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Abstract

A connected graph G is called a quasi-tree graph, if there
exists vo € V(G) such that G — v is a tree. In this paper,
among all triangle-free quasi-tree graphs of order n with G—vp
being a tree and d(vo) = do, we determine the maximal and
the second maximal signless Laplacian spectral radii together
with the corresponding extremal graphs. By an analogous
manner, we obtained similar results on the spectral radius of
triangle-free quasi-tree graphs.
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1 Introduction

All graphs considered here are undirected and simple. Let G =
G[V(G), E(G)] be a graph of order n, A(G) be the adjacency
matrix of G and D(G) be the diagonal matrix of degrees of
G. The matrix Q(G) = D(G) + A(G) is called the signless
Laplacian matrix (or @Q-matrix) of G. Since A(G) and Q(G) are
symmetric, it follows that their eigenvalues are all real. As usual,
we call the largest eigenvalue of A(G) the spectral radius (or
index) of G, denoted by p(G), and the largest eigenvalue of Q(G)
the signless Laplacian spectral radius (or @-index) of G, denoted
by ¢(G). For a connected graph G, Q(G) is nonnegative and
irreducible. By the Perron-Frobenius Theorem, ¢(G) is simple
and there is a unique positive unit eigenvector corresponding to
it. We shall refer to such an eigenvector as the Perron vector of

Q(G).

The spectral Turdn extremal problem is to determine the
largest (or smallest) eigenvalue of a graph not containing a sub-
graph H. Nikiforov [9] proved a spectral extremal Turén the-
orem: let p(G) be the largest eigenvalue of the adjacency ma-
trix of G not containing a complete graph K; of order ¢ as a
subgraph, then p(G) < p(T;,:-1) with equality if and only if
G = T, 1. Further, Nikiforov explicitly advocated the study
of spectral Turén problems in many publications and presented
[12] a comprehensive survey on these topics.

The signless Laplacian eigenvalues of a graph have recently
attracted more and more researchers’ attention, see [1] and its
references. Recently, Freitas, Nikiforov and Patuzzi [3] present-
ed an even newer trend in spectral extremal graph theory as
follows:

Problem A Given a graph F, what is the mazimum Q-indez
of a graph G of order n, with no subgraph isomorphic to F?

This problem has been solved for several classes of forbidden
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subgraphs, see [2], [3], [5], [11], [13] and their references. In
particular, in [3] it has been solved for forbidden cycles Cy and
Cs. For longer cycles, a general conjecture has been stated in
[3] and was investigated in [10] and [13].

A connected graph G is called a quasi-tree graph, if there
exists vo € V(G) such that G — v is a tree. Liu and Lu (8] first
gave the concept of a quasi-tree graph and determined the max-
imal and the second maximal spectral radii among all quasi-tree
graphs of order n with G — v being a tree and d(vo) = dp. Since
then, quasi-tree graphs have been investigated by many authors.
For example, Geng and Li [4] determined the quasi-tree graph
and the quasi-unicyclic graph which have the maximal spectral
radii among all the quasi-tree graphs and quasi-unicyclic graphs
of order n with k pendant vertices, respectively. Li, Shiu and
Chan [7] determined the bipartite quasi-tree graphs which have
the maximum and the second large Laplacian spectral radii a-
mong all bipartite quasi-tree graphs of order n with G —wg being
a tree and d(vg) = dp.

Denote by Q;(n,dp) the set of all triangle-free quasi-tree
graphs of order n with G — v, being a tree and d(vp) = dp. Mo-
tivated by Problem A and the results on the quasi-tree graphs
and the quasi-unicyclic graphs, in this paper we determine the
maximal and the second maximal signless Laplacian spectral
radii together with the corresponding extremal graphs among
all quasi-tree graphs in Q;(n,dp). By an analogous manner, we
obtained similar results on the spectral radius of triangle-free
quasi-tree graphs.

2 Preliminaries

Denote by C, and P, the cycle and the path of order n, re-
spectively. Let G — zy denote the graph that arises from G by
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deleting the edge zy € E(G). Similarly, G + zy is a graph that
arises from G by adding an edge zy ¢ E(G), where z,y € V(G).
For v € V(G), Ng(v) denotes the set of all neighbors of vertex
v in G, and d(v) = |Ng(v)| denotes the degree of vertex v in G.
Let A(G) = A be the maximum degree of G. A pendant vertex
of G is a vertex of degree 1.

