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Abstract
Let p be an odd prime and n be a positive integer. For any positive

integer d < m, let gi1(z) = 1+ 2™ * + 22" 4 ... 4 2@=VP"" and go(z) =

n—d+1 ne—d41

1+2P T g e . In this paper, we provide a method
to determine the weight distributions of binary cyclic codes of length p™ generated
by the polynomials gi(z) and g1(z)g2(z), which is effective for small values of p
and d.
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1 Introduction

Let F; be the finite field of order ¢ and n be a positive integer co-

prime to q. A cyclic code C of length n over F, is a linear subspace of
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F7 with the property that if (ao,a1, -+ ,an-1) € C, then the cyclic shift
(an—1,a0,a1, - ,an—2) is also in C.

The Hamming weight of a vector v € Fy, denoted by w(v), is the number
of non-zero coordinates in v. For a code C of length n over Fg, let AE")
denote the number of codewords of Hamming weight i in C. Then the list
A((,"),A(ln), ceey ™ is called the Hamming weight distribution (or weight
spectrum) of C. Knowing the Hamming weight distribution of a code, one
can calculate the probability of undetected errors when the code is used
purely for error detection. The least positive integer ¢ for which Ag") is non-
zero, is called the minimum Hamming weight of C, which is a measure of
error-correcting properties of the code. Thus the problem of determination
of the weight distribution of a code is of great interest.

The cyclic code C can also be regarded as an ideal in the principal ideal
ring R,, = Fg[z]/ < 2" — 1 > under the vector space isomorphism from
F7 — Ry given by (ao, a1, ,8n—1) ~ ao +a1z+az? 4+ +an_ 1z
As an ideal in R,,, the code C is generated by a unique monic polynornial
g(z), which is a divisor of z" — 1, called the generator polynomial of C.
The code C is called irreducible if the polynomial %(;% is an irreducible
polynomial over Fy; otherwise C is called reducible.

Since the ring R, is semi-simple, so every reducible cyclic code is a
direct sum of certain irreducible cyclic codes. However, there is no relation
known between the weight distributions of reducible and those of irreducible
cyclic codes. Moreover, the weight distributions of irreducible cyclic codes
are known only in some special cases.

MacWilliams & Seery [8] gave a procedure, involving generation of a
pseudo-random sequence, to obtain the weight distributions of binary irre-
ducible cyclic codes, which can be implemented only on a powerful com-
puter. van der Vlugt [13] related the problem of computing weight dis-

tributions to the evaluation of certain sums involving Gauss sums, which

42



are generally hard to determine explicitly. To evaluate these sums in some
special cases, certain algorithms were given by Baumert & McEliece [3],
Moisio & Védndnen [9], Fitzgerald & Yucas (6], etc., using various tech-
niques. Segal & Ward [10] also computed the weight distributions of some
binary irreducible cyclic codes by using the theory developed by Baumert
& McEliece [3].

Aubry & Langevin [1] studied the divisibility of weights in binary ir-
reducible cyclic codes. Zanotti [15] also studied the weight behavior of
irreducible cyclic balanced weight codes, (i.e., the codes in which there are
the same number of codewords for each non-zero weight). Augot 2] used
the theory of Grobner basis for a certain system of algebraic equations to
give information about the minimum weight codewords.

Sharma, Bakshi & Raka [12] determined the weight distribution of all
the g-ary irreducible cyclic codes of length 2™. Recently, Ding [4] com-
puted the weight distribution of g-ary irreducible cyclic codes of length n
provided 2 < 9* < 4, where O,(q) denotes the multiplicative order
of g modulo n. He also pointed out that the weight formulas become quite
messy if % = 5 and therefore finding the weight distribution of g-
ary irreducible cyclic codes is a notoriously difficult problem. In a recent
work, Sharma & Bakshi [11] obtained the weight distributions of some g¢-
ary irreducible cyclic codes of odd prime power lengths directly from their
generating polynomials.

Very few results are known on the weight distributions of reducible
cyclic codes.

Wang, Tang, Qi, Yang & Xu [14] determined the weight distributions of
dual codes of cyclic codes with two zeros and for a few more cases, using the
theory of elliptic curves. They also remarked that the weight distributions
of cyclié codes are difficult to determine.

Feng & Luo (5] computed the weight distributions of a special class of
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linear codes by computing the values and multiplicities of certain special ex-
ponential sums involving Dembowski-Ostrom polynomial. Extending this
result, Luo & Feng (7] determined the weight distributions of two special
classes of cyclic codes by determining the values distribution of a certain
exponential sum using the theory of quadratic forms.

Zeng, Hu, Jiang, Yue & Cao (16| obtained the weight distribution of a
p-ary cyclic code C over F, with non-zeros a1, a~@*+1) and o~ ")) o
being a primitive element of IF,n, where p is an odd prime and n > 3, k are
positive integers such that gTJ?rT,ES is odd. Zeng, Shan & Hu (17} determined
the minimum distance of a binary cyclic code with three zeros o, o® and
a'? of length 2™ — 1 and studied the weight divisibility of its dual code,
where m > 5 is odd and « is a primitive element of the finite field Fom.

