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Abstract

A kite graph is a graph obtained from a 3-cycle (or triple) by
adding a pendent edge to a vertex of the 3-cycle. A kite system of
order v is a pair (X, B), where B is an edge disjoint collection of kite
graphs which partitions the edge set of K,. A kite system of order
v is cyclic if it admits an automorphism of order v, and 1-rotational
if it admits an automorphism containing one fixed point and a cycle
of length v — 1. In this paper, we show that there exists a cyclic kite
system of order v if and only if v =1 (mod 8), and there exists a
1-rotational kite system of order v if and only if v=0 (mod 8).
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1 Introduction

Let G, H be simple graphs, and K, a complete graph of order v. The
vertex set and the edge set of a graph G are denoted by V(G) and E(G),
respectively. A decomposition B of G is a collection of edge disjoint sub-
graphs (called blocks) By, Bs,..., By of G such that every edge of G be-
longs to exactly one B; for i = 1,2,...,b, ie., Ule E(B;) = E(G) and
E(B;)\E(B;) = 0,1 < i < j < b The pair (X,B) is called an H-
decomposition of G if each member of B is isomorphic to the graph H,
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where X = V(G). An H-decomposition of K, is called an H-design of
order v. When H is a complete graph of order k, K, an H-design of order
v is better known as a balanced incomplete block design of order v with
block size k and index 1((v, k,1)-BIBD). For k = 3, a (v,3,1)-BIBD is a
Steiner triple system (STS(v)). It is well known that there exists an STS(v)
if and only if v = 1,3 (mod 6) [5]. When H is a kite graph, an H-design
of order v is called a kite system of order v ( denoted by KS(v)), where
the kite graph is a graph obtained from a 3-cycle (or triple) by adding a
pendent edge to a vertex of the 3-cycle. In 1977, Bermond and Schénheim
(1] showed that there exists a KS(v) if and only if v =0,1 (mod 8).

Let © be an automorphism group of an H-design of order v, (X, B),
that is a group of permutations on the vertex set X of v points such that
the collection B of H graphs is invariant. If there is an automorphism of
order v, then the design is said to be cyclic. If there is an automorphism
consisting of a single fixed point and one cycle of length v — 1, then the
design is said to be I-rotational.

The spectrum problem for cyclic STS(v)s and 1-rotational STS(v)s was
completely settled [5].

Theorem 1.1 A cyclic STS(v) exists if and only ifv=1,3 (mod 6) and
v#9.

Theorem 1.2 A 1-rotational STS(v) ezists if and only ifv = 3,9 (mod 24)

In this note, we mainly use Skolem-type sequences to construct cyclic
KS(v)s and 1-rotational KS(v)s, and establish the spectra of the two classes
of designs.

2 Preliminaries

In this section, We first present a number of preliminary definitions and
theorems on some special Skolem-type sequences. we use the definitions
from the Handbook of Combinatorial Designs [10], although equivalent
definitions can be found in the literature (see for example [3]).

A Skolem sequence of order n is a sequence S, = (s1, Sg,...,52,) of 2n
positive integers that satisfies the conditions:
1. for every k € {1,2,...,n} there are exactly two elements s;,s; € S,

such that s; = s; = k, and

2. ifsi=s;=k,i<j,thenj—i=k.

As an example, S; = (1,1,3,4,5,3,2,4,2,5) is a Skolem sequence of
order 5.

An m-eztended Skolem sequence of order n is a sequence ES,, = (s1, s2,
.«+ S2n+1) of 21 + 1 non negative integers that satisfies the conditions:



1. for every k € {1,2,...,n} there are exactly two elements s;,s; € Sn
such that s; = s; = k;

2. if si =8;=k,i<j, then j —i=k; and

3 5m=0,1<m<2n+1.
Where the null element s, in the sequence is also called a hook.

As an example, (3,1,1,3,4,2,0,2,4) is a 7-extended Skolem sequence
of order 4.

A hooked Skolem sequence of order n is an extended Skolem sequence
of order n with sg,, = 0, i.e., 2n-extended Skolem sequence of order n.

As an example, HSgs = (1,1,2,5,2,4,6,3,5,4,3,0,6) is a hooked Skolem
sequence of order 6.

It is known that the necessary conditions for the existence of (hooked)
Skolem sequences are sufficient. For more details the reader may see [10].

Theorem 2.1 ( Skolem [11]) A Skolem sequence of order n exists if and
only if n=0,1 (mod 4).

Theorem 2.2 ( O’Keefe [7]) A hooked Skolem sequence of order n exists
if and only if n=2,3 (mod 4).

Thus the combined work of Skolem and O’Keefe showed the sufficiency
of the existence of a cyclic STS(6n + 1). In 1966, Rosa [8] introduced two
types of sequences for the purpose of constructing cyclic STS(6n + 3)s.
These two types of sequences are now known as Rosa and hooked Rosa
sequences, respectively.

