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Abstract
Let id(v) denote the implicit degree of a vertex v in a graph G.
We define G to be implicit claw-heavy if every induced claw of G
has a pair of nonadjacent vertices such that their implicit degree
sum is more than or equal to |V(G)|. In this paper, we show that
an implicit claw-heavy graph G is hamiltonian if we impose certain
additional conditions on G involving numbers of common neighbors
of some specific pair of nonadjacent vertices, or forbidden induced
subgraphs. Our results extend two previous theorems of Chen et
al. [B. Chen, S. Zhang and S. Qiao, Hamilton cycles in claw-heavy
graphs, Discrete Math., 309 (2009) 2015-2019.] on the existence of

Hamilton cycles in claw-heavy graphs.
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1 Introduction

In this paper, we consider only undirected, finite and simple graphs. No-
tation and terminology not defined here can be found in (3].

For a subset S of V(G), we use (S) to denote the subgraph of G induced
by S. A graph T is called an induced subgraph of G if T = (S) for some
S € V(G). An induced subgraph of G with vertex set {u,v, w,z} and edge
set {uv, uw, uz} is called a claw of G, with center u and end vertices v, w, z.
An induced subgraph of G isomorphic to a claw with one additional edge
is called a modified claw.
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Let G be a graph and S be a subgraph of G. For a vertex u € V(G),
define Ns(u) = {v € V(S) : uv € E(G)}. The degree of u in S is denoted
by ds(u) = |Ns(u)|. If § = G, we can use N(u) and d(u) in place of Ng(u)
and dg(u), respectively. For two vertices u and v in G, we use d(u,v) to
denote the distance between » and v in G.

In 1989, Zhu, Li and Deng [12] found that though some vertices may
have small degrees, we can use some large degree vertices to replace small
degree vertices in the right position considered in the proofs, so that we
may construct a longer cycle. This idea leads to the definition of implicit
degree. We use Ny(v) to denote the vertices which are at distance 2 from
vin G.

Definition 1. ([12/) Let v be a vertez of a graph G and d(v) = I + 1.
Set My = max{d(u) : u € Na(v)}. If Nao(v) # 0 and d(v) > 2, then let
dy £d2 £ ... £d; €diqr < ... be the degree sequence of vertices of
N(v) U Na(v). Define

. di41, if  diy1 > Mpy;
d =
() {d,, otherwise.

Then the implicit degree of v is defined as id(v) = max{d(v),d*(v)}. If
Na(v) =0 or d(v) <1, then define id(v) = d(v).

Clearly, id(v) > d(v) for every vertex v from the definition of implicit
degree. A vertex v in a graph G of order n is called heavy (implicit-heavy)
if d(v) > n/2 (id(v) > n/2). If v is not heavy (not implicit-heavy), we call
it light (implicit-light). A claw of G is called 2-heavy (implicit 2-heavy)
if at least two of its end vertices are heavy (implicit-heavy). And G is
called 2-heavy (implicit 2-heavy) if all its claws are 2-heavy (implicit 2-
heavy). G is called claw-heavy (implicit claw-heavy) if every induced claw
of G has a pair of nonadjacent vertices v and v such that d(u) + d(v) > n
(id(u) + id(v) > n). Clearly, every 2-heavy (implicit 2-heavy) graph is
claw-heavy (implicit claw-heavy), and every 2-heavy (claw-heavy) graph
is implicit 2-heavy (implicit claw-heavy), but every claw-heavy (implicit
claw-heavy) graph is not necessarily 2-heavy (implicit 2-heavy).

Let T be a graph, we say G is T-free if G does not contain an induced
subgraph isomorphic to T'. Note that every claw-free graph is 2-heavy. We
use D, H and P; (a path on 7 vertices) to denote the graphs in Fig.1.

A cycle in a graph G is called a Hamilton cycle if it contains all vertices
of G. And G is called hamiltonian if it contains a Hamilton cycle. Degree
conditions and forbidden subgraph conditions are two important types of
sufficient conditions for the existence of Hamilton cycles in graphs. The
following two results are two examples of these two types of conditions,
respectively.
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Theorem 1. ([7]) Let G be a graph of order n > 3. If d(u) > n/2 for each
vertex u € V(G), then G is hamiltonian.

