Covering a Unit Hypercube with Hypercubes *

Chunxia Shen, Zhanjun Su[†], Liping Yuan suzj888@163.com

College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, 050024, China.

Abstract

The covering and packing of a unit square (resp. cube) with squares (resp. cubes) are considered. In d-dimensional Euclidean space \mathbf{E}^d , the size of a d-hypercube is given by its side length and the size of a covering is the total size of the d-hypercubes used to cover the unit hypercube. Denote by $g_d(n)$ the smallest size of a minimal covering (which consisting of n hypercubes) of a d-dimensional unit hypercube. In this paper we consider the problem of covering a unit hypercube with hypercubes in \mathbf{E}^d for $d \geq 4$ and determine the tight upper bound and lower bound for $g_d(n)$.

Keywords: Covering; d-dimensional hypercube. 2000 Mathematics Subject Classification: 52C15, 52C17.

1 Introduction and Notations

P. Erdős defined a function f(n) which denotes the maximum sum of n squares that can be packed into a unit square [1]. Erdős and Soifer gave some results for f(n) (see [2]). Inspired by [2], Fan and Zhang discussed the dual version, that is, a square-covering problem [6]. And in [3]-[5] they discussed the cube-covering problem and cube-packing problem. In this paper, we generalize this kind of covering problem to the case of d-dimensional hypercubes for $d \ge 4$. That is, use d-dimensional hypercubes to cover a d-dimensional unit hypercube and obtain the corresponding results.

In d-dimensional Euclidean space \mathbf{E}^d , for a given d-hypercube P, the size s(P) of P is denoted by the side length of P. A covering $\mathbb C$ is given by a set of hypercubes $\mathcal S$ positioned inside a d-dimensional unit hypercube H

^{*}This research was partially supported by National Natural Science Foundation of China (11071055, 11471095) and the NSF of Hebei Province (A2013205089).

[†]Corresponding Author.

in such a way that the d-dimensional hypercubes from S have sides parallel to those of H and that 0 < s(C) < 1 for each $C \in S$, and any point of H is covered by at least one of the d-dimensional hypercubes from S.

For a covering \mathbb{C} of the unit hypercube H using a set of hypercubes $S = \{C_1, \ldots, C_n\}$ of n hypercubes, where $0 < s(C_i) < 1$, denote by $s(\mathbb{C})$ the size of the covering \mathbb{C} , which is given by $\sum_{i=1}^n s(C_i)$.

A covering of H is said to be *minimal* if there is no other covering of H using a set of hypercubes S', where $S' = \{C_1, \ldots, C_{i-1}, C_{i+1}, \ldots, C_n\}$ or $S' = \{C_1, \ldots, C_{i-1}, C'_i, C_{i+1}, \ldots, C_n\}$ with $s(C'_i) < s(C_i)$. We denote by $g_d(n)$ the smallest size of a minimal covering using a set of n hypercubes. That is, $g_d(n) = \min\{s(\mathbb{C}): \mathbb{C} \text{ is a minimal covering of the unit hypercube with } n \text{ hypercubes}\}.$

Let \mathbb{C} be a covering of a d-dimensional unit hypercube H using a set of hypercubes $S = \{C_1, \ldots, C_n\}$. Since each corner of H has to be covered by a d-dimensional hypercube from S and since the size of any hypercube from S is less than 1, we know that every different corner of H must be covered by a different hypercube from S. Therefore, the following proposition is true.

Proposition 1. If \mathbb{C} is a covering of the d-dimensional unit hypercube, then \mathbb{C} contains at least 2^d d-dimensional hypercubes.

For example of a covering, consider the case when $n=2^d$. It is easy to show that $g_d(2^d) \leq 2^{d-1}$. To see this, we can use a set S with 2^d dimensional hypercubes of size 1/2, each one positioned in a different corner of the d-dimensional unit hypercube. This covering is clearly minimal, as we cannot remove a d-dimensional hypercube from S or replace by a smaller hypercube to obtain a smaller covering. We will also see, in Theorem 8, that $g_d(n) \geq 2^{d-1}$ for any $n \geq 2^d$. Therefore, the following proposition is valid.

Proposition 2. $g_d(2^d) = 2^{d-1}$

By the definition of the minimal covering the following result holds.

Proposition 3. If \mathbb{C} is a minimal covering of the d-dimensional unit hypercube and \mathbb{C} has n d-dimensional hypercubes, then $g_d(n) \leq s(\mathbb{C})$.

2 The Main Results

In this section, we determine the upper and lower bounds for $g_d(n)$.

Denote by H the d-dimensional unit hypercube. We present two sets \mathcal{C}_1 and \mathcal{C}_2 : \mathcal{C}_1 has $2^{d-1}-1$ d-dimensional hypercubes with size $1-\varepsilon$ and

one with size $1 - \varepsilon'$, where $\varepsilon' = (n - 2^d + 1)\varepsilon$ and $0 < \varepsilon < 1/(n \cdot d^2)$; C_2 has (d-1) d-dimensional hypercubes of size ε' and $(n-2^{d-1}-d+1)$ d-dimensional hypercubes of size ε .