The aim of this paper is to provide a method to determine the weight
distributions of some binary cyclic codes of odd prime power lengths di-
rectly from their generating polynomials, by extending the technique de-
veloped in [11].

Throughout this paper, we let p be an odd prime and n > 1 be an
integer. For 1 < d < n, we consider the following factorization of zP" — 1
over [Fy:

2" — 1 = g1(x)g2(z)gs(x),

n—-d+1

where gy(z) = 142" +22" " .. 4 2P-DP"Y gi(2) = 1427 +
n~d+1
4.4 lP

In Section 2, we determine the weight distribution of the binary code

z?r 0P and gs(z) = 2P - 1.
generated by g;(z). In Section 3, we determine the weight distribution of
the binary code generated by g, (z)g2(z).

In a subsequent work, we compute the weight distributions of g-ary (re-
ducible) cyclic codes generated by the polynomials ga2(z), g3(z), g1(z)g3(z)

and gz(z)ga(z), where g is any prime power.



2 The weight distribution of < g;(z) >

First we fix some notations. Given positive integers t and v, let P(v)

denote the set of all tuples (1, vs, - -+ , 1) of positive integers 1;'s(1 < 1 < t)
t
with Z v; = v. Further for any (v1,v2,++ , ) € Py(v),let L(vy,va,--- , 1)
i=1
be the set of all tuples (3, €z, - - , £;) of non-negative integers ¢;’s satisfying

t
ij < p? — pt. And for any (£1,8a,- -+ ,£:) € L(v1,va, - , 1), set
=1

PI—Tio; bi—pt pY-3i,; ti—p(t—1) pl—ty—p
a(ly,bs,...,4,) = > > > 1. (1)
my=0 ma=m+& +p my=mi_1+€_14p

We are now ready to state

Theorem 1 Let p be an odd prime and n > 1 be an integer. Let gi(z) =

n—d

14+2P 7 422" 4 4 -V where d is an integer satisfying 1 <
d < n. Then the weight distribution AF ), AP",... AL of the binary

cyclic code Cy, generated by g1(x), is given by

AG) = 37 NN (w5) - N(wyn-a)

for each w > 0, where the summation runs over all tuples (wy, wa, - - - y Wpn—d)
Pn—d
of non-negative integers w;’s satisfying Z w; = w; and for any v > 0,
i=1
N(v) equals
(i) 1 ifv=0;

() 0 ifv>pi+1;

@iy >, ) > a(ly, bz, &) [[ nlwss &)
i=1

t21 (11,02, W )EP (V) (€1,82,+ ,€)EL(v1 w2, 1)

if 1 < v < p?; where a(fy,la, - 14t) is as defined by (1) and n(vy, ¢;) (1 <

r < t) is as given by Lemma 9.

We need some preparation to prove this theorem.

45



As a vector subspace of R,», the code C, is spanned by g;(z), zg1(z),
z2g1(z), -+ - , &P P"=P+1-1g (1), Therefore, under the standard isomor-
phism from Ry~ to an’ the code C; has the following p®~%(p® — p + 1)

vectors as its basis, where each vector R;41 corresponds to z'gs(z) :

Rl = (11 0)"' »0’ 1! 07"' ’07 17"'117 0;"’ yOy 1! 0)07"'70v0 )!
N e’ N e’ N e’ o e
p“_d—l Pn—-d_l p"-d—l (pd—p+l)p”_d—l
R2 = (0,1, 01"' 70s 1’ 0) aoa 1’ 517 O)"')O? 1’ ana"' 1010 )’
N e’ N e’ Nt N, s’
pP—d_1 pt—d-1 pm—doa d-p+1)pm 42
R(P“-P*‘l)?"_“ = ( 0,0,---,0,0, 1, 0,---,0, 1, 0,---,0, 1,---,1,
N, e’ N e N’
(pd-p)pn %1 pm—d-1 prmdo1
0)"' aoa 1)
N, e’
p"_d—l

(Note that the weight of each R; is p.)
Let V; (1 < i < p"%) be the subspace of IF’;" generated by R;, Ry pn-a,
R;popn-a,- -+, Riy(pa_pypn-¢. For any integer v > 0, let N;(v) denote the

number of codewords in V; of weight v.

Proposition 1 Let w > 0 and AS’ ™) be the number of codewords in C,

having weight w. Then
AP =" Ny(wi)Na(wp) -+ - Npnoa(wpn-a),

where the summation runs over all tuples (w1, wz, - ,Wpn-a) of non-negative

n—d

P
integers w;’s satisfying Z w; = Ww.

i=1
Proof. It is clear that C; is a direct sum of the subspaces V1, V3, -, Vpn—u.
Therefore any v € C; can be uniquely written as v = vy +v2 + -+ + + Vpn-d,

where v; € V(1 £ i < p"‘d). Each v; € V; is of the form



(Oa"'103 *, 0:"',0’ *, O,"',O, ek O,"',O )’
—— S e’ S’ (R

i-1 pmdoy pmdon pr=dos
where the non-zero entries can occur only at the places marked *.