Theorem 2. ([11]) Let G be a 2-connected graph of order n > 3. If G
is claw-free and |[N(u) N N(v)| > 2 for every pair of vertices u and v with
d(u,v) =2, then G is hamiltonian.

Combining the above two types of conditions, Broersma et al. [4] gave
a common generalization of Theorem 2.

Theorem 3. ([4]) Let G be a 2-connected graph of order n > 3. If G
is 2-heavy and |N(u) N N(v)| 2 2 for every pair of vertices u and v with
d(u,v) = 2 and max{d(v),d(v)} < n/2, then G is hamiltonian.

In 2009, Chen et al. [6] relaxed 2-heavy in Theorem 3 to claw-heavy,
and got the following result.

Theorem 4. ([6]) Let G be a 2-connected graph of ordern > 3. If G is
claw-heavy and |N(u) N N(v)| > 2 for every pair of vertices u and v with
d(u,v) = 2 and max{d(u),d(v)} < n/2, then G is hamiltonian.

Our first objective in this paper is to prove that we can use implicit
claw-heavy in place of claw-heavy in Theorem 4.

Theorem 5. Let G be a 2-connected graph of order n > 3. If G is implicit
claw-heavy and |N(u) N N(v)| > 2 for every pair of vertices u and v with
d(u,v) = 2 and max{id(u),id(v)} < n/2, then G is hamiltonian.

There are many results on the existence of Hamilton cycles for claw-free
graphs, the following two are known.

Theorem 6. ([5]) Let G be a 2-connected graph. If G is claw-free, P;-free
and D-free, then G is hamiltonian.

Theorem 7. ([8]) Let G be a 2-connected graph. If G is claw-free, P;-free
and H-free, then G is hamiltonian.

In [4}, the authors extended Theorem 6 and Theorem 7 to the class of
2-heavy graphs.
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Theorem 8. ([4]) Let G be a 2-connected graph of ordern > 3. If G is
2-heavy, and moreover Pr-free and D-free, or P;-free and H-free, then G
is hamiltonian.

In 2009, Chen et al. [6) relaxed 2-heavy in Theorem 8 to claw-heavy,
and got the following result.

Theorem 9. (/6]) Let G be a 2-connected graph. If G is claw-heavy, and
moreover P;-free and D-free, or Pr-free and H-free, then G is hamiltonian.

Our second objective in this paper is to prove that we can use implicit
claw-heavy in place of claw-heavy in Theorem 9.

Theorem 10. Let G be a 2-connected graph of ordern > 3. If G is implicit
claw-heavy, and moreover P;-free and D-free, or P;-free and H-free, then
G is hamiltonian.

Remark 1. The graph in Fig.2 shows that our results in Theorem 5 and
Theorem 10 do strengthen those in Theorem 4 and Theorem 9, respec-
tively. Let n > 12 be an even integer and K, /23 U K,/ denote the
union of two complete graphs K,/5_3 and K,/2. And let V(Kpnj2-3) =
{z1,72,...,Zn2_3} and V(Kpn/2) = {y1,¥2,-..,Yn/2}. We construct a
graph G with V(G) = V(Ky/2-3UKp/2)U{u,v,w} and E(G) = E(Kn/2-3U
Knp) U{ziys :i=1,2,...,n/2 = 3} U {uw, vw, wyn o_3} U {uz;, vz;, we; :
i =12,...,n/2 — 3}. It is easy to see that G is a hamiltonian graph
not satisfying the conditions of Theorem 4 or Theorem 9. But since
id(u) = id(v) = n/2 and id(yn/2—3) > d(Yn/2—3) = n/2 + 1, G satisfies
the conditions of Theorem 5 and Theorem 10.

Remark 2. It is clear that every Ps-free graph is also {P;, D}-free. Thus
the result in [9] (Let G be a 2-connected graph of order n > 3. If G is
implicit claw-heavy and Pg-free, then G is hamiltonian.) is the corollary of
our result in Theorem 10.
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2 Lemmas

For a cycle C in G with a given orientation and a vertex z in C, z¥
and z— denote the successor and the predecessor of z in C, respectively.
We define z+2 = (z*)* and 72 = (z~)~. And for any I C V(C), let
I ={z:z* €I} and It = {z : z~ € I}. For two vertices z,y € C, zCy
denotes the subpath of C from z to y. We use yCz for the path from y to
z in the reversed direction of C. A similar notation is used for paths.

