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Abstract

A spanning tree with no vertices of degree two of a graph is called
a homeomorphically irreducible spanning tree (or HIST ) of the graph.
It has been proved that every planar triangulation G with at least
four vertices has a HIST H [1]. However, the previous result asserts
nothing whether the degree of a fixed vertex v of G is at least three
or not in H. In this paper, we prove that if a planar triangulation G
has 2n (n > 2) vertices, then, for any vertex v, G has a HIST H such
that the degree of v is at least three in H. We call such a spanning
tree a rooted HIST of G with root v.

1 Introduction

Let G be a graph and let H be a subgraph of G. If H contains all vertices of
G, then it is called a spanning subgraph of G. If a spanning subgraph H of G
is a tree, then it is called a spanning tree of G. It is a fundamental problem
deciding whether a graph has particular types of spanning subgraph in
graph theory. For example, in the Hamiltonian path problem, we seek a
spanning tree with all but two vertices of degree two. In this paper, we
search “homeomorphically irreducible spanning trees”, a class antithetical
to Hamiltonian paths.

A graph is said to be homeomorphically irreducible if it has no vertices
of degree two. Let T be a spanning tree of a graph G. If T' has no vertices
of degree two, then T is called a homeomorphically irreducible spanning tree
(or HIST') of G. For example, the octahedron has a HIST with two vertices
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of degree three and four vertices of degree one. (See Figure 1.) Joffe has
constructed infinite families of 4-regular, 3-connected planar graphs that
have no HISTs [5]. Albertson, Berman, Hutchinson, and Thomassen have
shown that it is an NP-complete problem deciding whether a graph contains
a HIST [1]. So, we consider the problem restricted to “triangulations”.

Figure 1: A HIST on the octahedral graph.

A triangulation on a surface is a simple graph embedded in the surface
such that each face is triangular. A near triangulation R is a 2-connected
simple graph on the plane with boundary cycle of length k£ > 3 such that
each face of R is triangular other than the outer face. Hill conjectured that
every planar triangulation other than the complete graph K3 with three
vertices has a HIST [4]. Malkevitch extended Hill’s conjecture to near
triangulations [6]. For their conjectures, Albertson, Berman, Hutchinson,
and Thomassen have proved the following.

Theorem 1 [Albertson, Berman, Hutchinson, and Thomassen [1]] Every
near triangulation with at least four vertices has a HIST.

Moreover, they extend Hill’s conjecture to all triangulations on any sur-
face, i.e., “every triangulation on any surface with at least four vertices has
a HIST ”. For this conjecture, Davidow, Hutchinson and Huneke have
proved that every toroidal triangulation has a HIST [2]. In [3], Fiedler,
Huneke, Richter and Robertson have proved that every projective planar
triangulation has a near triangulation as a spanning subgraph. By their
result and Theorem 1, it has already been proved that every projective pla-
nar triangulation has a HIST. However, the previous results assert nothing
whether the degree of a fixed vertex of a graph is at least three or not in a
HIST of the graph. So, in this paper, we consider “rooted HISTs”.
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Let G be a simple graph. Fix a vertex v of G such that the degree of
v in G, denoted by dg(v), is at least three. If G has a HIST H such that
dy(v) > 3, then H is called a rooted HIST of G with root v. For any vertex
v of G, where dg(v) 2 3, if G has a rooted HIST with root v, then we call
that G satisfies the rooted HIST property.

Figure 2: A triangulation on the plane not satisfying the rooted HIST
property.

There exist planar triangulations not satisfying the rooted HIST prop-
erty. For example, let G be a planar triangulation with five vertices. (See
Figure 2). Since the complete graph K5 with five vertices is not embeddable
into the plane, G has a vertex v of degree three. It is obvious that G has
no rooted HIST with root v. So, we also consider “rooted near 1-HISTs”.

Let G be a simple graph. If G has a spanning tree T' with at most k
vertices of degree two, then T is called a near k-HIST. Fix a vertex v of
G such that dg(v) > 2. If G has a spanning tree H such that dg(v) > 2
and dy(u) # 2, where u € V(H) — {v}, then H is called a rooted near
1-HIST of G with root v. For any vertex v of G, where dg(v) > 2, if G has
a rooted near 1-HIST with root v, then we call that G satisfies the rooted
near 1-HIST property. Let |G| denote the number of vertices of G. In this
paper, we prove the following.

