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Abstract

The notation ¢K3 represents a graph with ¢ copies of complete graph
K3. In this note we discuss the goodness of path P, or cycle C,, with -
respect to tK3. Furthermore, this result provides the computation
of Ramsey number R(G,tK3) when G is a set of disjoint paths or
cycles.
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1 Introduction

All graphs in this paper are finite, undirected and simple. Let G and
H be two graphs, where H is a subgraph of G, we define G — H as a graph
obtained from G by deleting the vertices of H and all edges incident to
them. Let ¢ be a natural number and G; be a connected graph with the
vertex set V; and the edge set E; for every i = 1,2,...,t. The disjoint union
of graphs, |Ji_, G, has the vertex set U:=1 Vi and the edge set |J;_, E:.
Furthermore, if each G; is isomorphic to a connected graph G then we
denote by tG the disjoint union of ¢ copies of G.

For graphs G and H, the Ramsey number R(G, H) is the minimum n
such that in every coloring of the edges of the complete graph K, with two
colors, say red and blue, there is a red copy of G or a blue copy of H. A
graph F is called (G, H)-free if F' contains no subgraph isomorphic to G
and its complement F contains no subgraph isomorphic to H. The Ramsey
number R(G, H) can be equivalently defined as the smallest natural number
n such that no (G, H)-free graph on n vertices exists.

Determining R(G, H) is a notoriously hard problem. Burr (7] showed
that the problem of determining whether R(G,H) < n for a given n is
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NP-hard. Furthermore in Shaeffer [19] one can find a rare natural example
of a problem higher than NP-hard in the polynomial hierarchy of com-
putational complexity theory, that is, Ramsey arrowing is []3-complete.
The few known values of R(G, H) are collected in the dynamic survey of
Radziszowski [16].

Burr [6] proved the general lower bound
R(G,H) 2 (IV(G)| - 1)(x(H) — 1) + s(H), (1)

where G is a connected graph, x(H) denotes the chromatic number of H
and s(H) is its chromatic surplus, namely, the minimum cardinality of a
color class taken over all proper colorings of H with x(H) colors. Motivated
by this inequality, the graph G is said to be H-good if equality holds in (1).
Chvital [11] proved that trees are K,—good graphs.

Faudree and Schelp [12] conjectured that C,, is K,,-good for n > m > 3,
except for n = m = 3. The conjecture has been verified for n > m2 ~ 2
(Bondy and Erdés [4]), for m = 3 (Chartrand and Schuster [8]), m = 4
(Yang, Huang and Zhang [18]), m = 5 (Bollobés, Jayawardene, Yang,
Huang, Rousseau and Zhang [2]), m = 6 (Schiermeyer [17]) and m = 7
(Chen, Cheng and Zhang [9]). More recently, Nikiforov [15] proved the
conjecture for all m > 3 and n > 4m + 2. Other result concerning the
goodness of graphs with the chromatic surplus one can be found in Lin et
al. {14]. However, the goodness of path P, or cycle C, with respect to tK,,
for t > 2 is still open.

In this paper we establish the goodness of P, or C,, with respect to tK3
for t > 2 and sufficiently large n.

Theorem 1 Lett > 2 be an integer and f(t) = 6t2 — 15¢ +9. If n > f(t)
then R(P,,tK3) =2n+1t —2.

Theorem 2 Lett > 2 be an integer and g(t) = 6t — 3t + 1. Ifn > g(t)
then R(C,,tK3) =2n+t —2.

For the proof of Theorem 2 we use the following result of Bondy and
the above mentioned result of Nikiforov.

Lemma 1 (Bondy, 1975 [3]) Let G be a graph of order n. If the mini-
mum degree of G satisfies 5(G) > % then either G is pancyclic or n is even
and G~ Ky =.

Theorem 3 (Nikiforov, 2005 [15]) Let m > 3 be an integer. If n >
4dm + 2 then R(Ch, Km) =(n —1)(m —1) + 1.
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By extending previous results of Baskoro [1] and Stahl [20], Bielak [5]
and Sudarsana et al. [21] recently proved a formula for R(G, H) when every
connected component of G is a H-good graph. This result motivates the
study of general families of H-good graphs. In particular, Theorems 1
and 2 provide the following computation of R(G,tK3) when G is a set of
disjoint paths or cycles.

Corollary 1 Let t > 2 be an integer and g(t) = 6t ~ 3t + 1. Let G ~
ULI 1;G;, where l; > 1 and each G; is a path or cycle of order n;.