A cycle C is called implicit-heavy if it contains all implicit-heavy vertices
of G; it is called eztendable if there exists a longer cycle in G containing all
vertices of C. Our proofs of Theorem 5 and Theorem 10 are based on the
following lemmas. The first lemma is implicit in the work of Li, Ning and
Cai [10].

Lemma 1. ([10]) Every 2-connected graph contains an implicit-heavy cy-
cle.

Lemma 2. ([1]) Let G be a 2-connected nonhamiltonian graph of order
n > 3 and C be a nonextendable cycle of G. If P is a path of G connecting
z and y such that V(C) C V(P), then zy ¢ E(G) and d(z) + d(y) < n.

Lemma 3. ([10]) Let G be a 2-connected graph, P = x1%3...z, with
zy =z and x, =y be a path connecting x and y in G and zy ¢ E(G).

(i) If d(u) < id(x) for each vertex v € Ng_y(py(z) U {x}, then there exists
a vertez £, € Np(z)~ such that d(z;) > id(z).

() If d(v) < id(y) for each vertex v € Ng_v(p)(y) U {y}, then there exists
a vertez x: € Np(y)* such that d(z:) > id(y).

Lemma 4. Let G be a 2-connected nonhamiltonian graph of order n > 3
and C be a nonextendable cycle of G. If P is a path connecting x and y in
G such that V(C) C V(P), then zy ¢ E(G) and id(z) + id(y) < n.

Proof. Clearly, zy ¢ E(G). Suppose to the contrary that id(z)+id(y) = n.
For convenience, let P = z1z;...1, with z; =z and 2, = y. Set R =
G — V(P). By the choice of C, G has no cycle containing all vertices of P.
In particular, z and y have no common neighbors in R. By Lemma 2, we
can assume that d(z) < id(x). If there exists a vertex u € Nr(z) such that
d(u) > id(x), then Py = uz zy...zp is a path of G with V(P) C V(R). If
there exists no vertex v € Ng(z) such that d(u) > id(z), then by Lemma
3 (i), there exists a vertex z; € Np(z)~ such that d(z;) > id(z). Thus
Py =z, y...21T541%s42 ... Tp is & path of G with V(P) C V(P;). By
similar argument to the path P; or P, we may obtain a path P; connecting
v and w such that V(P) C V(P;), d(v) > id(x) and d(w) > id(y). So

d(v) + d(w) > id(z) + id(y) > n. But since V(C) C V(P) C V(Ps), by
Lemma 2, d(v) + d(w) < n, a contradiction.
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Lemma 5. Let G be a 2-connected graph of order n and z,y € V(G) be
two nonadjacent vertices such that id(zx) +1id(y) > n. If G+zy has a cycle
C, then G has a cycle containing all vertices of C.

Proof. Assume G does not have a cycle containing all vertices of C. Then
G has a path P from z to y containing all vertices of C. Clearly, zy ¢ E(G),
z and y have no common neighbors in V(G) \ V(P). By similar argument
as in Lemma 4, there exists a path P’ from u to v such that V/(P) C V(P’),
d(u) 2 id(z) and d(v) > id(y). Thus, d(u) + d(v) > id(z) + id(y) = n.

For convenience, let P/ = z323...2, (£ = v and 2, = v) and R =
G -V(P’). Since V(C) C V(P’') and G has no cycle containing all vertices
of C, we can get that uv ¢ E(G) and Ng(u) N Ng(v) = @. Noting that
d(u) + d(v) = n, then dp/(u) + dp:(v) > |V(P')|. There must exist a
vertex z; € V(P’) such that uz;y1 € E(G) and vz; € E(G). Thus, C' =
uP'z;vP'z;  u is a cycle containing all vertices of C, a contradiction. O

Lemma 6. Let C be a nonextendable cycle in a 2-connected graph G of
order n, S be a component of G — V(C), and A be the set of neighbors of
S on C. Then

(a) ANA- =0,AN At =0, and A~ and At are independent sets,

(b) Each pair of vertices from A~ or A" has implicit degree sum smaller
then n.

