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Abstract ‘

A 2-rainbow dominating function (2RDF) on a graph G = (V, E)
is a function f from the vertex set V to the set of all subsets of the
set {1,2} such that for any vertex v € V with f(v) = 0 the condition
UueN(w) f(u) = {1,2} is fulfilled. The weight of a 2RDF f is the value
w(f) = ¥, ev(e) 1f (V)| The 2-rainbow domination number, denoted
by vr2(G), is the minimum weight of a 2RDF on G. The rainbow
bondage number b,2(G) of a graph G with maximum degree at least
two, is the minimum cardinality of all sets E' C E(G) for which
Yr2(G — E') > ~v,2(G). Dehgardi, Sheikholeslami and Volkmann,
[Discrete Appl. Math. 174 (2014), 133-139] proved that the rainbow
bondage number of a planar graph does not exceed 15. In this paper
we improve this result.
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1 Introduction

In this paper, G is a simple graph with vertex set V = V(G) and edge
set E = E(G). The order |V| and size |E| of G are denoted by n =
n(G) and m = m(G), respectively. For every vertex v € V(G), the open
neighborhood Ng(v) = N(v) is the set {u € V(G) | wv € E(G)} and the
closed neighborhood of v is the set Ng[v] = N([v] = N(v)U{v}. The degree of
avertex v € V is degg(v) = deg(v) = |N(v)|. The minimum and mazrimum
degree of a graph G are denoted by § = 6(G) and A = A(G), respectively.
The open neighborhoodof a set S C V is the set N(S) = |J, s N(v), and the
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closed neighborhood of S is the set N[S] = N(S)US. By dg(z,y) = d(z,y)
we denote the distance of the vertices  and y in the graph G. The girth
9(G) of G is the length of a shortest cycle in G, and g(G) = oo when G is
a forest. For the notation and terminology not defined here, we refer the
reader to [12,18].

A subset S of vertices of G is a dominating set if N[S|] = V. The
domination number y(G) is the minimum cardinality of a dominating set
of G. To measure the vulnerability or the stability of the domination in
an interconnection network under edge failure, Fink et al. [10] proposed
the concept of the bondage number in 1990. The bondage number of G,
denoted by b(G), is the minimum number of edges whose removal from G
results in a graph with larger domination number. For more information
on this topic we refer the reader to the survey article by Xu [20].

For a positive integer k, a k-rainbow dominating function (kRDF) of a
graph G is a function f from the vertex set V(G) to the set of all subsets
of the set {1,2,...,k} such that for any vertex v € V(G) with f(v) = 0 the
condition Uyenw) f(u) = {1,2,...,k} is fulfilled. The weight of a kRDF f
is the value w(f) = Zvev(c) |f(v)]. The k-rainbow domination number of
a graph G, denoted by v,4(G), is the minimum weight of a kRDF of G.
A vx(G)-function is a k-rainbow dominating function of G with weight
¥rk(G). Note that v,1(G) is the classical domination number v(G). The
k-rainbow domination number was introduced by Bresar, Henning, and
Rall [3] and has been studied by several authors [4-8,14-16,19].

Let G be a graph with maximum degree at least two. The k-rainbow
bondage number b,r(G) of G is the minimum cardinality of all sets E' C E
for which v,+(G — E’) > v,-x(G). Since in the study of k-rainbow bondage
number the assumption A(G) > 2 is necessary, we always assume that
when we discuss b,x(G), all graphs involved satisfy A(G) > 2. The k-
rainbow bondage number was introduced by Dehgardi, Sheikholeslami, and
Volkmann in (7). In their paper, they proved that:

Proposition A. If G is a planar graph with maximum degree at least two,
then 4.2(G) < 15.

In this paper, we improve the stated bound in Proposition A. We make
use of the following results in this paper.

Proposition B. ( [4,17]) If G is a planar graph with minimum degree 5,
then G contains an edge zy with deg(z) = 5 and deg(y) € {5,6}.

Proposition C. ( [11]) Let G be a planar graph of girth g < 0o and c be
the number of cut-edges in G, then

gn(G) -9 -c

m(G) < $HE
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Corollary 1. Let G be a planar graph of girth g(G) < oo. Then (i)
0(G) <5, (ii) if g(G) = 4, then §(G) < 3, (iii) if g(G) > 6, then §(G) < 2.