Let dy > 2 and Q4 4y, depicted in Fig. 1, be a graph obtained
from the star K; ,—o and an isolated vertex vy by adding do
edges joining vp to the pendent vertices of K, -2, respectively.
Clearly, Qn,dy € Qi(n,do). Q5 4, € Qi(n, do) is depicted in Fig.
2, where 0 < s <n—dp—2 and Q? do = @n,do- ﬁ € Qi(n, dp)
is depicted in Fig. 3, where 0 < s < t < dy, s+t = dy,
k>0,1>20,k+l=n- do—3 andQOn_do = Qn, do-

U2

B

Vdo+1 VUn-1

Flg- 1. Qn,do Fig‘ 2. Qr‘z,do

Fig. 3. Q!

Lemma 2.1. ¢(Qn. 4,), Q(Qn~d°_2) q(Qn,q,) and Q(Q? io—do a)
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are the largest roots of the following polynomials respectively:

fa(z) £ 2°—(n+do+ 1)z + (don + 2n — 2)z ~ don,

95, (z) & z*—(n+3)z? - (dZ —ndy +do — 2n — 4)z — 2n,

hao(z) & 2% — (n+do+3)z® + (2do + don + 5n — 5)x2
—(5n + 4don — 5do — 9)z + 2dyn,

rao(z) 2 2% — (do + n + 3)z* + (2dp + 5n + don — 3)z3

+(3do — Tn — 4don + 11)z?
+(2n — 3dy + 4don — 2):12 — don.

Proof. Let V(Qn 4) = {v0,v1,...,0n-1}, and X = (2o, 71,
..., Zn—1)T be the Perron vector of Q(Qn,a4,), Where z; corre-
sponds to the vertex v; (0 < ¢ < n —1). By the symmetry of
Q@n,do, We have o = 23 = - -+ = Tgy41, Tdg42 = **+ = Tp_1. From
the eigenvalue equation Q(Q@n,do)X = q(@n,d,)X, we have

(9(Qn,a) — do)To = dox2,
(@(@n,d0) —m+2)z1 = dozo+ (n—do— 2)Zn-1,
(9(@n,do) — 2)z2 = Zo + 11,
(9(@n,do) = 1)Tn-1 = z1.

Since X = (zo,Z1,...,Tn_1)7 be an eigenvector of q(Qn, ),
then X # 0. This implies that

q(Qn,dp) — do 0 —dp 0
0 9(@n,40) — 1 +2 —do —(n-do—-2) | _
-1 -1 4(Qn,4,) — 2 0 -
0 -1 0 q(@n,d,) — 1

Therefore, g(Qn, 4,) is the largest root of the equation

m—do 0 —do 0
0 z—n+2 —do —(n—do—2) ~0
-1 -1 z—2 0 '
0 -1 0 z—1
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By an easy computation, we can obtain ¢(Q, 4,) is the largest
root of the polynomial

fao(z) = 2% — (n + do + 1)z% + (don + 2n — 2)z — don.

Similarly, we can obtain ¢(Q) 5°~?), ¢(Q} ) and ¢(QT* , _,)

1,n—dp
are the largest roots of the following polynomials respectively:

9a(z) & 2% — (n+3)2% - (d¢ — ndo + dp — 2n — 4)z — 2n,

hao(z) £ z* — (n+do + 3)z® + (2do + don + 5n — 5)z?
—(5n + 4don — 5do — 9)z + 2don,

Teo(T) £ z°— (do + 1+ 3)z* + (2dp + 51 + don — 3)z°

+(3dp — Tn — 4don + 11)z?
+(2n — 3dp + 4don — 2)z — don.

