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Abstract

The covering and packing of a unit square (resp. cube) with
squares (resp. cubes) are considered. In d-dimensional Euclidean
space E¢, the size of a d-hypercube is given by its side length and the
size of a covering is the total size of the d-hypercubes used to cover
the unit hypercube. Denote by ga(n) the smallest size of a minimal
covering (which consisting of n hypercubes) of a d-dimensional unit
hypercube. In this paper we consider the problem of covering a unit
hypercube with hypercubes in E¢ for d > 4 and determine the tight
upper bound and lower bound for ga(n).
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1 Introduction and Notations

P. Erdés defined a function f(n) which denotes the maximum sum of n
squares that can be packed into a unit square [1]. Erd6s and Soifer gave
some results for f(n) (see [2]). Inspired by (2], Fan and Zhang discussed
the dual version, that is, a square-covering problem [6]. And in [3]-[5]
they discussed the cube-covering problem and cube-packing problem. In
this paper, we generalize this kind of covering problem to the case of d-
dimensional hypercubes for d > 4. That is, use d-dimensional hypercubes to
cover a d-dimensional unit hypercube and obtain the corresponding results.

In d-dimensional Euclidean space E9, for a given d-hypercube P, the
size s(P) of P is denoted by the side length of P. A covering C is given by
a set of hypercubes S positioned inside a d-dimensional unit hypercube H
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in such a way that the d-dimensional hypercubes from S have sides parallel
to those of H and that 0 < s(C) < 1 for each C € S, and any point of H
is covered by at least one of the d-dimensional hypercubes from S.

For a covering C of the unit hypercube H using a set of hypercubes
S = {C),...,C,} of n hypercubes, where 0 < s(Ci) < 1, denote by s(C)

the size of the covering C, which is given by Z s(Cy).

A covering of H is said to be minimal if there is no other covering of H
using a set of hypercubes §’, where 8’ = {Cy,...,Ci-1,Cit1,...,Cn} or
& = {Cy,...,Ci-1,C},Ciy1,...,Cr} with s(C!) < s(C;). We denote by
g4(n) the smallest size of a mmlmal covering using a set of n hypercubes.
That is, ga(n) = min{s(C): C is a minimal covering of the unit hypercube
with n hypercubes}.

Let C he a covering of a d-dimensional unit hypercube H using a set of
hypercubes S = {C},...,C,}. Since each corner of H has to be covered hy
a d-dimensional hypercube from S and since the size of any hypercube from
S is less than 1, we know that every different corner of H must be covered
by a different hypercube from S. Therefore, the following proposition is
true.

Proposition 1. If C is a covering of the d-dimensional unit hypercube,
then C contains at least 2¢ d-dimensional hypercubes.

For example of a covering, consider the case when n = 2¢. It is easy
to show that gs(2¢) < 29-1. To see this, we can use a set S with 2¢ d-
dimensional hypercubes of size 1/2, each one positioned in a different corner
of the d-dimensional unit hypercube. This covering is clearly minimal, as
we cannot remove a d-dimensional hypercube from S or replace by a smaller
hypercube to obtain a smaller covering. We will also see, in Theorem 8,
that ga(n) > 29-! for any n > 2¢. Therefore, the following proposition is
valid.

Proposition 2. g4(2¢) = 291
By the definition of the minimal covering the following result holds.

Proposition 3. If C is a minimal covering of the d-dimensional unit hy-
percube and C has n d-dimensional hypercubes, then gg(n) < s(C).

2 The Main Results

In this section, we determine the upper and lower bounds for g4(n).
Denote by H the d-dimensional unit hypercube. We present two sets
C; and Cy: C) has 29~ — 1 d-dimensional hypercubes with size 1 — € and



one with size 1 — ¢/, where ¢/ = (n ~ 2%+ 1)e and 0 < e< 1/(n - d?);
Cs has (d — 1) d-dimensional hypercubes of size ¢’ and (n — 24~ —d + 1)
d-dimensional hypercubes of size €.

We first give the following lemmas.

Lemma 4. If C; UCy can cover H, then the total length of the edges of H
that can be covered by the hypercubes from Ca is less than 1.

Proof. Since there exist (d — 1) hypercubes of size ¢’ = (n — 2¢ + 1)¢ and
(n—2¢-1—~d+1) hypercubes of size £ from C,, we know that their total size
is (d—1)e'+(n—2¢"1—d+1)e = (d—1)(n—2%+1)e4+ (n—2¢"1—d+1)e =
(dn — 29-1(2d — 1))e < dne. If each hypercube from C, is positioned in
a corner of H, it partially covers d edges, and thus the total edge length
covered by the hypercubes from C; is less than d - dne = d°ne. The proof
is complete, for we have £ < 1/(n - d?). O

Lemma 5. IfC;UC; can cover H, then each edge of H must be intercepted
by a hypercube from Cj.

Proof. From Lemma 4, the total edge length covered by the hypercubes
from C, is less than 1. Since the side length of H is 1, each edge of H must
be intercepted by some hypercube from C;. O

Lemma 6. IfC;UCy can cover H, then each hypercube from C; must cover
a different corner of H and each 2-dimensional face of H has exactly two
hypercubes from Cy covering opposite corners of this face.