Theorem 2 Let G be a near triangulation.

(3) If |G| =2n—1 (n > 2), then G satisfies the rooted near 1-HIST
property.
(i) If |G| = 2n, then G satisfies the rooted HIST property.

By the definitions of rooted HISTs and rooted near 1-HISTs, if a graph
G has no vertices of degree at most two and satisfies the rooted HIST
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property, then G satisfies the rooted near 1-HIST property. Since every
planar triangulation with at least four vertices has no vertex of degree at
most two, Theorem 2 implies the following.

Corollary 3 Every planar triangulation satisfies the rooted near 1-HIST
property.

In Section 2, we show infinite families of near triangulations not satis-
fying the rooted HIST property or the rooted near 1-HIST property. In
Section 3, we prove Theorem 2.

2 Infinite family not satisfying rooted HIST
property

In this section, we show two infinite families of near triangulations. One
does not satisfy the rooted HIST property, and the other does not satisfy
the rooted near 1-HIST property.

Proposition 4 There exists an infinite family of near triangulation on odd
number of vertices not satisfying the rooted HIST property.

Proof. Let G be a near triangulation, whose all vertices are on the bound-
ary cycle B. Suppose that G has exactly two vertices of degree two, denoted
by a, b, such that the difference on the length of two paths on B from a to
bis one. Let X = az1z2...2xb and Y = ay1ys ... yx—10 denote two paths
on B from a to b, where {X| > |Y'|. Suppose that, for each i =1,2,...,k,
G has edges z;y; and z;y;_1. (See Figures 3). We prove that such G
does not satisfy the rooted HIST property. Suppose that G has a rooted
HIST H with root z;. Since dg(x:1) = 3, H contains all edges incident to
zy. If dg(y1) > 3, then H contains a cycle, and hence dy(y;) = 1 and
dy(zg) 2 3. So, H contains zoz3 and zays2 since H does not contain z2y;.
By the same arguments, for each ¢, H must contain z;z;+, z;y;. Therefor,
we have dy(y;) = 1. Then, for i = k — 1, Tx-1yx—~1 and zy-1T, must be
contained in H and we have dy(yx—1) = 1. So zxb must contained in H
and we have dy(z) = 2, a contradiction. B

Proposition 5 There erists an infinite family of near triangulation on
even number of vertices not satisfying the rooted near 1-HIST property.
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Figure 3: An infinite family not satisfying the rooted HIST property.

Proof. Let G be a near triangulation, whose all vertices are on the bound-
ary cycle B. Suppose that G has exactly two vertices of degree two, denoted
by a,b, such that the length of two paths on B from a to b is the same.
Let X = az1z2...2cb and Y = ay1y2 ... yx—1yxb denote two paths on B
from a to b. Suppose that, for each ¢ = 1,2,...,k, G has edges z;y; and
z;¥i—1. (See Figures 4). We prove that such G does not satisfy the rooted
HIST property. Suppose that G has a rooted near 1-HIST H with root a.
Since dg(a) = 2, H contains all edges incident to a. If dgy(z;) > 3, then
H contains a cycle, and hence dy(z;) =1 and dg(y1) > 3. So, H contains
1172 and ¥y since H does not contain z;y;. By the same arguments,
for each i, H must contain y;x;1, ¥i¥%i+1. Therefor, we have dy(z;) = 1.
Then, for i = k — 1, yr—1zr and yx—1Y¥%x must be contained in H and we
have dy(xx) = 1. So yxb must contained in H and we have dy(yx) = 2, a
contradiction. W

3 Proof of the main result

Let G be a near triangulation with boundary cycle B and let f = zyz be
a face of G such that at least one edge of f is contained in B. Without
loss of generality, we may suppose zy € E(B). If z is not contained in B,
then f is called a trivial face. Suppose that f is not a trivial face, i.e., z is
contained in B. If neither zz nor yz is contained in B, then f is called a
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Figure 4: An infinite family not satisfying the rooted near 1-HIST property.

crossing face. Otherwise (i.e., either zz or yz is contained in B), f is called
a leaf face. (See Figure 5.)

VO

Figure 5: A trivial face (left), a crossing face (center) and a leaf face (right).