A Rosa sequence of order n is an extended Skolem sequence of order n
with 8,41 =0, i.e., n + 1-extended Skolem sequence of order n.

As an example, R, = (2,3,2,0,3,1,1) is a Rosa sequence of order 3.

A hooked Rosa sequence of order n is a sequence (s, S2,. .., S2n42) Of
2n + 2 non negative integers that satisfies the conditions:
1. for every k € {1,2,...,n} there are exactly two elements s;,s; € Sn

such that s; = s; = k;

2. ifsi=s; =k,i < j, then j—i=k; and

3. Sny1 = Son41 =0.

As an example, HR,, = (2,3,2,4,3,0,5,4,1,1,0,5) is a hooked Rosa
sequence of order 5.

Theorem 2.3 ( Rosa [8]) A Rosa sequence of order n exists if and only if
n=0,3 (mod 4).

Theorem 2.4 ( Rosa [8]) A hooked Rosa sequence of order n exists if and
onlyifn=1,2 (mod 4).



The existence of Rosa and hooked Rosa sequences for all admissible
orders showed the sufficiency for the existence of cyclic STS(6n + 3)s.

A number of authors, for example, Billington [2], Colbourn and Jiang
[4], and Fu, Lin and Mishima[6] considered generalizations of such se-
quences for the purpose of constructing various types of designs and codes.
In 2003, Shalaby considered a generalization of Rosa sequences.

Let m,n be positive integers, m < n. A near-Rosa (or m-near-Rosa)
sequence of order n and defect m is a sequence NR,, = (s1, s2,...,52n-1)
of integers s; € {1,2,...,m — 1,m +1,...,n} which satisfy the following
conditions:

1. for every k € {1,2,...,m —1,m + 1,...,n} there are exactly two
elements s;,s; € NR, such that s; = s; = k;

2. ifs;=35;=1k,i<j, then j —i=k; and

3. s, =0.

As an example, NRg = (8,4,2,7,2,4,5,0,8,3,7,5,3,1,1) is a 6-near
Rosa sequence of order 8 .

Shalaby shown that the necessary condition for the existence of (n — 2)-
near-Rosa sequence of order n is sufficient, with one definite exception.

Theorem 2.5 ( Shalaby [9]) Forn = 0,1 (mod 4), there ezists an (n —
2)-near-Rosa sequence with the exception of n = 4.

3 Cyclic Kite Systems

For a cyclic kite system of order v (X, B), the set X of v points can be
identified with Z,, i.e., the residue group of integers modulo v. In this
case, the design has an automorphism o : i+ i+1 (mod v) which is also
represented by o = (0,1,...,v — 1). Let B be a kite block of a cyclic kite
system. For brevity, we will use the notation [a, b, c;d] to denote the kite
block obtained from a 3-cycle (a,b,c) by adding a pendent edge {c,d}. A
block orbit Orb(B) of B = [a,b,c;d] is defined by {B+i = [a+4,b+4,c+
i;d+1i)}i € Z,}. The length of a block orbit is its cardinality. A block orbit
of length v is said to be full, otherwise short. A base block of a block orbit
O is a block B € O which is chosen arbitrarily. Any cyclic kite system
should be generated from base blocks.

Lemma 3.1 There ezists a cyclic KS(v) forv=1 (mod 24).

Proof. Let v = 24t + 1 and n = 4t. By Theorem2.1, there exists
a Skolem sequence of order n. Let S, = (s1,82,...,52,) be a Skolem
sequence of order n, and {(a:,b;)[1 < ¢ < n} the pairs of positions in
S, such that b; — a; = 7 and s,, = sy, = i. Hence, the base kite blocks
[@zit1+7, baiy1+n, 0; azeq14i+7n),[@3i12+n, baira+n, 0; baer14+:+n),[azi+3+
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n, bair3 +n,0; b3ey14i — a3e1+i),0 < ¢ < t—1, will generate a cyclic KS(v).
()}

Example 3.2 The Skolem sequence Sy = (1,1,3,4,2,3,2,4) gives the kites
5,6,0;8], [9,11,0;12], [7,10,0;4]. These kites yield the base blocks for a
cyclic K5(25).

Lemma 3.3 There ezists a cyclic KS(v) forv=9 (mod 24).