Proof. The proof of (a) can be found in [2].

(b) We will prove by contradiction. Suppose without loss of generality,
that there is a pair of vertices from A* has implicit degree sum at least
n. For convenience, we give C a clockwise orientation. Let {z1,z2,...,Z}
be the neighbors of S on C and let , 22, ...,z occur in this order along
C. We may assume without loss of generality that id(z7) + id(z3) > n.
Let P be a path connecting z;, and z, such that |V(P) N V(S)| is as large
as possible and V(P) N V(C) = {181,3,'2} Then |V(P)| > 3. We orient P
from z; to 5. Set P/ = :1:1 Ca:zP:z:lsz Clearly, V(C) C V(P'). Then by
Lemma 4, we have id(z7) +id(2}) < n, a contradiction. o

3 Proofs of Theorem 5 and Theorem 10

Proof of Theorem 5. Suppose to the contrary that G is not hamiltonian.
Then by Lemma 1, G contains an implicit-heavy cycle. Let C be a longest
implicit-heavy cycle and give C' a clockwise orientation. Then V(G) \
V(C) # ®. Since G is 2-connected, there is a path P = 1 ujus...u,To
connecting two vertices z,z2 € V(C) internally disjoint with C' and such
that |V(P)| = 3.

By the choice of C, all internal vertices on P are implicit-light. Since
P' = uPz,Cz} and P" = 4, Px,Cxz] are two paths such that V(C) C
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V(P') and V(C) c V(P") for every vertex ux € {u1,u2,...,ur}, we have
upzy, uezy ¢ E(G), id(ux) + id(z}) < n and id(ux) + id(z7) < n for
every vertex uy € {u;,us,...,u,} by Lemma 4. Similarly, uxz],usz; ¢
E(G), id(ux) + id(zF) < n and id(uk) + id(z3) < n for every vertex
ur € {u1,uz,...,u}. By Lemma 6 (b), we have id(z}) + id(z3) < n and
id(x7) + id(z7) < n. This implies that id(z7) + id(z]) < n or id(z3) +
id(zF) < n. Since G is implicit claw-heavy, {z1,u1,z7,z]} induces a
modified claw or {2, ur,z5,z5} induces a modified claw. Without loss of
generality, we may assume that {z1,u1,z7,2]} induces a modified claw,
z7z§ € E(G) and id(zy )+id(z]) < n. Here we may assume id(z}) < n/2.

Now we have d(u;,zy) = 2 and max{id(u;),id(z])} < n/2. By the
condition of Theorem 5, we have |N(uy) N N(z{)| > 2. Thus, there is a
vertex z € (N(u;) N N(z})) \ {z1}. By the choice of C, it easy to see
that z € V(C). From Lemma 6, we can obtain that {z,u;,z],z%} in-
duces a claw and id(z]) + id(zt) < n. Since P, = z+Czu, is a path
with V(C) C V(P1), id(z*) + id(u1) < n by Lemma 4. Noting that
id(z¥) + id(u1) < n, then {z,u;,z{,z*} induce a claw with no pair of
nonadjacent vertices having implicit degree sum more than or equal to n,
this contradicts the condition of Theorem 5. O

Proof of Theorem 10. Suppose to the contrary that G is not hamiltonian.
By Lemma 1, G contains an implicit-heavy cycle. Let C be a longest
implicit-heavy cycle and give C a clockwise orientation. Then V(G) \
V(C) # 0. Since G is 2-connected, there exists a path P connecting two
vertices z1 € V(C) and z3 € V(C) internally disjoint with C' and such that
[V(P)| > 3. Let P = zyujuy...u,T2 be such a path of minimum length.
Then P is an induced path unless z;z3 € E(G).

By similar argument as in the proof of Theorem 5, we have the following
claim.

Claim 1. uiz}, upz; ¢ E(G), id(ux)+id(z}) < n and id(ux)+id(z]) <n
for every ux € {u1,us,...,u,} and i =1,2.

Claim 2. Either z7z} € E(G) or 2523 € E(G).