Proposition D. (Euler’s formula) If G is a connected planar graph, then
V(&) -| E(G)| + |F(G)| = 2,
where F(G) is the face set of G.

Proposition E. ( [13]) Let v be a vertex of a planar graph G with d(v) 2 3,
and let E, = {ry | ,y € N(v) and zy ¢ E(G)}. Then there exists a subset
S C E, such that H = G + S is still a planar graph and H[N(v)] is 2-
connected.

Proposition F. ( [7]) If G is a graph, and zyz a path of length 2 in G,
then
br2(G) < d(z) + d(y) +d(z) - 3.

Proposition G. ( [7]) If G is a connected graph of order n > 3, then
br2(G) < 6(G) + 2A(G) - 3.

Proposition H. ( (7]) If G is a connected graph of order n > 3 and
edge-connectivity A(G), then

bra(G) < MG) + 2A(G) - 3.

Proposition I. ( [7]) Let zyz be a path of length 2 in graph G. If zz ¢
E(G), then

br2(G) < d(z) +d(y) +d(2) — 2 — [N(z) N N(y)| | N(z) " N(z)};
otherwise,

br2(G) < d(z) +d(y) +d(z) -3~ |N(z) " N(y)| -| N(z) N N(2)|.

Proposition J. ( [7]) If T is a tree of order n > 3, then b,2(T) < 2.

The next result is an immediate consequence of Propositions A, G and
Corollary 1.

Corollary 2. If G is a connected planar graph with maximum degree at

least two, then
br2(G) < max{15,2A(G) + 2}.
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2 Bounds on the 2-rainbow bondage number

In this section, we will improve the bound of Corollary 2 for connected
planar graph.

Theorem 3. If G is a connected planar graph of order n 2 3, then b.2(G) <
max{15,2A}.

Proof. By Proposition A, we only need to prove that b,.o(G) < 2A for A <
7. If A(G) < 3, then the result follows. by Proposition H. Now on, A(G) >
0(G) 2 MG) 2 4. Assume, to the contrary, that bo(G) > 2A + 1. For each
edge e = xy in E(G), we assign two variables v, = 1/deg(z) + 1/ deg(y)
and fe = 1/a;+1/ay, where a; and a, are the number of edges comprising
the faces which e borders. Obviously }-,cpve =n and ) g fe = |F(G)|.
By Proposition D, we have

Y (ve+fe—1)=n—|EG)|+|F(G) =2. 1)
ecE

Now we show that for every edge e = zy, ve + f. — 1 < 0 which leads to
a contradiction by (1). Assume that e = zy € E and deg(z) < deg(y).
First let deg(z) = 4. It follows from Proposition I and our assumption
br2(G) 2 2A + 1 that

2A +1 < bo(G) < 4+ deg(y) + A —3—|N(z) N N(y)| < 2A +1,

and hence deg(y) = A > 4 and z and y can have no common neighbor. So
a; and a, are both at least 4 that implies v + fe —1 < 0.
Now let deg(z) = 5. Then by Proposition I we have

20 +1 < ba(G)
< 5+deg(y) +A—3—|N(z)NN(y)| (2)
< deg(y) + A+2 —|N(z) N N(y)|

and hence deg(y) > A — 1. If deg(y) = A — 1, then = and y can have no
common neighbor and deg(y) > 5 by assumption, and the result follows as
above. Let deg(y) = A > 5. Then (2) shows that = and y have at most one
common neighbor and hence at most one of a, and a, is equal to 3. This
leads to ve + fo — 1 < 0. Finally if deg(z) > 6, then a;,a, > 3 implying
that ve + fe —1 < 0. This completes the proof. O

Theorem 4. Let G be a connected planar graph of order at least three
with no vertex of degree five. Then b,2(G) < max{12, A(G) + 5}.

Proof. First we show that b,2(G) < 12. By Corollary 1 and our assumption,
we have §(G) < 4. Let X = {v € V(G) | deg(v) <4} and Y =V(G) - X.
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First suppose that there exists a vertex v € Y which has three neighbors
wy,ws,ws in X. Let F be the set of all edges incident to wi, w2 or ws.
Then |F| < 12 and the vertices w;, w2, w3 are isolated in G — F. If fis a
vr2(G — F)-function, then clearly |f(w1)| = |f(w2)| = |f(w3)] =1 and the
function g defined on V(G) by g(v) = {1,2},g(w1) = g(wz) = g(ws) = 0
and g(w) = f(w) otherwise, is a 2RDF of G with weight less than w(f)
and hence b,2(G) < 12. Thus we may assume that each vertex in Y has at
most two neighbors in X.