Suppose that f = zyz is a crossing face of G, where zy € E(B). Let B’
be a path from z to z on B containing y. Then we call the union of B’ and

zz a separating cycle of f. (Note that a crossing face has two separating
cycles).
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We prove Theorem 2 by induction on the number of edges of G. In
order to do so, we consider three kinds of transformations, as follows. Let
zyz be a trivial face, where zy € E(B). We call removing Ty an edge
deletion of xy. Let fi and f2 be two adjacent leaf faces (i.e., f1 and f; has
at least one common vertex) and let z, y be vertices of f;, fo with degree
two, respectively. We call removing two vertices = and y a (2,2)-deletion of
z,y. On the other hand, let f; = zyz be a leaf face, where dg(y) = 2 and
let f = zy’z be a crossing face such that ry’ € E(B). We call removing
two vertices = and y a (2,3)-deletion of z,y. (We use a (2,2)-deletion and
a (2,3)-deletion when |G| > 5). Note that these transformations do not
change the parity of [G|. For these transformations, in [1], the following
lemma has been proved. We state it adapted to our need.

Lemma 6 [Albertson, Berman, Hutchinson, and Thomassen [1]] Let G be
a near triangulation with at least five vertices. Then G has a face or faces
such that we can apply an edge deletion, a (2,2)-deletion or a (2,3)-deletion.
u

Proof of Theorem 2. First, we prove that if |G| = 2n—1, then G satisfies
the condition (i) of the theorem. After that, we prove that if |G| = 2n,
then G satisfies the condition (ii) of the theorem.

Case(a) |G| =2n—-1.

In this case, we prove that G satisfies the rooted near 1-HIST property
by induction on the number of edges of G. If |G| = 3 (i.e., G is a complete
graph K3), then for any vertex v of G, we can find a rooted near 1-HIST
with root v, and hence G satisfies the rooted near 1-HIST property. So,
we suppose |G| > 5. By Lemma 6, G has a face (or faces) such that we
can apply an edge deletion, a (2,2)-deletion or a (2,3)-deletion. Let G’ be
a near triangulation obtained from G by one operation of an edge deletion,
a (2,2)-deletion or a (2,3)-deletion. Observe that G’ satisfies the rooted
near 1-HIST property by the induction hypothesis. We shall prove that,
for each operation, if G’ satisfies the rooted near 1-HIST property, then G
also satisfies the rooted near 1-HIST property.

First, we suppose that G’ is obtained from G by an edge deletion. Since
G’ satisfies the rooted near 1-HIST property, for any vertex v of G/, we can
find a rooted near 1-HIST H' with root v. Moreover, each H’ is also a
rooted near 1-HIST of G with root v.

Secondly, we suppose that G’ is obtained from G by a (2,3)-deletion
of z,y. Let 2~ 2zt be a crossing face and zyzt be a leaf face of G such
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that dg(z) = 3 and dg(y) = 2. Since G’ satisfies the rooted near 1-HIST
property, for any vertex v of G’, we can find a rooted near 1-HIST H' with
root v. Moreover, for any vertex v # z,y of G, H’ extends to a rooted near
1-HIST H with root v by adding edges zz™*, yz*. So, we must prove that
G has a rooted near 1-HIST with root x and that with root y. Let H” be
a rooted near 1-HIST of G’ with root z+. By adding edges z+z, zy (resp.,
zty, yr) to H”, we obtain a rooted near 1-HIST of G with root z (resp.,
y)-

Thirdly, we suppose that G’ is obtained from G by a (2,2)-deletion of
z,y. Let z~zxt and ztyy* be two leaf faces of G such that dg(z) =
dg(y) = 2. Since G’ satisfies the rooted near 1-HIST property, for any
vertex v of G/, we can find a rooted near 1-HIST H’ with root v. Moreover,
for any vertex v # z,y of G, H' extends to a rooted near 1-HIST H of G
with root v by adding edges zz*, yzt. So, we must prove that G has a
rooted near 1-HIST with root z (resp., y). By symmetry, it suffices to show
that G has a rooted near 1-HIST with root z. We shall prove that we can
apply an edge deletion, a (2,2)-deletion or a (2,3)-deletion to G so that the
resulting near triangulation still contains the vertex z. Let y*pg be a face
of G such that y*p is contained in the boundary cycle B of G. If y*pg is a
trivial face or a leaf face, we can apply an edge deletion or a (2,2)-deletion
to G so that the resulting near triangulation still contains the vertex z. So,
we may suppose that y¥pq is a crossing face.