We first give the following lemmas.

Lemma 4. If $C_1 \cup C_2$ can cover H, then the total length of the edges of H that can be covered by the hypercubes from C_2 is less than 1.

Proof. Since there exist (d-1) hypercubes of size $\varepsilon' = (n-2^d+1)\varepsilon$ and $(n-2^{d-1}-d+1)$ hypercubes of size ε from \mathcal{C}_2 , we know that their total size is $(d-1)\varepsilon' + (n-2^{d-1}-d+1)\varepsilon = (d-1)(n-2^d+1)\varepsilon + (n-2^{d-1}-d+1)\varepsilon = (dn-2^{d-1}(2d-1))\varepsilon < dn\varepsilon$. If each hypercube from \mathcal{C}_2 is positioned in a corner of H, it partially covers d edges, and thus the total edge length covered by the hypercubes from \mathcal{C}_2 is less than $d \cdot dn\varepsilon = d^2n\varepsilon$. The proof is complete, for we have $\varepsilon < 1/(n \cdot d^2)$.

Lemma 5. If $C_1 \cup C_2$ can cover H, then each edge of H must be intercepted by a hypercube from C_1 .

Proof. From Lemma 4, the total edge length covered by the hypercubes from C_2 is less than 1. Since the side length of H is 1, each edge of H must be intercepted by some hypercube from C_1 .

Lemma 6. If $C_1 \cup C_2$ can cover H, then each hypercube from C_1 must cover a different corner of H and each 2-dimensional face of H has exactly two hypercubes from C_1 covering opposite corners of this face.

Proof. Consider a covering with the hypercubes from $\mathcal{C}_1 \cup \mathcal{C}_2$ and suppose (by contradiction) that there exists a hypercube $C \in \mathcal{C}_1$ that does not cover a corner of H. As each hypercube cannot intercept more than d edges of H, we can maximize the total edge covering if we place the large hypercubes from $\mathcal{C}_1 \setminus \{C\}$ in the corners. Moreover, each hypercube from \mathcal{C}_1 has size less than 1, and so, the $2^{d-1}-1$ hypercubes from $\mathcal{C}_1 \setminus \{C\}$ cover a total edge length that is at most $d(2^{d-1}-1)$; the hypercube C cover an edge length that is less than 1 and the hypercubes from \mathcal{C}_2 cover a total edge length that is less than 1 (from Lemma 4). This leads to a total edge length covered that is less than $d(2^{d-1}-1)+1+1=d\cdot 2^{d-1}-d+2\leq d\cdot 2^{d-1}$, which is insufficient to cover the total edge length of H that is $d\cdot 2^{d-1}$. Therefore, all hypercubes from \mathcal{C}_1 cover a corner point of H.

Now, consider a covering with the hypercubes from $C_1 \cup C_2$ and suppose (by contradiction) that we have two hypercubes from C_1 that common cover one edge of H. This means that the 2^{d-1} hypercubes from C_1 cover a total edge length that is less than $d \cdot 2^{d-1} - 1$. And from Lemma 5, the hypercubes from C_2 can cover a total edge length of H that is less than 1. Therefore, the total edge length covered by all hypercubes from $C_1 \cup C_2$ is

less than $d \cdot 2^{d-1}$, which is a contradiction. Therefore, two hypercubes from \mathcal{C}_1 cannot cover a same edge. This leads to a configuration where in each 2-dimensional face of H, we have exactly two hypercubes from \mathcal{C}_1 covering opposite corners of the face.

The next theorem shows that $g_d(n)$ cannot be greater than 2^{d-1} for any $n \geq 2^d + 1$.

Theorem 7. For $n \geq 2^d + 1$, we have $g_d(n) \leq 2^{d-1} + \delta$, where δ is a positive value that can be made as close to 0 as desired.

We consider the non-covered space after placing the hypercubes from C_1 . There are 2^{d-1} d-dimensional hypercuboids: $2^{d-1} - d$ hypercuboids with dimensions $(\varepsilon, \varepsilon, \dots, \varepsilon)$, and d hypercuboids with dimensions $(\varepsilon, \varepsilon, \dots, \varepsilon)$.

We can regard these non-covered hypercuboid regions as one-dimensional bins, considering the largest edge of the hypercuboid as the size of a one-dimensional bin, that must be covered by one-dimensional items of size ε or ε' (all remaining hypercubes are the hypercubes from \mathcal{C}_2 , which has $n-2^{d-1}-d+1$ hypercubes of size ε and d-1 hypercubes of size ε').