Proof. Suppose to the contrary that z7z} ¢ E(G) and z; x5 ¢ E(G).
Since G is implicit claw-heavy, we have id(zT) + id(z}) > n and id(z7 ) +
id(z}) > n by Claim 1. This implies that id(zy7) + éd(z5) = n or
id(z}) + id(z) > n. But by Lemma 6 (b), we have id(z]) +id(z7) <n
and id(z{) + id(z3) < n, a contradiction. o

Claim 3. There is some vertex in =7 Cz;_; not adjacent to z; in G for
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i =1,2. In particular, z;z;_;, z:iz{_; ¢ E(G).

Proof. Suppose without loss of generality that z,z5; € E(G). By Lemma
6, we have z7z; ¢ E(G) and id(z]) + id(z3) < n. By Claim 1, we have
wiz; ¢ E(G) and id(uy) +id(z7) < », i = 1,2. Then {zy,u1,z7,23}
induces a claw with no pair of nonadjacent vertices such that their implicit
degree sum is at least n, a contradiction. o

By Claim 3, there is a vertex in :c;"C:c;_,. not adjacent to z; for i = 1, 2.
Let y; be the first vertex in xj’C’:t:;_,- not adjacent to z; for i = 1,2. By
Claim 2, without loss of generality, we may assume z]z} € E(G). We will
distinguish the following two cases.

Case 1. z;z7 € E(G).

Let u be a vertex in V(P) \ {z1,z2} and let 2; be an arbitrary vertex
inzfCy;, i =1,2.

Claim 4. uz1,uzs, 2122, 2221, 2122 € E(G).

Proof. If uz; € E(G), by Claim 1, z; # z{, then x; Puz,Cz]z] Czy 1 is
an implicit-heavy cycle longer than C, contradicting the choice of C. Hence
uz; € E(G). Similarly, u2, ¢ E(G).

If zyz2 € E(G), by Claim 3, 23 # z{, then 21 Px22,Cx; 3 Cxy z§ Czy 1y
is an implicit-heavy cycle longer than C, contradicting the choice of C.
Hence z;z; ¢ E(G). Similarly, 22z, ¢ E(G)

Ifz125 € E(G) by Lemma 6 (a), z1 #zf or zz # 3, then $1P27222 Cz}
13 Cz125Cxy :cl FCz zy (if 2 #z{ and z3 # zf) or 561P$222 Cxfz; 02122
Cz; (if 2, = :1:1 and z; # z3 ) or :zlP:rgczlzzCzl x] sz,l zy (if z; # xl is
an implicit-heavy cycle longer than C, contradicting the choice of C. Hence
2129 ¢ E(G) O

Claim 5. r > 2.

Proof. Suppose r = 1. Then by Claim 4 and the choice of ¥, and yz,
{v1,97 , 21,1, %2,y5 , ¥2} induces a Py if 2122 ¢ E(G) or D if 1172 € E(G).
In the latter case, it is easy to check that {u;,z1,z2,z7,2]} induces an
H, a contradiction. 0
Claim 6. id(z}) + id(z2) < n and id(z3) + id(z1) < n.

Proof. Since P’ = z{Cz;2§Cz1 Pz, and P" = z}Czyz} CzyPx, are
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two paths such that V(C) C V(P’) and V(C) C V(P”), we can obtain
that id(z]) + id(z2) < n and id(x3) + id(z1) < n by Lemma 4. n|

Claim 7. z1z2 € E(G)

Proof. Suppose 122 ¢ E(G). Now by the choice of P and Claim 4, we

have {y1,¥7,Z1,%1,U2,...,Ur, ZT2,Y5 , Y2} induces a path P, q. Then we
can find an induced subgraph isomorphic to P;, contradicting the hypoth-
esis of Theorem 10. a

Claim 8. id(z,) > n/2 and id(z2) > n/2.

Proof. By the choice of P, we have uT2,u,z1 ¢ E(G). By Claim 1 and
Claim 4, we have {z;, ul,:z:l ,Z2} induces a claw. Thus, by the hypothesis
of Theorem 10 and Claim 6, id(u1) + id(z2) > n. Since id(uy) < n/2
id(x3) > n/2. Similarly, we can prove that id(z,) > n/2.

Claim 9. Either d(z;) < id(z1) or d(x2) < id(z2).