Proof. Let v =24t + 9 and n = 4t + 1. By Theorem 2.4, there exists a
hooked Rosa sequence of order n. Let HR,, = (s, $2,- .-, S2n+2) be hooked
Rosa sequence of order n, and {(a;,b:)|1 < i < n} the pairs of positions in
HR,, such that b; — a; = i and s,, = sp, = i. Hence, the base kite blocks
[@zit1 + 1, b3ig1 + 1,05 8304144 + 7, [@3iv2 + 1, 03002 + 1,05 b3e4144 + 71,
[azi+3 + 1, bgits + 1,0;b3e414i — @3e414i), 0 < 7 <t~ 1, and [ager +
n,bg1 +n,0;2n + 1] will generate a cyclic KS(v). 0

Example 3.4 The hooked Rosa sequence HRs = (2,3,2,4,3,0,5,4,1,1,0,5)
gives the kites [14,15,0;9], [6,8,0;13], {7,10,0;4], [12,17,0;11]. These
kites yield the base blocks for a cyclic KS(33).

Lemma 3.5 There exists a cyclic KS(v) for v=17 (mod 24).

Proof. Let v =24t 4 17 and n = 4¢ + 2. By Theorem 2.4, there exists a
hooked Rosa sequence of order n. Let HR,, = (sy, 82, ..., S2n+2) be hooked
Rosa sequence of order n and {(a;,b:)|1 < i < n} the pairs of positions in
HR, such that b; — a; = i and s,, = sp, = i. Hence, the base kite blocks
(@341 + 7, b3i41 + 1, 0; Q34144 + )y [@3i42 + 1, baivs + 1,05 bae 144 + 1),
[azi+a+n, baiya+n,0;basp14i—ase+144), 0 < i < t—1and [ageq41+7, a1+
n,0;2n + 1], [@4e42 + 7, baey2 + 1, 0; 3n + 1] will generate a cyclic KS(v). O

Example 3.6 The hooked Rosa sequence HRg = (2,4,2,6,3,4,0,3,5,6,1,
1,0,5) gives the kites [17,18,0;8], [7,9,0;12], [11,14,0;4], [15,20,0;13],
[10,16,0;19]. These kites yield the base blocks for a cyclic KS(41).

Now we are in a position to give our first main theorem.
Theorem 3.7 A cyclic KS(v) ezxists if and only if v=1 (mod 8).

Proof. For necessity, let (Z,,8) be a cyclic KS(v), then the number
of the kite blocks in B is v(v — 1)/8. For any block B = [a,b,c;d] € B,
let [ be the length of the block orbit Orb(B), then ! is a divisor of v and
[a,b,c;d] = [a+1,b+1,c+!;d+1]. Note that the vertices a, b, ¢, d of the kite
graph B have degrees 2,2, 3,1, respectively. We can assert that c+1l = ¢
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(mod v) andd+Il=d (modv). Fromc+!=c (mod v), we have =0
(mod v), that is [ = v. Thus all kite orbits are full and B is partitioned
into (v —1)/8 kite orbits. Sov=1 (mod 8). The sufficiency follows from
Lemmas 3.1, 3.3 and 3.5. This completes the proof.

4 1-Rotational Kite Systems

For a 1-rotational kite system of order v, the automorphism can be repre-
sented by 7 : i+ i+1 (mod v—1)) and oo — oo which is also represented
by 7 = (00)(0,1,...,v — 2) on the point-set X = {00} U Z,—;. A block
orbit of a 1l-rotational kite system is defined similarly to that of a cyclic
kite system, but under the automorphism n. Any 1-rotational kite system
should be generated from base blocks.

Lemma 4.1 There exists a I-rotational KS(v) forv=0 (mod 24).
Proof. For v = 24, we directly construct three kite base bolcks as follows:
(1,11,0;4],[2,9,0;6],[3,8,0; 0]

For v = 24t,t > 2. Let n = 4t, by Theorem 2.5, there exists an (n — 2)-
near Rosa sequence of order n. Let NR,, = (sy, s2,...,52,—1) be an (n—2)-
near Rosa sequence of order n, and {(a;,;)|1 <i < n,i # n — 2} the pairs
of positions in NR,, such that b; — a; = i and s,, = sp, = i. Hence, the
base kite blocks (a3i41 + 7, bsiy1 +7,0; a3e-1) 4144 + 7, [@3i42 + 7, baig2 +
n,0; b3(e—1)+14i + 1), [@3i43 + 7, baiga + 1,0, by 1) 4144 — @3(—1)4144), 0 <
i < t—2, and [ag—3 + n,bge—3 + n,0;00), [@ge—1 + n,bge—1 + n,0;2n],
[ase + n, bae + n,0;n — 2] will generate a 1-rotational KS(v). ]

Example 4.2 The 6-near Rosa sequence NRg = (8,4,2,7,2,4,5,0,8,3,7,5,
3,1,1) gives the kites [22,23,0;10], [11,13,0; 14], [18,21,, 0; 4], [15, 20, 0; co],
(12,19,0;16], [9,17,0;6). These kites yield the base blocks for a 1-rotational
KS(48).

Lemma 4.3 There ezists a 1-rotational KS(v) forv=8 (mod 24).