So, the total size of these bins is $(2^{d-1}-d)\varepsilon+(n-2^d+1)\varepsilon+(d-1)\varepsilon'=(2^{d-1}-d)\varepsilon+\varepsilon'+(d-1)\varepsilon'=(2^{d-1}-d)\varepsilon+d\varepsilon'$. On the other hand, the total size of hypercubes from \mathcal{C}_2 is equal to $(n-2^{d-1}-d+1)\varepsilon+(d-1)\varepsilon'$ which is also $(2^{d-1}-d)\varepsilon+d\varepsilon'$. So, to have a covering of these bins (noncovered hypercuboids) with the hypercubes from \mathcal{C}_2 , we have to obtain a perfectly covering of the bin size. In fact, the covering is easy to obtain, $2^{d-1}-d$ hypercubes of size ε covering $2^{d-1}-d$ hypercuboids of size ε , d-1 hypercubes of size ε' covering the d-1 hypercuboids of the size ε' and the remaining $(n-2^d+1)$ hypercubes of size ε covering perfectly the remaining hypercuboids of size ε' .

To see that the above covering is minimal, note that we cannot replace one hypercube from \mathcal{C}_2 by a smaller hypercube, as the small hypercubes fit perfectly in the total length of the bins (hypercuboid largest edge). And we also cannot replace one large hypercube from \mathcal{C}_1 by a smaller hypercube, as there is no more small hypercubes to be used to cover the new larger hypercuboid regions.

Now, consider the size of the obtained covering. The hypercubes from C_1 have total size $(2^{d-1}-1)(1-\varepsilon)+(1-\varepsilon')=2^{d-1}-2^{d-1}\varepsilon-1+\varepsilon+1-(n-2^d+1)\varepsilon=2^{d-1}-(n-2^{d-1})\varepsilon$. The hypercubes from C_2 have total size $(d-1)\varepsilon'+(n-2^{d-1}-d+1)\varepsilon=(d-1)(n-2^d+1)\varepsilon+(n-2^{d-1}-d+1)\varepsilon=(dn-(2d-1)2^{d-1})\varepsilon$. So, the size of the covering is $2^{d-1}-(n-2^{d-1})\varepsilon+(dn-(2d-1)2^{d-1})\varepsilon=2^{d-1}+(2^{d-1}(2-2d)+n(d-1))\varepsilon=2^{d-1}+(d-1)(n-2^d)\varepsilon$. Since $n\geq 2^d+1$ and since ε can be made as close to 0 as desired, the size of the covering can also be made as close to 2^{d-1} as desired.

In the following we give the lower bound for $g_d(n)$.

Theorem 8. For any $n \geq 2^d$, we have that $g_d(n) \geq 2^{d-1}$.

Proof. We shall use induction on d. For d=2,3 we know that the results are true. Suppose that the statement is valid of dimension < d. Let $\mathbb C$ be a covering of the unit d-dimensional hypercube by a set of hypercubes $\mathcal F$. If a n-1 dimensional top face of H and a hypercube $C\in \mathcal F$ have a common point, then C and the n-1 dimensional bottom face of H have no common point, because 0 < s(C) < 1. Let $\{A_1, A_2, \cdots, A_s\}$ be the set of hypercubes from $\mathcal F$ which have common point with the top face of H and let $\{B_1, B_2, \cdots, B_t\}$ be the set of hypercubes from $\mathcal F$ which have common point with the bottom face of H, then $s+t \le n$ and $\{A_1, \cdots, A_s\} \cap \{B_1, \cdots, B_t\} = \emptyset$.

For $i=1,2,\cdots,s$, the projection of A_i in the n-1 dimensional top face of H, is a n-1 dimensional hypercube which has the same length with A_i . That is, the projection of A_1,\cdots,A_s in the top face leads to covering of the top face of H. By the inductive hypothesis, n-1 dimensional hypercube covering problem, the side length of these projections is no less than 2^{d-2} , so the total size of the hypercubes A_1,\cdots,A_s is no less than 2^{d-2} . In the same way, the sum of the sizes of the hypercubes B_1,\cdots,B_t in no less than 2^{d-2} .

So,

$$g_d(n) \ge 2^{d-2} + 2^{d-2} = 2^{d-1}$$
.

References

- [1] P. Erdős, Some of favorite problems in number theory, Combinatorics, and Geometry, Resenhas, 2 (1995): 165-186.
- [2] P. Erdős and Soifer, Squares in a square, Geombinatorics, IV (1995): 110-114.
- [3] Y. Fan, F. K. Miyazawa, Y. Zhang, A Cube-covering Problem, Ars Comb., 106 (2012): 257-262.
- [4] Y. Fan, Y. Zhang, G. Ye, A Cube-Packing Problem, Ars Comb., 87 (2008): 353-358.
- [5] Y. Zhang, Y. Song, Y. Fan, A Cube-Packing Problem, Ars Comb., 108 (2013): 147-153.
- [6] Y. Zhang, Y. Fan, A Square-covering Problem, Ars Comb., 84 (2007): 155-160.