Further note that for ¢ # j, the non-zero entries of V; and V; occur at
disjoint places, which gives

w(v) = w(v1) + w(v2) + - -+ + wW(Vpn-a).
For any tuple (w;, w2, -+ ,wpn-a) of non-negative integers w;’s satisfying

n—d

P
E w; = w, we define

i=1
pn—d

S(wy,wa, ,Wpn—a) = {V € Criv =Y v,w(v;) =w;(1 <i<p"?)}.
i==1

Clearly US(w1, w2, -+ ,wyn-a) is precisely the set of all codewords of C;

having weight w, where the union runs over all tuples (wy,ws, -, Wpn-a)

pn—d

of non-negative integers w;’s satisfying Z w; = w. Therefore

i=1

Ag’n) = |US(1.U1,'UJ2, v ,wpn-a)|.

Also for any two distinct tuples (wy, wg, -, Wyn-a) and (w], wh, - ,w;,,.*,,),
the sets S(wy, wa, - ,wpn-q) and S(wi, w3, -, w]’p,,_.,) are disjoint. There-

fore we get
|US(wi,w, - yWpn—a)| = Y [Swy, wa, -+, Wpn-a)|-

Since we have |S(wy,wa,  , Wpn-a)| = Ny(wy)Na(wa)- - - Npn-a(wpn-a),
the desired result follows. O
In order to calculate N;(v) for any v > 0 and for any i, 1 < i < p™~¢, we

prove the following proposition:

Proposition 2 For any i (1 <i <p™?) and any v > 0, Ni(v) equals
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(5 1 if v=0;

(i) 0 if v >p?+1;
t

(ii) Y > > a(ly, bo,--- , &) [ nlvs: )

t21 (vy,v2,-- We)EP (V) (81,82, ,Le)EL(v1,v2,+ 1) i=1

if1 < v < p% where a(ly, s, -+ ,£:) is as defined by (1) and n(vr, &) (1 <
r <t) are as given by Lemma 9.

Note that the value of N;(v) is independent of i.
To prove this proposition, we proceed as follows:

Lemma 1 Let 1 < i < p*¢ be fized. Let v € V; be written as v =
aoRi+0o Rippn-a+aaR; opn—a+-++0pe_pRiy(pd_pypn-a for some ag, a1,

+y0pa_p € Fy. Let v[k] (1 < k < p™) denote the kth component of v. Then
(a) for all integers k = i(mod p™~?), v[k] is given by

’U[k]— apt o+t o if0<s<p-1;
T @etr-ptaspaptap ifp<s<pi-1,

where s = p'f.'_i and 6 = min(s, Pd - p)-

(b) for all integers k # i(mod p™~?), we have v[k] = 0.

Proof. Since v = apRi+a1 Riypn-a+agRiyopn-a+t- - F0pa_pRiy (pd—pypr—d,

so v can be written as

v = (07"'v0) Qg, 0,---,0, ap + oy, 0,---,0, oo + oy + ag, 0,---,0,
NG 4 N e’ Nt e’ N e
i-1 pn—d_q pn—d pr—doy

aotay -+ apo, 0,---,0, o1 +ag+ -+ op, 0,---,0,

Pn—d_l Pn—d_l

agt ozt Fopi1y 00000, opa gy F0pagpra o0+ ape_p,

p"-d—l

0,-++,0, apa_opig+ -+ + Qpa_p, 0,--,0, apa_p_y +api_p, 0+,

y"“-l p""’—l pn-d_
Qpd_p, 0,---,0 )a (2)
Pn—d_‘-



from which the lemma follows. O

Remark 1 From Lemma 1, we note that the scalars o, and o, appear as
summands of the same component of v € V; if and only if their subscripts

T and s satisfy [r —s| < p— 1.

Definition 1 Let £ > 0 be an integer. Let 0 < jo < j1 < jo < ++- < jo <
p® — p be the integers satisfying ju — ju-1 < p—1forl <u < ¥ Fora
fized i (1 < i < p*~?), we say that a vector v € V; is a nice vector of the
type (jo,J1,J2," 1 Je) if v = Ryyjopn—a + Ripjipn-a + -+ + Riyjpn-a. The
integer jo is called the initial point of v, denoted by I(v). The integer j; is
called the end point of v, denoted by E(v). And the integer jg — jo is called
the length of v, denoted by L(v). The integer £ is called the size of v. We
denote the weight of a nice vector v € V; of the type (jo, j1,J2, - ,Jje) as

wi(j07j1$j27 e 1jl)‘

Remark 2 Note that a nice vector v € V; of the type (jo, 1, ,je) can
be obtained by putting aj, = aj, = --- = oy, = 1 and the remaining scalars

equal to 0 in the vector given by (2).

