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Abstract

Let G be a finite and simple graph with vertex set V(G), and let
f:V(G) = {-1,1} be a two-valued function. If k£ > 1 is an integer
and 3 ¢y f(2) 2 Kk for each v € V(G), where Nf[v] is the closed
neighborhood of v, then f is a signed k-dominating function on G.
A set {f1, fo,..., fa} of distinct signed k-dominating functions on G
with the property that Zi—l fi(x) £ j for each z € V(G), is called
a signed (j, k)-dominating family (of functions) on G, where j > 1
is an integer. The maximum number of functions in a signed (3, k)-
dominating family on G is the signed (3, k)-domatic number on G,
denoted by djis(G).

In this paper we initiate the study of the signed (4, k)-domatic
number, and present different bounds on d;jxs(G). Some of our re-
sults are extensions of well-known properties of different other signed
domatic numbers.
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1 Terminology and introduction

We consider finite, undirected and simple graphs G with vertex set V(G) =
V and edge set E(G) = E. The cardinality of the vertex set of a graph G
is called the order of G and is denoted by n(G) = n. If v € V(G), then
Ng(v) = N(v) is the open neighborhood of v, i.e., the set of all vertices
adjacent to v. The closed neighborhood Ng[v] = N[v] of a vertex v consists
of the vertex set N(v) U {v}. The number dg(v) = d(v) = |[N(v)| is the
degree of the vertex v. The minimum and mazimum degree of a graph G
are denoted by §(G) and A(G). The complement of a graph G is denoted
by G. We write K, for the complete graph of order n and C,, for a cycle of
length n. A fan is a graph obtained from a path by adding a new vertex
and edges joining it to all the vertices of the path. If A C V(G) and f is a
mapping from V(G) into some set of numbers, then f(A) =Y., f(z).

If kK > 1 is an integer, then the signed k-dominating function (SkD
function) is defined in [13] as a two-valued function f : V(G) — {-1,1}
such that 3°_c i, f(z) = k for each v € V(G). The sum f(V(G)) is called
the weight w(f) of f. The minimum of weights w(f), taken over all signed
k-dominating functions f on G, is called the signed k-domination number of
G, denoted by vks(G). A Yiks(G)-function is SkD-function on G of weight
Yks(G). As the assumption §(G) > k — 1 is necessary, we always assume
that when we discuss 7,s(G), all graphs involved satisfy 6(G) > k — 1
and thus n(G) > k. The function assigning +1 to every vertex of G is
a SkD function, called the function ¢, of weight n. Thus vs(G) < n for
every graph of order n with § > k — 1. Moreover, the weight of every SkD
function different from € is at most n — 2 and more generally, vxs(G) =n
(mod 2). Hence vxs(G) = n if and only if € is the unique SkD function of
G. The special case k = 1 was defined and investigated in [2], and has been
studied by several authors (see for example [1, 3]). Further information on
715(G) = vs(G) can be found in the monographs [5] and [6] by Haynes,
Hedetniemi, and Slater. We make use of the following result.

Proposition A. ({4]) Let G be a graph of order n and minimum degree
0 > k — 1. Then vs(G) = n if and only if for each v € V, there exists a
vertex u € N([v] such that d(u) = k — 1 or d(u) = k (this condition implies
0 <k).

Rall [7] has defined a variant of the domatic number of G, namely the
fractional domatic number of G, using functions on V(G). Analogous to the
fractional domatic number we may define the signed (j, k)-domatic number.

Let j > 1 be an integer. A set {fi, f2,..., fa} of distinct signed k-
dominating functions on G with the property that Zle fi(x) £ j for each
z € V(G), is called a signed (j, k)-dominating family on G. The maximum
number of functions in a signed (4, k)-dominating family on G is the signed
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(4, k)-domatic number of G, denoted by d;xs(G). The signed (j, k)-domatic
number is well-defined and d;rs(G) > 1 for all graphs G, since the set
consisting of any SkD function, for instance the function ¢, forms a signed
(4, k)-dominating family of G. A d;ks(G)-family of a graph G is a signed
(4, k)-dominating family containing d;xs(G) SkD functions.

Observation 1. Let G be a graph of order n. If v,5(G) = n, then € is the
unique SkD function of G and so djxs(G) = 1.

The following observations are consequences of Observations 1 and Propo-
sition A.