Assume that G[Y] is the subgraph induced by Y. If there exists a vertex
u € Y of degree at most 7 in G[Y], and u has exactly two neighbors w;, w2
in X, then consider the path wyuws. It follows from Proposition F that
br2(G) < 12. Thus we may assume that each vertex of degree at most 7 in
G[Y] has at most one neighbor in X.

Since the subgraph G[Y] is a planar graph, we deduce from Corollary
1 that 6(G[Y]) < 5. If 6(G[Y]) < 4 and v is a vertex of G[Y] of degree
8(G[Y]), then we obtain degg(v) < 4 since v has at most one neighbor
in X and G has no vertex of degree 5, contradicting the definition of X.
Therefore, §(G[Y]) = 5. It follows from Proposition B that there is an edge
zy in G[Y] such that deggy)(z) = 5 and deggyy;(y) € {5,6}. Since G has
no vertex of degree 5, we conclude that = has exactly one neighbor in X and
y has at most one neighbor in X. Hence degg(z) = 6 and dege(y) € {6,7}.
Let z be the neighbor of z in X and consider the path zzy. Proposition F
implies that b,2(G) < 12 as desired.

Now we show that b.3(G) < A(G) + 5. Since bo(G) < 12, we may
assume that A(G) < 7. As above, we have §(G) < 4. Let X = {v €
V(G) | deg(v) < 4} = {v1,va,...,v}. Suppose on the contrary that
br2(G) 2 A + 6. Since byo(G) < 12, we have A(G) < 6. By Proposition
F, we deduce that for any two distinct vertices u,v € X, d(u,v) > 3.
Define Hy = G and H; = H;_; + S; for 1 < i < k, where S; is a subset
of E,, = {zy | z,y € N(v;),zy ¢ E(H;~1)} such that H;_; + S; is still
a planar graph and H;[N(v;)] is 2-connected when degg(v;) > 3. Now let
v € X and y € Ng(v). Since by5(G) > A + 6, we deduce from Proposition
F that degg(v) > 3. If deg(v) = 3, then by Proposition F, we obtain

A +6 < bra(G) < degg(v) +degg(y) + A — 3 =degg(y) + A.

The inequality chain and the fact A(G) < 6, leads to deg(y) = 6 and thus
degy, (v) > 8. Assume next that deg(v) = 4. By Proposition F and the
fact A(G) < 6, we obtain

A +6 < bpo(G) £ deg(v) + degg(y) + A — 3 =degg(y) + A+1 .

This implies that degs(y) = 5. Since G has no vertex of degree 5, we obtain
degg(y) = 6 = A(G) and so degy, (y) = 8. Obviously, H is planar. Since
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d(u,v) > 3 for any two distinct vertices u,v € X, we see that Hr — X is a
planar graph with minimum degree at least 6 which contradicts Corollary
1. This complete the proof. O

Theorem 5. For any connected planar graph G of order n > 3, b,2(G) <
{15, A(G) + 6}.

Proof. By Proposition A, we need only to show that b.2(G) < A(G) + 6.
Let X<3 = {v € V(G) | deg(v) < 3}, Xi = {v € V(G) | deg(v) = i} for
i=4,5. If X5 = 0, then the result is immediate by Theorem 4. Henceforth,
we assume that X5 # @. Assume, to the contrary, that b.2(G) > A + 7.
Since by2(G) < 15, we have A(G) < 8. Proposition F implies that d(z,y) >
3, if either z,y € X3 U X, or z € X3U X3 and y € X5. Moreover, if
z € X<3 and y € Ng(z), then deg(y) > 7. Suppose that I C Xj is
an independent set such that |J| is maximum. Then X5 C J U N(I) and
N(XgNN(I)=0. Now let X4 UTI = {v1,v2,...,v%} and H = G — X3.
Define Hy = H and H; = H;_.; + S; for 1 < i < k, where S; is a subset
of E,, = {zy | =,y € N(v:), zy ¢ E(H;_1)} such that H;_; + S; is still.
a planar graph and H;[N(v;)] is 2-connected. We consider the following
facts.