Lemma 2 Let 1 < i < p™~¢ be fized. Let v € V; be a nice vector of the
type (jo,j1,- -, je). Then v[i+sp™ ¢ = 0 for all s satisfying 0 < s < jo—1
and je+p<s<p?-1.

Proof. Let 0 < s < jo — 1. Then by Lemma 1(a), we have

. n-dy _ | aotoar+--+o, if 0<s<p-1;

vl +sp ]_{as+1—p+as+2—p+"'+ao ifp<s<pi-1,
where 6 = min(s, p® — p). Since 0 < s < jo, by Remark 2, we have ag =
a = - = o, = 0, which gives v[i + sp"~¢] = 0if s < p— 1. Now let
pss_<_pd—1.Sinces+1—pSpd—pands+1—p53,soweget
s+1—p < min(s,p? — p) = . This gives s + 1 — p < 6 < s < jo, which,
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by Remark 2, implies that a,41_p = as42-p = -+ = ap = 0. This implies
that v[i + sp"~¢) = 0 if s > p. Hence v[i + sp®~ 4] =0 for 0 < s < jo — 1.

Now let jo+p < s <p?—1. As s > jo+p > p, by Lemma 1(a), we have
Vi + sp" "9 = @g41-p + Qsp2-p + - - - + g. Since s > jo + p implies that
s+1—p > je, which by Remark 2, gives ag11_p = 0g42_p=--- =g = 0.

Hence vfi + sp™"~¢| =0 for je+p<s<p?—1.0

Lemma 38 Letv € V; (1 <i < p™~9) be a nice vector of the type (jo, j1, J2,

-+« ,je). Then
(i) €< L(v)<p?-p,
(i) I(v) >0 and E(v) <p?—p,
(i) E(w)=I(v)+ L(v).

Proof. From the definition of nice vector, we have j; < p? — p, which gives
L(w)=3e—jo < je <p?—p. Also jup1—ju > 1foreachu, 0 <u<l—1,
implies that L(v) = j¢ — jo = £. This proves (i). The part (ii) follows from
the definition of nice vector. And the part (iii) follows immediately from

the fact that L(v) = j, — jo = E(v) — I(v). O

Definition 2 Let 1 < i < p™~¢ be fizred. Let vy and vo be nice vectors in
Vi. Then we say that v, is a right neighbour of vy if I(va) > E(v1) + p.

Remark 3 Given any non-zero vector v € V;, we observe that v can be
written asv =v, + v+ .-+ v, t 2 1, where each v, (1 <r <t) is a nice

vector in V; and each v, (2 < 7 < t) is a right neighbour of v,_;.

Lemma 4 Let 1 < i < p"¢ be fized. Let vi,v9, -+ ,v; € V; be nice
vectors such that each v, (2 < v < t) is a right neighbour of ve_1. Then
w(vy + v + -+ v) = w(vy) + w(ve) + - - - + wlv).

Proof. On writing each v,, 1 < r <t, as an element of IFZH, we see that
the non-zero entries of vy, vy, -+ , vy occur at disjoint places. Therefore the

result follows. OJ
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In view of Remark 3 and Lemma 4, we see that in order to determine
the weight of a non-zero vector v € V;, one needs to determine the weight
w;(Jo, J1,- + - , Je) of nice vector of the type (jo, j1,- - ,je) for each integer

£>0.

2.1 Determination of the weight w;(jo, 71, - ,J¢) of a
nice vector of the type (jo,j1, - ,J¢)

Next we proceed to determine the weight w;(jo, j1,- - , je) of a nice vector
v € V; of the type (jo, j1,72, - , Je) with I(v) = jo, E(v) = je and L(v) =
Je — Jo-

Note that w;(jo) = w(R;4jopn-4) = p. So we take £ > 1 from now onwards.
For a nice vector v of the type (jo, j1,: - ,Je), £ > 1, we first define L. (v; m)
and Lo(v;m) (1 < m < ¢) as follows:

m—1
Z(—I)kjk if m is odd;

Le(v;m) = kn=11
‘ Z(—l)kjk if m is even.

k=1

m
Z(—-l)k_ljk if m is odd;
Lo(v;m) ={ k=9

Z (=1)*"15, if m is even.
k=0

Now we consider the two cases, L(v) < p—1 and L(v) > p, in the Propo-

sitions 3 and 4 respectively.

