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Abstract:The aim of this paper is to classify the vertex-primitive
symmetric graphs of order 6p. These works were essentially done in
(1}. But in [1] there is no such situation: G=PSL(2,13) acting on the
set {2 of cosets of subgroup H = Dy4. Then m =| Q |= 78 = 6p,
G has rank 9, and the sub-orbits of G have one of length 1, five of
length 7, three of length 14 . In this paper we give a complete list of
symmetric graphs of order 6p.
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1. Introduction

Let I' be a simple undirected graph and G a subgroup of Autl.
' is said to be G — symmetric, if G acts transitively on the set of
ordered adjacent pairs of vertices of I' ; ' is said to be symmetric if
it is Autl’ — symmetric. Throughout this paper we use V(I') and
E(T") to denote the vertex and edge sets of I, respectively.
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In this paper, we use the character to give a complete list for
vertex-primitive symmetric graphs of order 6p with p being a prime.
The result is the following:

Theorem 1.Let I" be a G—symmetric graph of order 6p, where p
is a prime .Assume that G acts naturally on V(I") vertex-primitively,
then I' could be one of the following: 6pK)Kep,T12, TTo, 113,113,
(M11)88, (M11)38, (M11)38, L2(17)302, L2(17)302, L2(17)02, L2(17) 135,
Lo(17)}y, Lo(1D)3, Lo(1)385, Lo(13)fs, L2(13)fs" , La(13)%
L3, T(13H” (0<i<2), T(13)i , Tr(13)4, T2(13)%

The group- and graph-theoretic notation and terminology used
in this paper are standard in general, the reader can refer to [1] if
necessary.

Obviously, if G is doubly transitive, the non-ordinary self-paired
sub-orbit A is isomorphic to 6pK; or Kgp . So we san assume that G
is simple vertex-primitive in this paper. Liebeek and Saxl have listed
all the vertex primitive groups of order 6p where p is a prime. We
will determine all the self-paired sub-orbit graphs of every vertex-
primitive group order 6p in their table.

Check the test in [2] and moderate the vertex-primitive group
table of order kp, where p is a prime, and k < p . Due to a stable
point in a maximal subgroup of vertex-primitive group A, in Atls (3]
we get five primitive groups of degree 6p: Case (1) A;2 or Sy2 acting
naturally on 66 = 6p disordered pairs of a 12-element set; Case (2)
Aj3 or Sj3 acting naturally on 78 = 6p vertex-disordered pairs of a
13-elements set ; Case (2’) Mjs acting naturally on 78 = 6p cosets
of the subgroup My : 2; Case (3) M), acting naturally on 66 = 6p
cosets of the subgroup S5 ; Case (4) PSL(2,17) acting naturally on
102 = 6p cosets of the subgroup Sy ; Case (5) PSL(2, 13) acting nat-
urally on 78 = 6p cosets of the subgroup Dj4 ; Case (6) PSL(2,13)
acting naturally on 78 = 6p cosets of the subgroup Dss.

2. THE ALREADY CONCLUSION

LEMMA 2.1.([1],Lemma 3.1) Let T = soc(G) = A, ,where
n > 5, and G < S, acting naturally on the set Q2 of unordered pairs
of n—element set.
(a) Then :=| Q |=n(n —1)/2, G has rank 3, and the subdegrees of
G are 1,2(n — 2), (n — 2)(n — 3)/2. All sub-orbits are self-paired.
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(b) The sub-orbital graph T, of degree 2(n — 2) , called triangu-
lar graph, is isomorphic to the linear graph L(K,) of the complete
graph K,. The sub-orbital graph of degree (n — 2)(n — 3)/2 is the
complement T, of T,,. T;, and T;} have order n(n — 1)/2 , and have
the automorphism group S, .They are the only two vertex-primitive
graphs on 2 admitting G.

(C) If T = soc(G) = Ajq, we get two sub-orbital graphs of order 66,
with the 20-degree graph T}z and the 45-degree graph 7.

(d) If T = soc(G) = A2, we get two sub-orbital graphs of order 78,
with the 22-degree graph T3 and the 55-degree graph TG.

LEMMA 2.2. Let G = M2 act naturally on the set Q of cosets
of the subgroup H = M3 : 2, then | Q |= 66, rank(G) = 3, and
the subdegrees of G are 1,20,45. We get two self-paired sub-orbital
graphs Tj and T, .

Proof. M, has only one conjugate block of index 66. That’s to
say , G acting naturally on the set of cosets of H , that is equal to
G acting naturally on the set of the unordered pairs of a 12-element
set . The only two vertex-primitive graphs admitting G are T2 and
TS . The other conclusions are obvious.

The graphs in case (3) appear in [1], but we deal with them in a
different way. We will use the permutation character to prove them.

LEMMA 23. Let G=M,H=S5and |G: H|=66. And
let G = Mj; act naturally on the set Q of cosets of the sub-group
H = S5, then | Q |= 66 , rank(G) = 4,and the subdegrees of
G are 1,15,22,30. We get three non-trivial sub-orbital graphs with
every two of them non-isomorphic , with degrees 15,20,30, denoted
(M11)8, (M11)32, (M11)3, respectively. They are vertex-primitive
symmetric graphs of order 66, and their automorphism group is My;.