This completes the proof. (m]

Lemma 2.2. (/6]) Let G be a connected graph and q(G) be the
spectral radius of D(G)+A(G). Let u,v be two vertices of G and
d, be the degree of vertez v. Suppose vy, vs,...,v, (1 <s<d,)
are some vertices of Ng(v) \ Ng(u) and z = (21, %2,...,7,)7 is
the Perron vector of D(G) + A(G), where z; corresponds to the
vertez v; (1 < i < n). Let G* be the graph obtained from G by
deleting the edges (v,v;) and adding the edges (u,v;) (1 <i < s).
If z, > z, then q¢(G) < ¢(G*).

As immediate consequences of Lemma, 2.2, we have the fol-
lowing.

Lemma 2.3. Let G be a connected graph and let e = uv be a
non-pendant edge of G with N(u) N N(v) = 0. Let G* be the
graph obtained from G by deleting the edge wv, identifying u
with v, and adding a pendant edge denoted still by e to u(= v).
Then q(G) < q(G*).
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Lemma 2.4. Let G, G, G” be connected, mutually disjoint graph-
s. Suppose that u, v are two vertices of G, v’ is a vertex of G’

and u" is a vertex of G”. Let G, be the graph obtained from

G, G', G" by identifying, respectively, u with v' and v with

u”. Let Gy be the graph obtained from G, G', G” by identifying

vertices u,u’,u”. Let G3 be the graph obtained from G,G',G"

by identifying vertices v,u',u”. Then either q(G;) < ¢(G2) or

2(G1) < q(Gs).

Lemma 2.5. ([1]) Let G be a connected graph, containing at
least one edge. Then ¢(G) > A + 1, with equality if and only if
G is the star K n_;.

3 The @-index of a triangle-free quasi-
tree graph

When dy = 1, Q,(n, 1) is the set of all trees of order n. Let S2
be a tree obtained by attaching a pendant edge to a pendant
vertex of the star K ,—». It is well known that the star K ,—;
alone has the maximal and S2 alone has the second maximal
signless Laplacian spectral radius among the trees of order n.
Next we assume that do > 2.

Theorem 3.1. Letn > 4, dy > 2, G € Qi(n,dy). Then q(G) <
q(Q@n,d,) with equality if and only if G = Qn, 4o, where q(Qr,4,)
is the largest root of the equation

2 — (n+do+ 1)z + (don + 2n — 2)z — don = 0.

Proof. For n = 4,5, by Matlab, it is easy to see that Theorem
3.1 holds. Next, we assume that n > 6, dy > 2. Choose G €
Q:(n,dp) such that ¢(G) is as large as possible. Let V(G) =
{vo,v1,..-,Vn1}, and X = (Z0,2Z1,...,Zn-1)7 be the Perron
vector of Q(G), where z; corresponds to the vertex v; (0 < i <

375



n —1). Assume that G — vp is a tree and d(vy) = do. The
vertices of G may be coloured such that vg is black, the vertices
in Ng(vo) are red, the pendant vertices are green and the others
are white. Since G is triangle-free, it follows that arbitrary two
red vertices of G are nonadjacent.

Firstly, we show that no pair of white vertices are adjacent.
Otherwise, let v;v; be an edge of G such that both v; and v;
are white. Applying Lemma 2.3 to the edge v;v;, we get G* €
Qi(n,do) and ¢(G) < ¢(G*), a contradiction. Therefore no pair
of white vertices are adjacent.

Secondly, we show that there is unique white vertex in G.
Otherwise, assume that v;, v; are two white vertices of G. Then
v;, v; are nonadjacent. Let

N('U,') = {'Uil,'Uiz,. .« .oy Vi }, N('Uj) = {'Ujl,'sz,. . .,'th },
where s > 2 and ¢t > 2. Assume that v;,,v;, are in the unique
path v; —v; of G —vp. If z; > z;, let

G* =G ~ {vjvjy,...,vv;, } + {vivgy, ..., vv;, }
If z; < zj, let
G'=G- {'U,”U,'z, cey U, } + {’Uj’Uiz, -y U0, }
Then G* € Qi(n,dp). By Lemma 2.2, we have ¢(G) < ¢(G*), a

contradiction. Therefore there is unique white vertex in G.

Thirdly, by Lemma 2.4, we claim that all green vertices are
attached at the same red vertex or white vertex of G.