Proposition 3 Let £ > 1 be an integer. Let v be a nice vector of the type
(Jo:J1s -+ 1 Je) with L(v) = je—jo < p—1. Then the weight wi(jo, j1," -+ , je)
of v is given by

o o 2L,(v;€) if £is odd;
wi(Jo, J1, -+, Je) —{ P if £ is even.
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Proof. Here we have 0 < jo < jy < -+ < j¢ < p% —p with j, —ju_1 < p—1
for 1 < u < £ and j; — jo £ p— 1. In order to compute the number
w;(Jo, F1,°** , Je), we need to compute the number of non-zero components
of v. By Lemma 1(b), we have v[k] = 0 if ¥ % i(mod p"~¢). So we focus
our attention on the components v[k] with £ = i(mod p"~9). In view of
Lemma 2, we see that it is enough to study the components v[k], where
k =i+ sp®~¢ with jo < s < je 4+ p — 1, and we make the following obser-
vations :

(i) For0<u<£€—1,as j, — Jo < je— jo < p—1, so by Remark 1, there
exists a component of v, which is equal to the sum aj, + o, + -+ - + o, .

Further we see that there are a total of j,41 — ju such components, viz.

ofi + 5up™% = vl + Gu + VP = o = i+ Guar — PP =
1 if u is even;
%o ¥ 01+ T % =1 0 if uis odd.

This is because, for j, < s < jut+1 — 1, we have, by Lemma 1(a), v[i +
sp" ¥ = ap+ 1 + -+ + a, if s < p— 1, which, by Remark 2, equals
Qjo +aj, +-+0oy,850< jo <ju<s Ifp<s<p?—1, then by
Lemma 1(a), we have v[i + sp" "% = 0541-p + Qs42-p + +++ + g With
6 = min(s, p? — p), which, again by Remark 2, equals o, +aj, +--- +a;,,
as s+1—p < jup1 —p < Je—p < Jo < ju < min(s,p? —p) = 0 in this case.
(ii) As je — jo = L(v) £ p— 1, again by Remark 1, there exists a com-
ponent of v which is equal to the sum oy, + o, + -+ + ;. We see
that there are a total of p — (j¢ — jo) = p — L(v) such components, viz.
vli + jep™ 9] = vfi + (e + 1)p"Y = - = vfi + (o +p — 1)p"Y =
TR Y fey

This is because, when jo < s < jo + p — 1, we have v[i + sp"9| =
ap+ay+---+ag for s < p—1 by Lemma 1(a), which, by Remark 2, equals
aj,+aj +- -+, as 0 < jo < je < 5. And for s > p, by Lemma. 1(a), we
have v[i + sp" 94| = @g41-p + Os42-p + -+ - + g, Which, again by Remark

2, equals aj, + aj, + -+ 4, as s+1—p < jo < je < min(s,p? —p) = 6.
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(lii) For 1 < u < ¢, as jg — ju < je — jo < p— 1, by Remark 1, there
exists a component of v which is equal to o;, + aj,,, + - + aj,. And
we note that there are a total of j, — j,—; such components of v, viz.
vfi + (Jum1 +P)P" ) = Vi 4 (a1 + P+ D" = = vl (Gu P -
0574 = o b o= § A0

This is because, when j,—; +p < 8 < ju +p— 1, we have s > p.
Therefore by Lemma 1(a), v[i + sp" % = asq1-p + Qsp2-p + -+~ + ap
with § = min(s,p? — p). Note that js — ju_y < je—jo < p— 1 for
each u. This, together with 5,1 + p < s < j, + p — 1, implies that
Ju—1+1 £ s4+1—-p < ju < Je £ Ju—1 +p—1 < s, which gives
$+1-p < ju < je < min(s,p® — p) = 8. Therefore by Remark 2, we
have v[i + sp"~ 9] = a;, + aj,,, + - + oy,

For £ odd, we see, from the above discussion, that the weight w;(jo, j1, - ,Je)

of v is given by

-1 4
wifo, 1,7+ Je) = fi—Jo+ D (ms1—dm)+ Y (Ju—Gu-1) = 2Lo(v; ).
w"hn =

And for £ even, it is clear from the above discussion that the weight

w;i(Jo, 1, » Je) of v is given by

-1 £
i=dot D Umtr—dm)+(®—Gde+tio)+ Y. (ju—Ju-1) =p.
mme?)}en u"e?:‘en

This proves the proposition. O
Let us now consider the case L(v) > p. Here we must have ¢ > 2, and
the weight w;(jo, 51, - - , je) of a nice vector v of the type (jo,j1,: -, je) is

given by the following proposition:

Proposition 4 Let £ > 2 be an integer. Let v be a nice vector of the type
(Jo, J1,+++ » je) with L(v) = je — jo = p. Then the weight wi(jo, 1, ,je)

of v satisfies the following recurrence relation:

wi(jO’jlv"' vj[) =wi(j0sjla”' 1jl—l)+wi(j11j2a"' ajl)_wi(jl’j%" ’ 7je—l)a
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where wi(j07jl1 .t 1jl—l): wi(jlijv e ajl) and wi(jlyj27 s 1j€-l) denote
the weights of nice vectors in V; of the type (jo, j1, -+ »Je—1), (J1, G2, * » Je)
and (§1,72,+ "+ ,je—1) respectively and can be calculated using the recurrence

formula and Proposition 3.