Claim 1 Let f be a crossing face of a near triangulation G and let C be a
separating cycle of f. In the interior of C, G has a face or faces such that
we can apply an edge deletion, a (2,2)-deletion or a (2,3)-deletion.

Proof. We may suppose that G has no trivial face and two adjacent leaf
faces in the interior of C. Otherwise, we can apply an edge deletion or a
(2,2)-deletion to it or them. (Note that we must not consider the face f as
a leaf face in the interior of C). If the interior of C contains no crossing
face other than f, then G has exactly one leaf face and f in the interior of
C. So, we can apply a (2,3)-deletion to the leaf face and f. If the interior
of C contains crossing faces other than f, then let f’ be a crossing face in
the interior of C such that the interior of the separating cycle C’ of f’ does
not contain f and that the interior of C' contains as few faces as possible.
By the minimality of C’, G has exactly one leaf face and f’ in the interior
of C'. So, we can apply a (2,3)-deletion to the leaf face and f’.

Let C be the separating cycle of y*pg such that z ¢ V(C). By Claim 1,
we can apply an edge deletion, a (2,2)-deletion or a (2,3)-deletion to G so
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that the resulting near triangulation still contains the vertex z. So, we can
find a rooted near 1-HIST H of G with root by above arguments. In the
case when |G| = 2n — 1, the theorem is satisfied.

Case(b) |G| = 2n.

In this case, we prove that G satisfies the rooted HIST property by
induction on the number of edges of G. If |G| = 4, then G is the complete
graph K4 or K4 minus one edge. For any vertex v of G such that dg(v) > 3,
we can find a rooted HIST with root v, and hence G satisfies the rooted
HIST property. So, we suppose |G| > 6. By Lemma 6, we can apply
an edge deletion, a (2,2)-deletion or a (2,3)-deletion to G. Let G’ be a
near triangulation obtained from G by one operation of an edge deletion,
a (2,2)-deletion or a (2,3)-deletion. Observe that G’ satisfies the rooted
HIST property by the induction hypothesis. We shall prove that, for each
operation, if G’ satisfies the rooted HIST property, then G also satisfies
the rooted HIST property. (Note that we must pay attention to a vertex v
such that dg(v) > 3, but dg/(v) = 2 since a vertex of degree two does not
become a root of a rooted HIST).

First, we suppose that G is obtained from G by an edge deletion of zy.
Let zyz be a trivial face of G such that zy is contained in the boundary cycle
B of G. Since G satisfies the rooted HIST property, for any vertex v of G’
such that dg/(v) > 3, we can find a rooted HIST H’ with root v. Moreover,
H' is also a rooted HIST of G by the same arguments on the case(a). So, we
must prove that we can find a rooted HIST of G with root z (resp., y) when
dg(z) = 3 (resp., dg(y) = 3). By symmetry, it suffices to show that G has
a rooted HIST of G with root = when dg(z) = 3. (Note that we easily find
such a rooted HIST if we can apply an edge deletion, a (2,2)-deletion or a
(2,3)-deletion to G so that the resulting near triangulation still contains
of degree three). Since dg(z) = 3, G has a trivial face zzz~, where zz~ is
contained in B. Let 7 pg be a face of G such that z~p is contained in B,
where p # . If z7pg is a trivial face, then we can apply an edge deletion to
G so that the resulting near triangulation still contains z of degree three,
by the same arguments on the case(a). If z~pq a crossing face, then let C
be the separating cycle of z~pg such that z ¢ V(C). By Claim 1 on the
case(a), we can apply an edge deletion, a (2,2)-deletion or a (2,3)-deletion
to G so that the resulting near triangulation still contains z of degree three.
So, we may suppose that £~ pq is a leaf face. If ¢ # y, then G has a face
grs such that gr is contained in B, where r # p, and hence we can apply an
edge deletion, a (2,2)-deletion or a (2,3)-deletion to G so that the resulting
near triangulation still contains = of degree three by the same arguments
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on the case(a). So, we may suppose that ¢ = y. Let z~yt be a face of G
such that ¢ # p. Note that ¢t # z, otherwise |G| = 5, contrary to |G| = 2n.
We can obtain a near triangulation G” from G by removing p, ¢ and the
edge z~y. Since dg~(z) = 3, we can find a rooted HIST H” of G” with
root z by the induction hypothesis. Moreover, H" extends a rooted HIST
of G with root = by adding two edges yp, yt.