Fact 1. If X4 # 0, then degy, (y) > 7 for each vertex y € Ng(X4).
Let z € X4 and y € Ng(z). By Proposition F, we have

A +7 < brp(G) < degg(x) + degg(y) + A — 3 = degg(y) + A+1

implying that degg(y) > 6, and so degy, (y) > 7.

Fact 2. For each vertex y € Ne(I), degy, (y) > 7.
Let z € I and y € Ng(z). It follows from Proposition F that

A+ 7 < byo(G) < degg(z) + degp(y) + A — 3 = degg(y) + A+2 .

This implies that degg(y) > 5, and so degy, (y) > 7.

By Facts 1 and 2, we see that G* = Hy — X is a planar graph such that
(i) the minimum degree of G* is 5, (ii) ] = {v € V(G*) | dg-(v) = 5} is an
independent set in G* and (iii) degg. (v) > 7 for each vertex v € Ng-(I) =
Ng(I). Let B be the bipartite graph with partite sets I and N(I) and the
edge set {uv € E(G™) | u € I, v € N(I)}. Then B is a bipartite planar
graph with exactly 51| edges. Using Proposition C and the fact g(B) > 4,
we obtain 5|I| < 2|I| + 2|N(I)| — 4 (note that this bound remains valid
if g = oo that means that B is a forest) and therefore |[N(I)| > 3|I| + 2.



Therefore

BG") = %vevzé.)da' )
> %(SIII +7IN(D| +6(V(G) | 1| = N(D)])
= 3IV(G)+5IN(D)I - 1T
> V(@) + I +1>3V(E) -6,
a contradiction with Proposition C, and the proof is complete. 0

For a graph G, let n;(G) = n; be the number of vertices of degree i and
7i(G) = 7; be the number of vertices of degree at least i for i = 1,2,...,A.

Theorem 6. Let G be a connected planar graph of order n > 3. If g(G) >
4, then b,2(G) < max{15, A + 4}.

Proof. By Proposition A, we need only to show that b,2(G) < A + 4.
If G is a tree or A < 4, then the result follows from Proposition J and
Theorem 3. Assume that 4 < g(G) < oo and A > 5. Since g(G) > 4,
Corollary 1 implies that § < 3. Since n(G) = n; +n2 + ... + na and
2m(G) = ny + 2nz + ... + Ana, we conclude from Proposition C that

Im=n1+2np+...+Anp <4dn-8=4dn; +4(ng+n3+... +na)—8,
and thus
3ny+2no+n3>2ns+2ng+3n7+4ng+...+(A—-4)na +8.  (3)

We consider the following cases.

Case 1. A =5.

If § < 2, then the results follows from Proposition G. If § = 3 and there
exist a vertex u of degree 3 and a vertex v with d(u,v) < 2 and deg(v) < 4,
then Proposition F leads to b,2(G) < A + 4. Assume that § = 3 and that
all neighbors of each vertex of degree 3 has degree 5. Then ng > 3ns, a
contradiction with (3).

Case 2. A =6.

If § = 1, then the result is immediate by Proposition G. If there exists a
vertex u of degree r and a vertex v with d(u,v) < 2 and deg(v) < 7—r
for r = 2,3, then it follows from Proposition F that b.2(G) < A +4. In
the remaining cases, we observe that 75 > 2n; + 3n;. Now (3) leads to the
following contradiction

2no+nz3>ns+ne+8=75+82>2ny+3n3 +8.
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Case 3. A > 7.

If there exists a vertex u of degree r and a vertex v with d(u,v) < 2 and
deg(v) < 7 —r for r = 1,2,3, then it follows from Proposition F that
br2(G) < A + 4. In the remaining cases, we observe that 75 > 2ny + 3n3
and 77 > n3. Now (3) leads to the following contradiction

3ny +2ng +n3 2 75+ 277+ 8 = 3ny + 2ny 4+ 3n3 + 8.
This completes the proof. O

Theorem 7. Let G be a connected planar graph of order n > 3. If g(G) >
5, then b2 (G) < {15,A + 3}.