Ifny > ng 2 ... 2 ng 2 g(t) then

R(G,tK3) = lrgiagck {n,- + lenj} +t-2. (2)

j=1

2 Proof of Theorems
We first show Theorem 1 for the case t = 2.
Lemma 2 Let n > 3 be an integer. Then, R(P,,2K3) = 2n.

Proof. The lower bound R(FP,,2K3) > 2n follows from the fact that
2K,_1 UK is a (P,,2K3)-free graph on 2n — 1 vertices.

Now we will prove that R(P,,2K3) < 2n. Let F be an arbitrary graph
of order 2n that contains no P,. Select a path P = z,z5...z,, of maximal
length in F, delete the vertices of P and select a second maximal length
path Q = y1y2..yx in F — P. Paths Pand Q have m < nand k < n
vertices, respectively, so deleting P and Q leaves at least two vertices 21, 22.
Maximality of path length then shows that {z1,¥1, 21} is an independent set
and 50 is {Zm, Yk, 22}. Therefore, we have a copy of 2K3 in F. O

We are now ready to prove the first theorem.

Proof of Theorem 1. The graph 2K,,_; U K;_; shows the lower bound
R(Pn,tK:g) >2n+t—2.

In order to prove the upper bound R(P,,tK3) < 2n +t — 2 we use
induction on ¢t. For ¢t = 2, Lemma 2 gives R(P,,2K3) = 2n and hence
the assertion holds for n > f(2) = 3. Assume that the assertion is true
for n > f(t — 1), that is R(P,,(t — 1)K3) < 2n +t — 3. We shall show
that the theorem is also valid for n > f(t). Let F' be an arbitrary graph
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on 2n +t — 2 vertices. We will show that F' contains P, or F contains
tK3. Since 2n 4+t~ 2 > 2n — 1 = R(P,, K3) (Chvétal [11]), it follows
that F contains P, or F contains K3. If F contains P, then we are done.
If F contains K3 then the subgraph F — K3 of F has 2(n — 1) + ¢ — 3
vertices. Note that, since ¢ > 3, we have n > f(t) > f(¢t —1)+1. By
the induction on ¢, F — K3 contains P,_; or the complement of F — K
contains (¢ — 1)K3. If the complement of F — K3 contains (¢t — 1)K3 then
we have a tK3 in F and the proof is done. Thus we may assume that
F — K3 contains P,_;. Note that, since R(Pn,Pn) =n+ 3] -1 for
n > m > 2 (Gerencsér and Gyarfas [13]), we have R(P,,tKp)=n+t—1
for n > 2t. Therefore, since n > f(t) > 2t for t > 3, it follows that the
subgraph F' — P,_; of order n + t — 1 contains P, or the complement of
F — P,_, contains tK,. If F — P,,_; contains P, then we are done. Hence
F contains P,,_;, — say P,_1 = p1P3...Pn—2Pn—1 —, and that F contains
tKy, — say aiby,asbs,...,a¢b,. It is clear that the graphs P,_; and tK,
have no vertices in common.

Assume that F contains no P,. We will show that ¥ contains tKj.
Thus the end vertices p; and p,_1 of path P,_; must not be adjacent to
any vertices in tK3. Therefore the set D = {p;,a;,51} U {pn-1,a2,b2}
forms a 2K3 in F. Let us now consider the relation between the vertices
inA= {pg,pa, ...,pn_z} and in B = {a3, b3,a4,b4, veey ag,bg}.

Since there is no P, in F, it follows that every two consecutive ver-
tices p;,piy1 in A can not be adjacent to any vertices in B for every
i € {2,3,..,n — 2}, Suppose that the neighborhood N4(u) in A of a
vertex u € B satisfies [Na(u)| > 3t — 1. Let p;,p; € Na(u) with ¢ < j.
Note that j — ¢ > 1 since otherwise we can extend P,_; to a path of
length n — 1 containing u. If pi;1p;j41 is an edge for a pair p;,p; in A
then P’ = p1ps....piup;pj—1Pj—2..-Pi+1Pj+1Pj+2----Pn—1 is & new path of or-
der n in F. If pit1pj41 is not an edge for every pair p;,p; in A then
{Pi+1 : pi € Na(u)} U {u} is a set of 3t independent vertices in F and
we obtain a tK3 in F. Hence, for each u € B we have |N4(u)] < 3t — 2.
Therefore,

IA\ J Na(@)| > n-3-(3t-2)2(t —2).

u€B

Since n > f(t), it follows that there are at least ¢ — 2 vertices in A which
are adjacent to no vertex in B and hence together with D we have a tK3 in
F. This concludes the proof of Theorem 1. a

We next prove that the following lemma deals with the goodness of cycle
C,, with respect to tKj.
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Lemma 3 Letn >3 and t > 1 be integers. Then,

n+t-—1, t
t

<
2t+[3]1-1, t>

— [3);
R(CntKa) = { Hi

Proof. We consider two cases.
Case 1: t < |3].