Secondly, we suppose that G’ is obtained from G by a (2,3)-deletion of
z,y. Let z~zz* be a crossing face and zyz* be a leaf face of G such that
dg(z) = 3 and dg(y) = 2. Since G’ satisfies the rooted HIST property,
for any vertex v of G’ such that dg/(v) > 3, we can find a rooted HIST
H' of G' with root v. Moreover, H' extends to a rooted HIST of G with
root v by adding edges zz* and yz*. (This operation implies that G
has a rooted HIST with root z+). So, we shall prove that, for a vertex
u € {z,z”}, G has a rooted HIST with root u. If v = z, then let G”
be a near triangulation obtained from G by removing the vertex y. Since
|G| = 2n, |G”| = 2n — 1, and hence G” satisfies the rooted near 1-HIST
property by the case(a). Therefore, G’ has a rooted near 1-HIST with
root . Moreover, the rooted near 1-HIST extends to a rooted HIST of
G with root z by adding an edge zy. If u = z~, then we may suppose
that dg(z~) = 3. (Otherwise, we can find a rooted HIST of G’ with root
z~, and it extends to a rooted HIST of G with root z=). So, G has a
crossing face z~ztz such that £~z is contained in the boundary cycle B,
where z # z. Let C be the separating cycle of z~z* z such that z ¢ V(C).
By Claim 1 on the case(a), G has a face or faces in the interior of C such
that we can apply an edge deletion, a (2,2)-deletion or a (2,3)-deletion. If
we can apply an edge deletion, a (2,2)-deletion or a (2,3)-deletion to G so
that the resulting near triangulation still contains the vertex =~ of degree
three, we can finish this case. Otherwise, we must apply (2,3)-deletion to
z~z*z since an edge deletion and a (2,2)-deletion in the interior of C' do
not decrease the degree of z—. This implies that G has exactly one leaf
face and z~z*z in the interior of C, and hence we can find a rooted HIST
H of G with root z~ such that dg(z~) = dy(zt) = 3, and, for w different
from z~ and zt, dy(w) = 1.

Thirdly, we suppose that G’ is obtained from G by a (2,2)-deletion of
z,y. Let z7zzt and ztyyt be two leaf faces of G such that dg(z) =
dg(y) = 2. Since G’ satisfies the rooted HIST property, for any vertex v
of G’ such that dg(v) > 3, we can find a rooted HIST H’ with root v.
Moreover, H' extends to a rooted HIST H of G with root v by adding
edges zzt, yz*. (This operation implies that G has a rooted HIST with
root z+). So, we shall prove that, for a vertex v € {z~,y*}, G has a
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rooted HIST with root v. By symmetry, it suffices to show that we can
apply an edge deletion, a (2,2)-deletion edge or a (2,3)-deletion to G so that
the resulting near triangulation still contains the vertex £~ of degree three
when dg(z~) = 3. Let y*22% be a face of G such that y*z is contained
in B. If y*zz% is a trivial face or a leaf face, then we can apply an edge
deletion or a (2,2)-deletion to G so that the resulting near triangulation still
contains the vertex z~ of degree three. So, we may suppose that y*zz*
is a crossing face. (Note that 2= # 2% since dg(z~) = 3). Let C be the
separating cycle of y*zz% such that 2~ ¢ V(C). By Claim 1, G has a face
or faces such that we can apply an edge deletion, a (2,2)-deletion or a (2,3)-
deletion in the interior of C so that the resulting near triangulation still
contains ™ of degree three. (Note that even if we apply a (2.3)-deletions in
the interior of C the resulting near triangulation still contains = of degree
three since z~ # z%). Therefore, we can find a rooted HIST of G with root
z~. So, in the case when |G| = 2n, the theorem is satisfied. W

4 Conclusion

Theorem 2 asserts that if a near triangulation G has 2n vertices, then, for
any vertex v where dg(v) > 3, G has a rooted HIST with root v. Otherwise
(ie., |G| = 2n — 1), for any vertex v where dg(v) > 2, G has a rooted near
1-HIST with root v. When we consider HISTs of a triangulation on a
surface, we often consider a spanning subgraph of the triangulation which
is a planar graph. For example, we obtain a HIST of a projective planar
triangulation G from a near triangulation which is a spanning subgraph of
G. Therefore, our result might be useful when we solve the conjecture that
every triangulation on any surface with at least four vertices has a HIST.
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