Proof. By Proposition A, we need only to show that b,.o(G) < A+3. If G
is a tree or A < 3, then the result follows from Proposition J and Theorem
3. Assume that 4 < g(G) < oo and A(G) > 5. By Corollary 1 and the
assumption g(G) > 5, we have 6(G) < 3. Using Proposition C and an
argument similar to that described in the proof of Theorem 6, we obtain

6m =3n; +6n2+ 93 +...+3Ana <10(n —2)
and hence
Tny + 4nz +n3 > 2nq + 5np + 8ng + ... + (3A — 10)na +20.  (4)

First let A(G) = 4. If §(G) < 2, then the result is immediate by Proposition
G. If §(G) = 3 and there exist a vertex u of degree 3 and a vertex v with
d(u,v) < 2 and deg(v) < 3, then Proposition F leads to b,2(G) < A(G)+3.
In the remaining case, we have n4 > 3n3, a contradiction to (4).

Now let A(G) = 5. If § = 1, then the result follows from Proposition
G. Suppose that 2 < § < 3. If there exist a vertex u of degree r and a
vertex v with d(,v) < 2 and deg(v) < 6 —r for r = 2, 3, then Proposition
F yields to the desired bound. In the remaining cases, we observe that
T4 2 2n3 + 3n3, a contradiction to (4).

Finally let A > 6. Proposition F yields b,2(G) < A+3, when there exist
a vertex u of degree r and a vertex v with d(u,v) < 2 and deg(v) <6 —r
for r = 1,2, 3. In the remaining cases, we observe that 74 > n; + 2ns + 3n3
and 7 > n;. Applying this inequality and (4), we obtain the contradiction
Tny + 4ng + ng = 274 + 676 + 20 > 8ny + 4ns + 6nz + 20. (]

Theorem 8. Let G be a connected planar graph of order n > 3 with
9(G) 2> 6. Then byo(G) < max{15, A + 2}.

Proof. By Proposition A, we need only to show that b,2(G) < A+2. If G
is a tree, then by Proposition J we have b.5(G) < 2 as desired. It follows



from Corollary 1 and the assumption g(G) > 6 that § < 2. If A < 3, then
Proposition G leads to bro(G) < § +2A —3 < A +2. Thus we may assume
that 6 < g(G) < oo and A > 4. Using Proposition C and an argument
similar to that described in the proof of Theorem 6, we obtain

2ny +ng > ng+2n5+3ng+ ...+ (A — 3)na + 6. (5)

First let A = 4. If § = 1, then the result follows from Proposition G. If
§ = 2 and there exist a vertex u of degree 2 and a vertex v with d(u,v) < 2
and deg(v) < 3, then Proposition F leads to bp2(G) < A + 2. In the
remaining case, we have ngq > 2ng, a contradiction to (5). Now let A > 5.
Theorem F yields b,2(G) < A+2, if there exist a vertex u of degree r and a
vertex v with d(u,v) < 2 and deg(v) £ 5 —7 for r = 1,2. In the remaining
cases, we observe that 74 > n, +2n2 and 75 > n;. Using this inequality and
(5), we obtain the contradiction 2n1+n2 2> 74 +75+6 > 2n; +2n2+6. O

Theorem 9. Let G be a connected planar graph of order n > 3. If g(G) >
8, then b2(G) < {15,A + 1}

Proof. By Proposition A, we need only to show that b,2(G) < A+ 1. If
G be a tree, then result is immediate by Proposition J. Since g(G) > 8,
Proposition 1 implies that § < 2. If A < 2, then Proposition G leads to
br2(G) < § +2A — 3 < A+ 1. Thus we may assume that 8 < g(G) < oo
and A > 3. By Proposition C,

5n1+2n—c2ng+4ng+ s+ ...+ (3A — 8)na + 16,

where c is the number of cut-edges in the graph G. Since ¢ > n;, we have
4ny + 2no > 5ny + 2n; — ¢ implying that

dn; +2np 2 n3 +4ng4 + Tns +... + (3A — 8)na + 16. (6)

First let A = 3. If § = 1, then the result is immediate by Proposition
G. If § = 2 and there exist a vertex u of degree 2 and a vertex v with
d(u,v) < 2 and deg(v) < 2, then Proposition F leads to b,2(G) < A +1.
In the remaining case, we have ng > 2ng, a contradiction to (6). Assume
now that A > 4. Proposition F yields b2(G) < A + 1, when there exist
a vertex u of degree r and a vertex v with d(u,v) < 2 and deg(v) <
4 —r for .= 1,2. In the remaining cases, we observe that 73 > n; + 2ng
and 74 > n;. Using this inequality with (7), we obtain the contradiction
dny +2n9 > 73+ 314 + 16 > 4ng + 2ny + 16. O
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