Observe that K,,_UK,_; is a (Cpn,tKy)-free graph on n+t—2 vertices
and hence R(C,,tKp) >2n+t—1.

To prove the upper bound R(C,,tK2) < n +t —~ 1 we use induction
on t. For t = 1, the assertion holds from the fact that R(C,, K3) = n.
Assume that the lemma is true for ¢ — 1. Let F be an arbitrary graph on
n +t — 1 vertices containing no C,. We will show that its complement
F contains tK;. By the induction hypothesis, F' contains (¢ — 1)K;. Let
{a1d1, -+ ,a¢—1bs—1} be a set of independent edges in F and denote by
B= {als b1, -ers at—l’bt—l}-

Suppose on the contrary that F contains no tK3. Let us consider the
subgraph F[A] of F induced by A = V(F)\ B, which has n—t+1 vertices. If
there are two non adjacent vertices in F'[A], say = and y, then the subgraph
of F induced by {z,y} U B contains tK,. Therefore, F[A] is a complete
graph of order n —t + 1.

We now consider the relation between the vertices in F[A4] and in B. For
every i, the neighborhood in F of {a;,d;} has at most one vertex in F[A],
since otherwise we can replace the edge a;b; in F by two independent edges
which, together with {a;b;,1 < j <t —1,j # i} produce a copy of tK; in
F. Thus we may assume that each b; is adjacent in F to all but at most
one vertex in F[A]. Now, let us consider the subgraph F[D] of F induced
by D = AU {by,bs,...,b;—1}. The graph F[D] has order n and minimum
degree §(F[D]) > n—t. Since t < | %], it follows that §(F(D]) > [2] > %.
Lemma 1 now implies that F[D] contains a cycle of order n, contradicting
our assumption on F. Hence F contains a copy of tK; as claimed.

Case 2. t > |3].

The lower bound R(Cy,tK3) > 2t + [3] — 1 is obtained from the fact
that Krg1_1 + Ka:—1 is a (Cn, tK3)-free graph on 2¢ + [$] — 2 vertices.

To show the upper bound R(C,,tK2) < 2t4[%]—1 we argue as follows.
Let F be a graph of order 2¢ + [£] ~ 1 containing no Cy,. By induction

on t, we will show that F' contains ¢ independent edges. For t = |}], we
obtain Case 1. Therefore, t > |%|. By deleting a pair of non adjacent
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vertices u and v from F, the subgraph F — {u, v} of F has 2(t—1)+[2] -1
vertices, contains no C, and ¢ —1 > | %]. By the induction hypothesis, the
complement of F'— {u, v} contains (¢t—1)K> and, together with the edge uv,
we have a tK7 in F'. O

We next prove the following weaker form of Theorem 2.

Lemma 4 Lett > 2 be an integer and g(t) = 6t — 3t + 1. If F is a graph
of order 2n +t — 2 containing C,,_; and n > g(t) then F contains C, or
F contains tK;.

Proof. Let F be a graph on 2n + t — 2 vertices containing C,_;. We will
prove that F' contains C,, or F contains tK3.

Since F' contains C,,_1, it follows that the subgraph F — C,,_; of F has
n+t—1 vertices. Note that if t > 2 then n > g(t) > 2¢, and hence Lemma 3
implies that the subgraph F — C,_; contains C,, or the complement of
F — C, 1 contains tK5. If F — C,_; contains C,, then we are done.

Thus let F' be a graph of order n > g(t) containing C,,_; with vertex
set, say ¢1,C2,...,Cq~1 and edges c;c;4+1 (subscripts modulo (n — 1)), and
that F' contains ¢ disjoint copies K3, K2, ..., K} of the complete graph with
two vertices. It is clear that the subgraphs C,,_; and tK; have no vertices
in common.