Proof. If 7 is the permutation character of G , then by Atlas [4]

we get
s—1

=1 exxa=1+x2+xs+xs,
1
and x2(1) = 10, x5(1) = 11, xs(1) = 44. G is double-free and has

rank 4, so due to the theorem 8 in[5], all the sub-orbits of G are
self-paired. Now we need to determine all the non-trivial subdegrees
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n1,n2, ..., Ny. In the case of exiting a non-trivial odd number, 66 has
three possible partitions: (a)l+5+20+40, (b))1+5+30+30, (c)1+
15 4+ 20 + 30.

In case (a), we get Fizq(Z3) = 3 by calculating the permutation
character m . Assuming Fizq(Dg) = k , if there exits a H—orbit of
length 20, and Ds is its vertex-stabilizer , then k£ > 1 (in fact k = 2
). Because Ny (Z3) = 2, there exit (3 — k)/2 H—orbits A’ of length
40, and Zj is its vertex-stabilizer. It is contradict to the assumption.
So (a) doesn’t happen.

In case (b), if there exits a H—orbit A; of length 5, and 5 is
its vertex-stabilizer, then ki =| Fizq(Ss) |= 2 .We get w2z = 10
by calculating the permutation character # on z € Z3 , so k; =|
Fizq(D4) | 10 . Ny(D4) = S4, | Ss : Dy |= 6, then there are
(10 — k,)/6 H—orbits of length 30 at least, and Dy is its vertex-
stabilizer. But (10 — k;)/6 = 2 is impossible , so case (b) doesn’t
happen.

We conclude that G has rank 4 and the sub-degrees are 1, 15, 20, 30
from above. All the sub-orbits are self-paired as we want. In fact, the
action of G on the set of cosets of H is equal to its action on the only
4 — (11,5,1) designed block admitting G. Due to Aut(My;1) = Mn
, our conclusion ends,

LEMMA 2.4, Let G = PSL(2,17) act naturally on the set Q
of cosets of the sub-group H & Sy (in case (4)),
(a) Then m =| © |= 102 , G has rank 8, and the subdegrees are
1,3,6,8,12,24,24,24. All the sub-orbits are self-paired.
(b) Every self-paired sub-orbit gives one sub-orbital graph. Besides
the graphs are symmetric and every two of them are non-isomorphic.
Every symmetric graph on {2 admitting G has its sub-orbital graph
with self-paired sub-orbits. The automorphism group of all the
graphs is PSL(2,17) .

Proof. By [4], the permutation character = is :

=14 x2+x3+ X5+ X6 + X7+ X8 + X9,
where x2(1) = x3(1) =9, x5(1) = x6(1) = x7(1) = 16, xs(1) = 17,

x9(1) = 18. So G is double-free and has rank 8. All the sub-orbits
of G are self-paired by the theorem 8 in [5].
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Now we need to determine the 8—partition of 102. The rank of
G is 8, and 3 is the only nontrivial odd factor of | Sy | . That is to
say, the 8—partition of 102 contains 3. On the other hand, it is easy
to find that the 8—partition of 102 contains three 24. So the next
question is to determine 2 + 12 + 12 and 6 + 8 + 12 which of them in
the 8—partition of 102. Ny(As) = Ay, Ng(A4) = Ay, so the case
2+ 12 4 12 doesn’t happen. Hence, we get only one 8—partition

102=1+3+6+8+12+24+24+24.

We get a symmetric graph I" from every sub-orbit of G = PSL(2, 17).
Assuming A = Aut(I') , then A > G and A acts primitively on
Q (the set of 102 vertices ). To check the table in [4], we get
PSL(2,17) < A < PGL(2,17) . Because PGL(2,17) doesn’t con-
tain the subgroup of rank 48 , A = PSL(2,17) . If [; and I'; are
the sub-orbital graphs adjoint with A; and A; , o is a isomorphism
of I = T'; , then o belongs to the centralizers of their common
automorphism group PSL(2,17) in Sq. However, by the above tips,
the group PSL(2,17) in Sq is self-centralized. So o € PSL(2, 17) ,
and A; = A;. We denote the graphs L2(17)m2, Loy(17)802 ,L2(17)800,
Lo(17) 0, La(17)3y, Lo(17)2%, La(17)3%:. The lemma is proved.