Proof. Suppose to the contrary that d(z;) = id(z;) and d(z3) = id(z2).
Then by Claim 8, d(z;) + d(z3) = id(z1) + id(z2) > n. By the choice of
P and by Claim 5, we have Ng_c(z1) N Ng_c(z2) = 0. Thus, |Nc(z1)| +
|Nc(z2)| > [V(C).

By Claim 7, zyz2 € E(G). Then by the choice of ¥; and y, and by
Claim 3 and Claim 4, we have

|V, o7 cy—($1)| + N, z; Cyf (z2)| = V(27 Cy1)l,

and
INz=cyz (@Ol + IN; ¢y (@2)] = [V (27 Cyz ).

Moreover, by the choice of y3, y2 and by Claim 4, we have z1y1, Z2t1, T1Y2, Z2y2 ¢
E(G). Thus,

INy# oz (@] + INy# gor2 (@2)] + [Nyt goma(@1)] + [Ny a2 (22)
> |V(yfCz3?)| + [V(yF Cz72)| + 2.

This implies that either
INy# o2 (@) + Nyt ooza(@2)] > [V (y1 Cz;%)| +1

or
INy;'C:l'z (z)] + |Ny;Czl—2(x2)| > |V(y§"C:1:1_2)| + 1.
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Without loss of generality, we may assume that
|Ny:'C:r:;2(zl)l + |Nyi+0z'7(x2)' > IV(Z‘/TC%_QN + 1.

Then there exists a vertex v e Vi Czy o) such that a:lv € E(G) and
z2v~ € E(G). Now C' = z{Cv~z,Pr1vCx;z§CzTx] is a cycle such
that V(C) c V(C'), contradicting the choice of C. )

By Claim 9, without loss of generality, we may assume d(z;) < id(z;)-
Set R =V(G) - V(C), C, = V(2,Cx,) and Cy = V(zF Cz7).

Claim 10. There exists some x € (N¢, (1)~ \ {z1,27 }) U N¢, (1)~ such
that d(z) > id(z,).

Proof. Let d(z1) =+ 1. By the choice of P, we have d(u) < id(u) < n/2
for every vertex v € R. Then d(w) < id(z,) for every w € Ng(z1) U
(Na2(z1) N R). Then by the definition of implicit degree and the following
fact:

Ne,(z1)” UNc,(21)™ = Ne(z1)™ € Ne(za) U (N2(z1) NV(C)),

|Nc(z1)™| + |Nr(z1)| = d(z1) - 1 =1,
up € Na(1), d(ug) <id(z1) and id(z)) >d(z) =1+1,

there exists some x € (N¢,(z1)™ \ {z1,25 }) U Ng,(x1)~ such that d(z) >
’l:d(IBl). ]

By Claim 10, there exists some z € (Ng, (z1)~ \ {z1,27}) U Nc2 (1)~
such that d(z) > id(z,). If z € N¢, (1)~ \ {z1,23 }, then P’ = zCz}z; C
zFz5;Cxtz Pz, is a path such that V(C) ¢ V(P'). Then by Lemma
3 and the choice of C, we have id(z) + id(z2) < n. But by Claim 8,
id(z) + id(z2) 2 d(z) + id(z2) = id(x1) + id(z2) > n, a contradlctlon

Suppose z € Ng,(z;)~. By Claim 4, we have :1:1:1:2 ¢ E(G) and
1:1:1:2 ¢ E(G). Soz # mg,z;' Then P" = zCx}z; Cxfxy Cxtzi P,
is a path such that V(C) C V(P"). Then by Lemma 3 and the choice of C,
we have id(z)+id(z2) < n. But by Claim 8, id(x)+id(z2) > d(z)+id(z2) =
id(z1) + id(z2) > n, a contradiction.

Case 2. ;] ¢ E(G).
Then {z,z5,z3,u.} induces a claw. Since G is implicit claw-heavy,
id(z3) +id(z) > n by Claim 1. Then by similar argument as in Case 1 to

the graph G + z; =3, we can get that G + x5z} has a cycle C' containing
all implicit-heavy vertices of G, and such that C’ is longer than C. By
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Lemma 5, G has a cycle containing all vertices of C’, this contradicts the
choice of C. Now we complete the proof of Theorem 10. |
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