Proof. Let v;, vo and va be nice vectors of the type (jo, 71, " ,Je—1),
(F1, 325+ ,Je) and (41,42, ,je—1) respectively.

Since w(v) = w;(Jo,J1,-* ,Je)s w(v1) = wiJo,Jn, -+ 1 Je-1), w(v2) =
w;(J1, 2, -+ Je) and w(vs) = wi(j1,J2," - , je-1), so to prove the proposi-
tion, it is enough to prove that w(v) = w(vy) + w(vy) — w(vs).

For this, we assert the following:

(i) v = v + vy + va. As a consequence, we have v[k] = vy [k] + va[k] + v3[K]
for1<k<p".

(ii) For 0 < s < je — 1, we have v[i 4+ sp™~%] = vy[i + sp"~¢) and wvo[i +
sp™%) = vafi + sp™ Y.

(iii) For jo < s < p? — 1, we have v[i + sp™~%] = vy[i + sp"~?} and v [i +
sp™Y) = v3fi + sp™ Y.

On writing v = oo R; jopn-¢ + &y Riyjipn-a ++ - + 0, Riy j,pn-a, v1 =
o Riyjopn=a + 0y Rigjipna + -+ Rigj_ypn-ds V2 = @y Riyjypn-a +
0o Riyjapn—a -+ 05, Ry jopn-a, V3 = 0 Riyjion-a+ a5 Ry jopn-at+ o+
aj,_, Ry j,_,pn-4, the assertion (i) follows.

Let 0 < s < je — 1. Note that the vector v; can be obtained from v
by putting a;, = 0. Therefore the component of v which does not contain
the scalar a;, as its summand, must be equal to the same corresponding
component of v;. By Lemma 1 and Remark 2, we see that for 0 < s <
je — 1, the (i + sp™~?)th component of v does not involve the scalar a;,
as its summand. Therefore we must have v[i + sp™~%) = vy[i + sp™~¢| for
0 < s < jg — 1. From assertion (i), we get vq[t + sp™~ Y] = vsli + sp —4]

This proves assertion (ii).
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Let je < s < p% — 1. Since the vector v, can be obtained from v by
putting o, = 0, so the component of v which does not involve the scalar
aj, as a summand, must be equal to the same corresponding .component
of v3. By Lemma 1(a), note that for s > j,, the (i + sp®~%)th component
of v contains oy, as its summand. Since j; — jo > p, so by Remark 1,
the (i + sp™~)th component of v for all s > j,, does not contain aj,
as its summand. This gives v[i + sp™~ 9] = va[i + sp™~9] for s > jo. And
vy [i+sp™ 9] = v3[i+sp™ ] follows from assertion (i). This proves assertion
(ii).

Now consider
H{s:0< s <p?—1,0[i +sp™~9 = 1}

= [{s:0<s<je—1,0[i+sp" 9 =1}
+{s:je<s<p?—1vfi+sp Y =1}

(Here |A| denotes cardinality of the set A.)

From the assertions (ii) and (iii), we have v[i 4+ sp™~¢] = vy [i + sp™~9

w(v)

for 0 < s < jo — 1, and vfi + sp™~%] = wvofi 4+ sp™~9) for jp < s < p¢ — 1.
This gives

wv) = |{s:0<s<je—1ufi+sp" =1}
+l{s:je < s <p% — 1, vafi + sp™9] = 1}

= w(u)—[{s:je<s<p? - Luli+sp" ¢ =1}+
+w(v2) — [{s:0 < s < jo — L,wofi + sp™~9] = 1}].

Again using assertions (ii) and (iii), we have vy [i+sp"~%) = v3[i+sp™~9] for
0<s<je—1,and for j, < s < p¢—1, we have v [i+sp™ Y] = va[i+sp"‘d].
This gives

ww) = w(v)+wvy)—|[{s:0<s<p?—1,v3[i +sp" Y = 1}
= w(v1) + w(vz) — w(vs).

This completes the proof of the proposition. {J
Remark 4 From Propositions 3 & 4, we note that the weight w;(jo, 71, , je)
of a nice vector is independent of i. So we drop the subscript i from now

onwards.
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2.2 Proof of Theorem 1

To prove Theorem 1, we need to prove the following results:

Lemma 5 Let v and £ < p? — p be non-negative integers. Let n;(v; )
denote the number of nice vectors in V; having weight v and size £. Then
)= Y. 1,

A S
where the summation runs over all (£ + 1)-tuples (jo,j1,-- - ,Je) satisfying
0<jo<i < <je<p’—p ju—Juc1 <p—1forl1 <u<¢ and
w(jo, 1, ,Je) = v, (note that w(jo,J1, - ,Je) is obtained in Subsection
2.1).

By Remark 5, as the value of w(jo,71,- - ,Je) s independent of i, the
value of n;(v;€) is also independent of i. So we drop the subscript i from
now onwards.

Clearly n(v;£) = 0 if there does not ezist any nice vector of weight v and

size L.