Assume that F' contains no C,,. We will show that F contains tK3.
Let us consider the relation between the vertices in A = {c;, ¢z, ..., cn-1}
and in B = V(K}) U V(K2) U ...U V(K%). Suppose that the neigh-
borhood N4(u) in A of a vertex u € B satisfies |[Na(u) N V(Cr-1)| >
3t — 1. Let ¢j,¢; € Na(u) N V(C,-1) with ¢ < j. Note that j —i >
1 since otherwise we can extend C,_; to a cycle of length n contain-
ing u. If c;y1 and cj4; are adjacent in F' then we also have the cycle
{ciucjcj_1...cit1€j41Cj42 ... Cno1€1C2 ... ¢;} Of length n in F. If Ci+1Cj+1
is not an edge for every pair ¢;,¢c; € Na(u) N V(Cp—1) then {cit1 : ¢ €
Na(u) NV (Cn-1)} U {u} is a set of 3 independent vertices in F so that F
contains ¢K3. Hence, for each u € B we have |Np(u) NV (C,_1)| < 3t —2.
Therefore,

lA\ U Na(w)| >n—1-2¢(3t - 2).

u€B

Since n > g(t), it follows that there are at least ¢ vertices in A which are
adjacent to no vertex in B and hence F contains tK3. This concludes the
proof of lemma. O

The following lemma provides the cases n = 19 and t = 2 of Theorem 2.
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Lemma 5 R(Clg,2K3) = 38.

Proof. The graph 2K, U K, provides R(C)g,2K3) > 38.

We will prove that R(Cyg,2K3) < 38. Let F be a graph on 38 vertices.
We shall show that F' contains Cyg or F contains 2K3. Theorem 3 guar-
antees that F' contains Cjg or F contains K3. If F' contains Cje then we
are done. Thus we may assume that F contains K3. Then the subgraph
F — K3 of F has 35 vertices. Again, Theorem 3 implies that the subgraph
F — K3 contains Cig or the complement of F — K3 contains K3. If the
complement of F — K3 contains K3 then we obtain 2K3 in F and the proof
is done. Therefore F' contains C13. Now by taking n = 19 and ¢ = 2,
Lemma 4 gives that F' contains Cjg or F contains 2K3. 0

Our last Lemma handles the case t = 2 of Theorem 2.
Lemma 6 Let n > 19 be an integer. Then, R(C,,2K3) = 2n.

Proof. The graph 2K, _; U K gives R(Cp,2K3) > 2n.

We will prove the upper bound R(Cy,2C3) < 2n by induction on n. For
n = 19, the assertion holds by Lemma 5. Assume that the assertion is true
for n — 1, that is R(Cp—1,2K3) < 2(n —1). We shall show that the lemma
is also valid for n. Let F be an arbitrary graph of order 2n. We will show
that F contains C, or F contains 2K3. By induction on n, we have that
F contains C,_; or F contains 2K3. If F contains 2Kz then the proof is
done. This concludes that F' contains C,_;. For t = 2, Lemma 4 now
guarantees that we have a cycle C,, in F or a copy of 2K3 in F. O

We are now ready to prove the second theorem.

Proof of Theorem 2. The graph 2K,,_; UK;_; provides the lower bound
R(C,,tK3) > 2n +t—2.

In order to show the upper bound R(C,,tK3) < 2n +t — 2 we use
induction on t. For ¢ = 2, Lemma 6 gives R(Cr,2K3) = 2n and hence
the assertion holds for n > ¢g(2) = 19. Let us assume that the assertion
is true for n > g(t — 1), that is R(C,,(t — 1)K3) < 2n+t — 3. We shall
show that the theorem is also valid for n > g(t). Let F' be a graph of
order 2n +t — 2. We will show that F contains C,, or F contains tKj.
Since 2n+t — 2 > 2n — 1, it follows that F contains C,, or F contains Kj.
If F contains C,, then we are done. If F contains K3 then the subgraph
F — K3 of F has 2(n — 1) + t — 3 vertices. Note that, since t > 2, we have
n > g(t) > g(t — 1) + 1. By induction on ¢, the subgraph F — K5 contains
C_1 or the complement of F — K3 contains (t — 1)K3. If the complement
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of F — K3 contains (t — 1)K3 then we have a tK3 in F and hence the
proof is done. Thus we conclude that F' contains C,_;. Lemma 4 now
implies that F' contains C, or F contains tK3. The proof of Theorem 2 is
now complete. 0
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