Combining the above arguments, we have G = @,, 4, or G =
Q,';}:"'Q. When do = 2 or dp =n—2, Qn,a = @1, 45 =2, Next
we show that q(Q"'d‘"2) < q(@n,g4,) for 3<do <n-3.

n, do

Since QZ,‘d‘ff”’? contains K3 4, as a proper subgraph, it follows
that
Q( Q7% > q(Kaa,) = do + 2.
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By Lemma 2.1, we have q(Qn, 4,) and g( 2,_4?,0_2) are the largest
roots of the polynomials f4,(z) and gq4,(2) respectively. Since

940(%) — fir(z) = (do — 2)(z% — (do +3)x +n) > 0

for z > q(Q" 272 > do + 2, it follows that g( 2}?_2) <

n, do

q(Qn,4p) for 3<do <n—3.

Combining the above arguments, we have G = Q,, 4, and
q(Qn, 4,) is the largest root of the equation z% — (n+do + 1)z% +
(don + 2n — 2)z — don = 0. The proof is completed. o

Theorem 3.2. Letn > 6, dy > 2, G € Qi(n,do) \ { @n, a0 }-
Then q(G) < q(Q.} 4,) with equality if and only if G = Qg 4, or

QZ}S. Moreover q(QZ"}f’) = q(Q,i,;,), and q(Q,}’do) is the largest
root of the equation

2 — (n + do + 3)z® + (2do + don + 5n — 5)z?
—(5n + 4don — 5dp — 9)23 + 2d0n =0.

Proof. Choose G € Qy(n,do) \ { @n, 4 } such that ¢(G) is
as large as possible. Let V(G) = {vo,v1,...,Vn-1}, and X =
(Z0,T1,-..,Tn-1)T be the Perron vector of Q(G), where z; cor-
responds to the vertex v; (0 < ¢ < n—1). Assume that G —vp is
a tree and d(vg) = dp. The vertices of G may be coloured so that
vo is black, the vertices in Ng(vp) are red, the pendant vertices
are green and the others are white. Since G is triangle-free, it
follows that arbitrary two red vertices of G are nonadjacent.

Firstly, we show that no pair of white vertices are adjacent.
Otherwise, let v;v; be an edge such that both v; and v; are
white. Applying Lemma 2.3 to the edge v;v;, we get a graph
G* € Qi(n,dp) with ¢(G) < q(G*). If G* # Qn, 4o, then G* €
Qi(n,do) \ { Qn, 4 }, a contradiction. If G* = Qn 4y, then G =
Q,’c’,f, depicted in Fig. 3, where 0 < s <t < do, s+t = dy,
k>0,l>0,k+l=n—dy—3,s+k>1.
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Ifs+k>2andt+1>2, applymg Lemma 2.2 to the vertices
v; and v;, we can get G** = Q; 'y € Qi(n,do) \ { Qn, 4, } such
that ¢(G) < ¢(G*), a contradlctlon

Ifs+k>2,t=1and!=0,thens =1anddy = 2. Applying

Lemma 2.3 to the vertices v; and vy, we can get G* = Q,} , €

Qi(n, do) \ { @n, a0 } such that ¢(G) < ¢(G™), a contradiction.

If s=1and k 0, applying Lemma 2.3 to the edge v v;, we
get ¢(G) < ¢(Q, 4,), a contradiction.

If s =0and k = 1, by Lemma 2.1, we have ¢(Q, ;) and

Q(Q(l’: io_do_‘t) are the largest roots of the polynomials hg,(z) and
T4, () respectively. It follows that

Tdo(T)—Thay(z) = 22°+(2—2n—2d0) 224+ (2n—3do+2don—2)z—don

=2zx(z—do—1)(z—n+2)+ (do+2)z—don >0
for z > q(Q?:i{do_4) > n—2 2 dy+ 2. Therefore ¢(G) =

(Ql e do—4) < 4(Qn 4), a contradiction. Therefore no pair of
white vertices are adjacent.

Secondly, similarly to the proof of Theorem 3.1, we can prove
that in G there is unique white vertex and that there is unique
red vertex with green vertices attached.