3.THE GRAPHS NOT IN LITERATURE [1]:

The following discussion is about the graphs which are not in the
literature [1):

LEMMA 3.1. Let G = PSL(2,13) act naturally on the set
of cosets of subgroup H = Dyq4,
(a) Thenm =| Q |= 78 = 6p , G has rank 9, and G has one sub-orbit
of length 9, 5 sub-orbits of length 7, 3 sub-orbits of length 14. All
the sub-orbits of length 14 and three of the sub-orbit of length 7 are
self-paired.
(b) In (a), PSL(2,13) exchanges two self-paired sub-orbits of length
7, the unique graph determined by the isomorphism is denoted L2(13)7m .
Their union is the 14—degree sub-orbital graph of PGL(2,13), d
noted Ly(13)14". Another self-paired sub-orbit is denoted L2(13);8,
it is not isomorphic to L2(13)7( ). The other two non-self-paired
sub-orbital graphs of length 7 (Their union is the 14—degree sub-
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orbital graph of PGL(2,13), denoted T5(13)}4.) are exchanged by
PGL(2,13), the unique graph determined by the automorphism is
denoted L5(13)75 -

(¢) Two self-paired sub-orbital graphs of degree 14 (Their union is
the 28—degree sub-orbital graph of PGL(2,13), denoted L2(13)3.)
are exchanged by PGL(2,13), the unique graph determined by the
automorphism is denoted L(13)3}3, and its automorphism group is
PGL(2,13). Another self-paired sub-orbital graph of degree 14 is
not isomorphic to Ly(13)1, denoted Lo(13)14" .

Proof. By Atlas [4], the permutation character = is :

m=1+ x4+ X5+ X6 + X7+ 2X8,

where x4(1) = x5(1) = x6(1) = 12, x7(1) = 13, x8(1) =14 . So G
is not double-free, and the rank isr =14+ 1+1+1+1+22=9.
Not all the sub-orbits of G are self-paired. Because G = PSL(2,13)
y Ga = H = Dyy , we get (Go)g = Zo. Besides, for z € Z;,
m(z) = 6 = Fizq(z) , there exits 6 — 1 = 5 H—orbits of length 7
, and Z, is its stabilizer. Hence , we get that the 9—partition of
78, which is 78 = 1+ 5x 7+ 3 x 14 . So G has five sub-orbits of
length 7, Ay, ..., As , three sub-orbits of length 24 , Ag, A7, Ag . Now
we determine which sub-orbit is self-paired. Due to 7(z) = 6 , so
N¢g(Z3) = D1a = Cg(Z3). So for z(# 1) € Za , there exit a € D2
and o(a) = 6 such that o® = z . Using lemma 2.3 in [1], we find 3
sub-orbits of length 7 self-paired. Without loss of generality, we say
A1, A, Aj are self-paired , A4, As are not self-paired.

Assume that there are y H—orbits of length 14 self-paired. We
have the following table

| 8(a) | [y A(@) || (Ga)s | Glapy | tnv(A)
7 3 Za Dy 2
14 " 1 Zs 1
N = (78 — 6)/2 = 36 ,By lemma 2.4 in [1], we have the equation
12

So y = 3, the other conclusions are obvious. The proof ends.
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LEMMA 38.2. Let G = PGL(2,13) act naturally on the set Q
of cosets of subgroup H = Dqg
(a) Thenm =| Q |= 78 = 6p, and G has rank 7. G has one sub-orbit
of length 1, two sub-orbits of length 14, one sub-orbit of length 28.
All the sub-orbits are self-paired.

(b) There are three non-trivial graphs of length 7, denoted L2(13)75
0 <4 <2, respectively.

(c) There are two non-trivial graphs of degree 28(their sub-orbits are
the union of the two sub—orb1ts of PSL(2,13) with length 7 in lemma
3.1), denoted L(13)14 ,T5(13)14 , respectively.

(d) There are one sub-orbital graph of degree 28(its sub-orbit is
the union of two sub-orbits of PSL(2,13) with length 14), denot-
ed Lo(13)R

(e) Every two of the graphs above are non-isomorphic, and the au-
tomorphism group of every graph is PGL(2,13) .

Proof. We consider PGL(2,13) at first:

(1) Obviously, G has no sub-orbit of length 2 or 4, so the lengths
of all the sub-orbits are > 7 (by calculating the normalizers of G, g
in G and G ).

(2) Let N = PSL(2,13) , there is one expand X (X |[v= x) to G
for every x € Itr(N) , and x¢ =X + A\x , where A [y= 1y and A =
—1g/n from lemma 6 in [6]. We use m¢ to donate the permutation
group of G acting on §2 . Because N is also the transitive permutation
group of 2 , by the lemma 2.3 in [7], we have ng | N = 7y .

(3) G has one sub-orbit at least, it is the union of two sub-orbits
of N .

From (1) , (2) and (3) , we have rank(G) < rank(N) =9 so

m=14+%4+ X5+ Xe + X7+ Xs + Xo

where X4(1) = Xs5(1) = Xg(1) = 12, = X7(1) = 13, X5(1) == Xp(1) =
14 . So G is double-free, and rank » = 7 . All the sub-orbits of G
are self-paired. Thus, we get a 7—partition of number 78, that is
78=1+3x7+2x14+1x28.

So G has one sub-orbit of length 1, three sub-orbits of length 7,
two sub-orbits of length 14 and one sub-orbit of length 28. From
(1),(2)and (3) , the conclusion is obvious.
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The two cases are not in lemma 1 of document [1].
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