Proof. Consider a covering with the hypercubes from C; U Cs and suppose
(by contradiction) that there exists a hypercube C € C; that does not cover
a corner of H. As each hypercube cannot intercept more than d edges of H,
we can maximize the total edge covering if we place the large hypercubes
from C;\{C} in the corners. Moreover, each hypercube from C; has size
less than 1, and so, the 24! — 1 hypercubes from C;\{C} cover a total
edge length that is at most d(2¢~! — 1); the hypercube C cover an edge
length that is less than 1 and the hypercubes from C3 cover a total edge
length that is less than 1 (from Lemma 4). This leads to a total edge length
covered that is less than d(2¢"! ~ 1) +1+1=d-2%"! —d+2 < d- 2971,
which is insufficient to cover the total edge length of H that is d - 2¢-1.
Therefore, all hypercubes from C; cover a corner point of H.

Now, consider a covering with the hypercubes from C; UC; and suppose
(by contradiction) that we have two hypercubes from C; that common
cover one edge of H. This means that the 29! hypercubes from C; cover
a total edge length that is less than d-29~! — 1. And from Lemma 5, the
hypercubes from Cy can cover a total edge length of H that is less than 1.
Therefore, the total edge length covered by all hypercubes from C; UC, is
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less than d-29~1, which is a contradiction. Therefore, two hypercubes from
C) cannot cover a same edge. This leads to a configuration where in each
2-dimensional face of H, we have exactly two hypercubes from C; covering
opposite corners of the face. a

The next theorem shows that gq(n) cannot be greater than 2¢-! for any
n>2%41.

Theorem 7. For n > 2¢ + 1, we have gg(n) < 2%~ 4 8, where § is a
positive value that can be made as close to 0 as desired.

We consider the non-covered space after placing the hypercubes from C;.
There are 2¢-! d-dimensional hypercuboids: 2¢-1 — d hypercuboids with
dimensions (¢,¢, - ,€), and d hypercuboids with dimensions (¢,¢,-- - ,€’).

We can regard these non-covered hypercuboid regions as one-dimensional
bins, considering the largest edge of the hypercuboid as the size of a one-
dimensional bin, that must be covered by one-dimensional items of size
€ or ¢ (all remaining hypercubes are the hypercubes from Cp, which has
n — 291 —d 41 hypercubes of size € and d — 1 hypercubes of size ).

So, the total size of these bins is (24! —d)e+(n-2¢+1)e+(d—1)e’ =
(2471 —d)e + € + (d — 1)’ = (2¢-! — d)e + de’. On the other hand, the
total size of hypercubes from C; is equal to (n —29-! —d 4+ 1)e + (d — 1)¢’
which is also (29-! — d)e + d&’. So, to have a covering of these bins (non-
covered hypercuboids) with the hypercubes from C;, we have to obtain a
perfectly covering of the bin size. In fact, the covering is easy to obtain,
24-1 —d hypercubes of size ¢ covering 2¢~! —d hypercuboids of size £, d— 1
hypercubes of size €’ covering the d — 1 hypercuboids of the size £ and the
remaining (n —2¢+ 1) hypercubes of size ¢ covering perfectly the remaining
hypercuboids of size &’.

To see that the above covering is minimal, note that we cannot replace
one hypercube from C; by a smaller hypercube, as the small hypercubes fit
perfectly in the total length of the bins (hypercuboid largest edge). And we
also cannot replace one large hypercube from C; by a smaller hypercube,
as there is no more small hypercubes to be used to cover the new larger
hypercuboid regions.

Now, consider the size of the obtained covering. The hypercubes from
Cy have total size (2471 —1)(1 ) + (1 —¢&/) =2¢-1 —29-lg 1 e 41—
(n—2¢+1)e = 2¢-! — (n—29-1)¢. The hypercubes from C; have total size
(d-1)'+(n—2¢"1—d+1)e = (d-1)(n—2¢+1)e+(n—-29"1 —d+1)e =
(dn—(2d—1)2¢"1)e. So, the size of the covering is 2¢~1 — (n—2¢"1)e+(dn—
(2d—1)241e = 291 1 (241 (2—2d) +n(d—1))e = 24~ +(d—1)(n—2%)e.
Since n > 2¢ 4+ 1 and since ¢ can be made as close to 0 as desired, the size
of the covering can also be made as close to 2¢~! as desired.

In the following we give the lower bound for g4(n).



Theorem 8. For any n > 2¢, we have that ga(n) > 2¢-1,

Proof. We shall use induction on d. For d = 2,3 we know that the results
are true. Suppose that the statement is valid of dimension < d. Let C
be a covering of the unit d-dimensional hypercube by a set of hypercubes
F. If an — 1 dimensional top face of H and a hypercube C € F have a
common point, then C and the n — 1 dimensional bottom face of H have
no common point, because 0 < s(C) < 1. Let {4, As,---,A,} be the
set of hypercubes from F which have common point with the top face of
H and let {B;, Bs,-- -, B,} be the set of hypercubes from F which have
common point with the bottom face of H, then s+t < nand {4;, -, A}N
{Bl,"' ,Bg} =®

Fori=1,2,---,s, the projection of A; in the n—1 dimensional top face
of H, is a n — 1 dimensional hypercube which has the same length with A;.
That is, the projection of A;,--- , A in the top face leads to covering of the
top face of H. By the inductive hypothesis, n — 1 dimensional hypercube
covering problem, the side length of these projections is no less than 2¢-2,

so the total size of the hypercubes Aj,--- , A, is no less than 29-2. In the
same way, the sum of the sizes of the hypercubes By, -, B, in no less than
24-2,

So,

ga(n) > 2472 42972 = 941,
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