Combining the above arguments, we have G = Q; , with
1<s<n-dy—2 Ilfdy=n-—3, thens = 1. Namely
G = Q. ,_3. Next we assume that dgp < n — 4 and show that
G=Qn4o0r Q75

For dy = 2, since G # Qn,9, it follows that d(v,) > 3 and

d(v2) > 3. If G # Q. 5, then d(v;) > 4 and d(vp) > 4. Applying

Lemma 2.4 to the vertices v; and vy, we can get G* = Q, , such
that ¢(G) < q(G*), a contradiction. Therefore G = Q] ,

For dp > 3 and d(v;) > do + 1, we show that G = Qn do*
Otherwise, assume that G = @ 4 with2<s<n-—dp—3. If
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T, > T, let
G* =G — vaUn_s + V1 Vn_s.

If z; < zo, let
G =G — V1Un_s—1 + VoUpn_s_1.

Then G* € Qi(n,do)\{ @n, 4 }- By Lemma 2.2, we have ¢(G) <
q(G*), a contradiction. Therefore G = Q. ..

For dy > 3 and d(v,) = do, we have G = Q,’:;{f’"_2, By
Lemma 2.1, ¢(Q;} ;) and g(Q; ™2 are the largest roots of the

polynomials hg,(z) and g4, (z) respectively. It follows that
(T — d0)9do () — hao(z) = (do — 3)(n — do — 3)z(z — do — 1).

When do = 3, we have (z — 3)gs(z) = hs(z). Since ¢(Q% 3) >

q(Ks,3) = 5and q(Q;‘,'Ss) > q(Ka,3) = 5, it follows that g( :::-35) =
q(Qpr 3). When do = n — 3, we have Qz,‘d?‘z = Q% 4 When

3<dy<n—-3, forz > q(QZ"‘d?”z) > q(Ka,4,) = do + 2, we

have

(x — do)gao (z) — hao(z) = (do — 3)(n —do — 3)z(z — dp — 1) > 0.

It follows that hg, (q(QZ,'d‘ff'z)) < 0. This implies that q(QZ;,‘;°_2) <
(@, a0)-

Combining the above arguments, we have ¢(Q77) = q(Q.} 5)
and G = Q} , or Q73°. By Lemma 2.1, ¢(Q.} ;) is the largest
root of the equation

1* — (n + dg + 3)z® + (2dp + don + 5n — 5)z?
—(5n + 4don — 5dy — 9)$ + 2dgn = 0.

This completes the proof. ]

Remark 3.3. Forn =5 anddo =2, Q:(5,2)\{@5,2} = {Cs }.
Forn =25 anddy =3, Q:(5,3)\ {Qs5,3}=0.
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Note that if we add an edge e to a connected graph G, then
q(G + e) > ¢q(G) as Q(G) of a connected graph is irreducible.
So we have the following result.

Lemma 3.4. q(Qr, do+1) > 9(Qn,d,) for 2 < dp < n —3.
By Theorem 3.1 and Lemma 3.4, we have the following re-
sult.

Theorem 3.5. Let n > 4 and G be a triangle-free quasi-tree
graph of order n. Then q(G) < q(Qn,n—2) with equality if and
only if G = Qn n—2, where q(Qn n—2) is the largest root of the
equation z* — (2n — 1)z + (n? —2)z —n?+2n = 0.

4 The index of a triangle-free quasi-
tree graph

By an analogous manner as above, we can obtain the similar
results on the spectral radius of triangle-free quasi-tree graphs.

Theorem 4.1. Let n > 4, dy > 2, G € Qy(n,dy). Then

1
p(G) < 5\/2n+2do+2\/5d§—2ndo+4do+n2 —4n+4—-4,
with equality if and only if G = Qp, 4.

Theorem 4.2. Letn > 6, dy > 2, G € Qi(n,do) \ { Qn a0 }-
Then p(G) < p(Qn,4,), with equality if and only if G = Q! ,,
where p(Q, 4,) is the largest root of the equation z° — (n + do —

2)z* + (n—2do+ndo —d¢ - 5)r’ +2dp+n —don +dZ — 3 = 0.
Theorem 4.3. Let n > 4 and G be a triangle-free quasi-tree

graph of order n. Then p(G) < v2n — 4, with equality if and
only if G = Qn, n—2.
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