € € K; and f € Kj,i < j. Then
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Figure 8 (a):(7,4) = (n+1, n+z+i) (73) = (G +1, n+z+i) where
p—rl =n—-1|g—s =0; (b): (7,4) = (n+i+1l,n+i+2),(#3) =
(i+1,n+i+i)where|p—-r|=n, lg—s| =1

€ =(@-1n+2%—1)and f = (2 +55 — 4,2 + 5j — 3). Clearly
[(2t+55 —~4) = (20 —-1)| = |2t + 55 — 2 - 3| £ 0.

Similarly [(2t + 55 —3) - (n+2i - 1)| = |2t +5j —n—2{ - 2| #n—1.
Therefore ¢ and 7 are not adjacent.

Suppose € = (2i —1,n+2i — 1) and f (n+2t+55-2,n+2t+5j5 —
1). Clearly |(n+2t+5j —2)— (2i —1)| = |n+2t+5j —2i — 1| # n— 1.
Sumlarly |(n+2t+ 55 — 1) = (n 4+ 2i — 1)| = |2t + 55 — 2i| # 0. Therefore

€ and f are not adjacent.

The orientation of G yields one incoming and one outgoing arc at every
vertex of K; and K. As G is 3 regular, orient the third edge incident at
every vertex of K; as an incoming arc. See Figure 9 (b). K induces an
independent set of edges and |K| = [2n/5], since 2n Z0 mod 5. m

5 Strong Total - Kernel Problem in Oriented
Mobius Ladder

Definition 2 The Mobius Ladder M, is the graph obtained from the ladder

P, x P, by joining the opposite end points of the two copies of P,. Labeling

the vertices of one copy of P, as 1,2,...,n and the other copy of P, as
n+1l,n+2..,2n. See Figure 10.
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Figure 9: Encircled vertices induce an independent set of edges, which form
a total - kernel in CL(10) and CL(9)

4 n-1 n
T —— [
n n+2  n+3  n+4 2n- 2n

Figure 10: Labeling of M,

Theorem 4 Let G be the Mobius Ladder M,, and Orient the cycle 1,2,3, ...,
n—1,n,2n2n-1,..,n+2,n+1,1 in the clockwise direction. Then O is
a strong orientation of G.

Proof. For u,v € V(G),1 < u,v < 2n. Cycle 1,2,...,n — 1,n,2n,2n —
1,...,n+2,n+ 1,1 is oriented in clockwise direction. Hence there exist a
directed path from u to v and v to u. Thus G is strongly connected. m

In the case of mobius ladder, we have the similar results to that of
circular ladder on strong total-kernel number. The result is true for n >
9.Therefore we manually verify the results for M,,, n < 9.

For n = 4,§, = 2. See Figure 11.

Theorem 5 Let G be M,,n > 4. Then §, = [2n/5].
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Figure 11: £, =2 in M;

Theorem 6 The total-kernel problem is polynomially solvable for oriented
circular ladder and mobius ladder.

6 Conclusion

In this paper we have determined the lower bound for the strong total-
kernel number for regular graphs and also provided the strong orientation
of circular ladder and mobius ladder. We have also determined their strong
total-kernel number and proved that the strong kernel problem is polyno-
mially solvable. It would be interesting to consider some more regular
graphs.
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