Proof. Proof is trivial. O

The following algorithm computes the number n(v; £) (v > 0) for a fixed
(,0<t<pi-p:

An algorithm to compute the number n(v;£)

Step I: List all (£+ 1)-tuples (jo, 51, - ,je) satisfying 0 < jo <j1 < --- <
je<p?—pand j, —ju—1 <p—-1lforl<u<dé.

Step II: Compute the weights w(jo, j1, - , je) for each (£+ 1)-tuple listed

in Step I, using Propositions 3 and 4.

Step III: Count the number of tuples (jg, j1, - - , je) for which w(Jjo, j1,- - - , je)

= v. This number equals n(v; £).

Remark 5 For a fized £ (0 < £ < p® — p), it is manually hard to list all
(£+1)-tuples (jo, 1, - ,je) satisfying 0 < jo < jr < -+ < je <p*—p and
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Ju—Ju-1 S p—1 for1l <u < €-1, and compute the corresponding weights
w(jo, j1,+++ , je) using Propositions 3 and 4. However, for small values of
p and d, a simple computer program in Maple or Magma effectively lists all
such (£41)-tuples and computes the weights of all the nice vectors of length
¢, and hence counts the numbers n(v; £) of nice vectors having weight v and

size £.

Proposition 5 Let1 < i < p"~ be fized. Foranyv > 0 and (v1,vs,- -+ , 1)
in Py(v), let

t ve(1 £ r < t) is a nice vector in V;
Vi(vi,va, -+ i) = Z”’ :  having weight v, and each v.(2 <
r=1 r < t) is a right neighbour of vr_;

Then U U Vi(v1,va,++ , 1) is the set of all vectors in V;

t21 (v1,v2, 0 )EP (V)
having weight v. Moreover, this union is disjoint.
Proof. Let S, be the set of all vectors in V; having weight v. We assert
that

Su = U U W(VI,UZ"" ,l/g). (3)

t21 (v1,v2, 11 )EP (V)

Let v € S, i.e., v is a vector in V; having weight v. Then by Remark 3,
each v € V; can be written as a sum of nice vectors v,’s such that each
vy is a right neighbour of v,_, so that v = v; + vy 4+ -+« + v,,, for some
integer m > 1. Let w(v,) = v, for 1 < 7 < m. Also by Lemma 4, we
have w(v) = w(v1) + w(va) + -+ + w(vym) = vy + 15 + -+ + vp,. This
gives (v1,v2, - ,Vm) € Pn(v) and consequently, v € Vi(v;,vq,- - s Vm)-
Therefore we get

s.c U Vi(br, vz, -+ 1), (4)

t>1 (1,02, 1t )EP (V)

On the other hand, let ¢ > 1 and (v,v2, -+ ,11) € Py(v). Let v €

Vi(vi,v2, -+ ,1). Then v = vy +v2 +--- + v, whereeach v, (1 <7 <t)is
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a nice vector in V; such that w(v,) = v, and each v, (2 < r < 1) is a right
neighbour of v,._;. By Lemma 4, we have w(v) = w(v;)+w(ve)+- - -+w(ve),

which gives v = 11 + v5 + - - + ;. This shows that v € S,,. Thus

U U ‘/"(VDVZV o 1Vt) - Sv- (5)

‘Zl (V|.1V21"‘ yV!)EPt(V)

On combining (4) and (5), we get (3). Further it is easy to see that the
union on the right hand side of (3) is disjoint, which completes the proof.
a

Proposition 6 Let 1 <i < p™¢ be fized. Let (v1,vs, -+ ,1¢) € P,(v) and
(Zlae2) e ,et) € L(VI,V2’ e th)' Let

v, (1 <7 < t) is a nice vector
in V; of size £, and weight
Vr, and each v, (2< 7 <t) is
a right neighbour of v,_;.

t

I/i(vlvy2"")Vt;elae25"'aet)= zvr:

r=1
Then

() U Vilvr, vz, v 1,82, ) = Vi(vr,va, -+ ).
(81,82, & YEL(V1,v2,- 1)
(6)

Moreover this union is disjoint.
t
(7'7') II/i(Vla Vo, -, Vg;£1,£2, ot ’et)I equals a(ely ‘e2s R} ft) H n(VT; z‘r‘)a where
r=1

the numbers n(vy; £;)’s are as given by Lemma 9.

Proof. (i) Itis clear that Vi(vy,va, - ,14; 81,82, , &) C Vi(v1,v2, -+ , 1)

for any (¢1,%2,-- ,4:) € L(v1,v2,- -+ ,v;). Therefore

U Vi, va, - v 81,82, ) C© Vivr,va, -+, 1),
(61,82, - &) EL(vy 02, 1)
(7)

Conversely, let v € Vi(vy,va, - ,1). Then v = vy +va + -+ + vy,

where each v, (1 < r < t) is a nice vector in V; of weight v, and each
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vr (2 < r £ t) is a right neighbour of v,_;. Let £, be the size of v, for
1< r <t By Lemma 3, we have L(v;) > ¢, and E(v,.) = I(v,) + L(v,) for
1 < r <t. This gives

t t t
Z ¢ < Z L('U'r) = Z(E(UT) - I(UT))
r=1 r=1 r=1
D (E(wr-1) — I(v,)) + E(ve) — I(v1)

r=2

S (E(vro) = I(w)) + E(w) (- I(v1) 2 0)

Il

<
< Sot-1)+Ew)
(- I(ve) = E(vr—1) 2 p (2<7 <))
< —p(t—1)+p?—p=p?—pt (by Lemma 3 (ii)).