Proof. Let v = 24t + 8 and n = 4t + 1. By Theorem 2.1, there exists
a Skolem sequence of order n. Let S, = (s1,$2,...,52,) be a Skolem
sequence of order n, and {(a;, b;)|1 < i < n} the pairs of positions in S,
such that b; — a; = ¢ and s,;, = s, = i. Hence, the hase kite blocks
[@3i41 + 7, b3i41 + 1,05 3¢ 4141 + 7, [@zig2 + 1, b3ir2 + 1,05 b3ey14i + 1,
[a3i4+3 + 1, b3igs + 1,0;b3e414i — @ae4144)y 0 < 4 < t — 1, and [@ges1 +
n, b4ty + n, 0; 00] will generate a 1-rotational KS(v). a
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Example 4.4 The Skolem sequence Ss = (1,1,3,4,5,3,2,4,2,5) gives the
kites [6,7,0;9], [12,14,0;13], [8,11,0;4], {10,15,0;00]. These kites yield
the base blocks for a 1-rotational KS(32).

Lemma 4.5 There exists a 1-rotational KS(v) for v=16 (mod 24).

Proof. Let v = 24t + 16 and n = 4t + 2. By Theorem 2.2, there exists
a hooked Skolem sequence of order n. Let HS, = (s1,82,...,52n+1) be
a hooked Skolem sequence of order n, and {(a;,;)]1 < i < n} the pairs
of positions in HS, such that b; — a; = i and s,;, = sp, = i. Hence, the
base kite blocks [azi+1 + 7, b3i1 + 7,05 a30414: + 1), (@342 + 1, b3igo +
n,0; bar14i + 1), [@3i43 + 7, 03043 + 1, 05 b3y 144 — G3¢4144), 0 S 1 S L — 1,
and [age+1 + 7, baet1 + 1, 0;00),[age42 + 1, baey2 + 1, 0;3n) will generate a
1-rotational KS(v). O

Example 4.6 The hooked Skolem segquence HSs = (1,1,2,5,2,4, 6,3,5,
4,3,0, 6) gives the kites [7,8,0;12], [9,11,0;16], [14,17,0; 4], [10, 15,0; o],
[13,19,0;18]. These kites yield the base blocks for a 1-rotational KS(40).

Now we are in a position to give our another main theorem.
Theorem 4.7 A 1l-rotational KS(v) ezists if and only if v =0 (mod 8).

Proof. The proof of the necessity of Theorem 4.7 is very similar to that
of Theorem 3.7. Let (Z,-; U {c0},B) be a l-rotational KS(v), then the
number of the kite blocks in B is v(v — 1)/8. Note that all kite orbits are
full and the length of any block orbit is v — 1, thus B is partitioned into
v/8 kite orbits. So v =0 (mod 8). The sufficiency follows from Lemmas
4.1, 4.3 and 4.5. This completes the proof.

Acknowledgements
The authors would like to thank the referee for his/her helpful comments
and suggestions. This research is supported by NSFC under Grant No.
11371207 and the Application Research Plan Project of Nantong under
Grant No.BK2014060.

References

(1] J. C. Bermond and J. Schonheim, G-decomposition of K, where G
has four vertices or less, Discrete Math 19 (1977), 113-120.

413



[2] E. Billington, Cyclic balanced ternary designs with block size three
and index two, Ars Combin 23(1987), 215-232.

(3] M. Buratti, 1-rotational Steiner triple systems over arbitrary groups,
J Combin Des 9(2001), 215-226.

[4] C. Colbourn and Z. Jiang, The spectrum for rotational Steiner triple
systems, J Combin Des 4 (1996), 105-217.

[5) C. Colbourn and A. Rosa, Triple Systems, Oxford Science Publica-
tions, Oxford, 1999.

(6] H. L. Fu, Y. H. Lin and M. Mishima, Optimal conflict-avoiding codes
of even length and weight 3, IEEE Trans Inf Theory 56(11)(2010),
5747-5756.

[7] E. S. O’Keefe, Verification of a conjecture of Th. Skolem, Math Scand
9(1961), 80-82.

[8] A. Rosa, Poznamka o cyklikch Steinerovych systemoch trojic (a note
on cyclic Steiner triple systems(Slovak)), Mat Fyz Casopis 16(1966),
285-290.

(9] N. Shalaby, The existence of near-Rosa and hooked near-Rosa se-
quences, Discrete Math 261(2003), 435-450.

[10] N. Shalaby, Skolem and Langford sequences. In: Colbourn C.J., Dinitz,
J.H. (eds.), The CRC Handbook of Combinatorial Designs, CRC Press,
Boca Raton (2006), 612-616.

(11] Th. Skolem, On certain distributions ofintegers in pairs with given
diKerences, Math Scand 5(1957), 57-68.

414