This shows that (‘elsgz’ e yel) € L(Vli TR 1Vt): and hence v € V’i(yl’V2$

s U b, 8,0+, 8y), which gives

‘/i(VhVZv"' !Vt)g U ‘fi(ylsu27"' th;ZI)EZV"vet)-
(eheﬁt"')‘t)eL(Vlt‘Q!”"”C)
(8)

On combining (7) and (8), we get (6). Also it can be easily seen that the
union on the right hand side of (6) is disjoint, which completes the proof

of part (i).

(ii) We have v € Vi(v1,va,- -+ ,v;01,82,--- &) if and only if v = vy +vg +
-+ -+, where each v, (1 < r < t) is a nice vector in V; of size £, and weight
vy, and each v, (2 < r < t) is a right neighbour of v,_;. par By Lemma 9,
the number of nice vectors having weight v, and size £, is n(vy; £,) for each
r, 1 <7 < t. Thus the number of vectors in Vi(v1,ve, -+ , v 81,82, , &)
is equal to n(v1;€1)n(ve; €) - - - n(ve; ;) times the total number of choices
for the initial points of the nice vectors vy,vs,--- ,v,. € V; having sizes
4,4, , £ and weights 11, v, - , Uy respectively, such that each v, is a

right neighbour of v,._;. Note that the number of choices for initial points

59



of such nice vectors v,’s depends only upon the sizes ¢;,43,---,4, and
is independent of their weights v,’s. Now to calculate the number, let
I(v;) = j, for 1 < r < t. Then by Lemma 3, we have j; > 0, E(v;) =
Ive)+ L(vy) 1 €7 <t), jre1+ &1 +p < jr foreachr, 2 <7 <t and
ji + £, < p® — p, which gives

t
0<i<p*=) b —pt,

r=1
t
Jit+b +p<J SPd—Zfr—P(t—l),
r=2
¢
Jo+l+p<js<p?-)_ & —p(t—2),
r=3

...............

Jim1 4+l +p <G Spt -t —p.
Therefore the total number of choices for the initial points j,’s of the nice

vectors v,’s of size ¢, such that each v, is a right neighbour of v,_;, is given

by the sum
p“-Z*:; £;—pt p"-22=z €;—p(t-1) pi—t—p
SIS v
m;=0 ma=m,;+£&,+p me=m¢_1+fe_1+pP
which, by (1), is equal to a(€y, s, , ).
Consequently, the total number of vectors in V;(v1,va, -+ ,; €1, 82, -+ , )
is given by

a(ly,f2,--- ,&)n(vi; G)n(ve; €2) - - - n(ve; 4y),

which proves (ii). O

Proof of Proposition 2. Proposition 2 follows from Propositions 5 & 6.
O

Proof of Theorem 1. Theorem 1 follows from Propositions 1 & 2. O
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3 The weight distribution of < g;(z)gs(z) >

To compute the weight distribution of C; =< g;1(x)g2(z) >, we observe the

following:

Lemma 6 Let C and D be cyclic codes of length m and £ generated by the
polynomials g(z) and h(z) respectively. If g(z) = h(z)(1+zf + 226 +..- +
451 then
(a) C is a repetition code of D, repeated k times.
(b) the weight distribution Af,"",A{'"’, o, ASY of C and the weight distri-
bution B, B, ... | B{® of D are related by

A("‘)={ 0 ifktw;

w BY ifwu=kw', 0<w <¢

for0<w < m.
Proof. Proof is trivial.

Theorem 2 Let p be an odd prime and n > 1 be an integer. Let gy(z) =
+

n—d+41 n—d+1
z%P

T4oP" g2 . +ze-02""? 4nd g2(z) =14 2zP +

IIPS bt VA

, where d is an integer satisfying 1 < d < n. The code
Cz generated by g,(z)g2(z) of length p™ is the repetition code of the code
C1 =< g1(z) > of length p" 9%, repeated p®~! times. Hence the weight
distribution BF"), B{P™), ... ,B,(,ﬁ") of Ca is given by

B(p") = 0 n—d+1 ifpd_l f'U);
w A(P ) ’lf'w = pd—l,wl, 0 S w S pn—d+1

w’

—d+l) s

for 0 < w < p*, where the numbers A,(f,’," s can be computed from

Theorem 1 on replacing n by n —d + 1.

Proof. Proof follows from Lemma 10.
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