Observation 2. If G is a graph of order n and k = n, then G is the
complete graph and thus yxs(G) = n and djxs(G) = 1.

Observation 3. If G is a graph of order n > 2 and &k = n — 1, then
Ys(G) = n and so djrs(G) = 1.

Observation 4. If G is an r-regular graph and ¥ = r + 1 or r, then
7s(G) = n and d;xs(G) = 1.

Observation 5. Let £ > 2 be an integer, and let r = k- 1. If G is a
graph such that r < dg(z) < r + 1 for each = € V(G), then 1s(G) = n
and djxs(G) = 1.

Corollary 6. If P, is a path of order n, then v25(P,) = n and so
djas(Pn) = 1.

First we study basic properties of djxs(G). Some of them are extensions
of well-known results on the signed domatic number ds(G) = dy15(G) (cf.
(8], [10], [11], [12]), the signed k-domatic number dxs(G) = dixs(G) (cf.
[4]) and the signed (k, k)-domatic number diis(G) (cf. [9)).

Let C, be a cycle of length n. Volkmann and Zelinka [12] have shown
that ds(C,) = 3 when n is divisible by 3 and dg(C,) = 1 otherwise. For
k = 2,3, Observation 4 leads immediately to the next result.

Corollary 7. If C, is a cycle of length n, then v25(Cr) = 735(Cn) = n
and thus djzs(cn) J3S(Cn) =1.

The case k = 1 seems to be complicated. For example, d;15(C3) = 3
for each j > 1, dj15(Cy) = 4 for j > 2 and d;15(Cs) = 2 for j = 2 and
dj15(05) =5 for _7 > 3.

Proposition 8. If G is a graph of order n > 4 and k =n — 2, then
1 if §G)=n-30ré(G)=n-2,
n+1 if §(G)=n—-landj>n-1,
n if G)=n-landj=n-2,
j if (G)=n-landj<n-—2.

djks(G) =
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Proof. If 6(G) =n — 3 or 6(G) = n — 2, then it is easy to see that for each
v € V, there exists a vertex u € N[v] such that d(u) = k — 1 or d(u) = k.
It follows from Proposition A that v,s(G) = n, and hence Observation 1
implies that d;rs(G) = 1.

Now let §(G) = n — 1. Then G is the complete graph of order n and
obviously 1xs(G) = n — 2. Let {v1,v2,...,vn} be the vertex set of G.
Then the functions € and f; : V(G) = {-1,1} defined by fi(vi) = —1
and fi(z) = 1 for each vertex z € V(G) \ {v;} and each i € {1,2,...,n}
are the set of all signed k-dominating functions of G. If j > n — 1, then
clearly {e, fi | 1 <i < n} is a signed (4, k)-dominating family of G and so
dixs(G) =n+ 1. If j = n — 2, then obviously {f; | 1 < i < n} is a signed
(4, k)-dominating family of G and so djxs(G) > n. Since {¢, f; |1 < i <n}
is not a signed (3, k)-dominating family of G, we deduce that d;xs(G) = n.

Finally assume that j < n — 2. Obviously {f; | 1 < i < j} is a signed
(4, k)-dominating family of G and so djxs(G) 2 j. If {g1,92,...,9¢} is a
signed (3, k)-dominating family of G with £ > j, then we observe that there
exists a vertex v € V(G) such that g;(v) = 1 for each j or {g1,92,...,9¢} =
{e&,fi | 1 £ i < n}. In both cases we obtain Z§=1 gj(v) > j which is a
contradiction. Thus d;rs(G) = 7. (]

An independent setin a graph G is a set of pairwise nonadjacent vertices,
and the independence number, denoted by a(G), is the maximum size of
an independent set of vertices.

Proposition 9. If G is a graph of order n > 4 and k = n — 3, then
( 1 if a(G)=3ora(G)=4,

1 if a(G) =2 and there exists an a(G)—set {z,y}
such that max{d(z),d(y)} <n -3,
1 if a(G) = 2 and there exist two adjacent vertices

z,y such that max{d(z),d(y)} < n -3,
min{7,3} if a(G)=2, §(G)=n — 3 and for each two vert—
ices z,y with min{d(z),d(y)} = n — 3 we have
ma.x{d(:z:), d(y)} 2n-—2,
min{j,4} if «a(G) =2, §(G) =n —4 and for each two vert—
ices z,y with min{d(z),d(y)} = n — 4 we have
max{d(z),d(y)} 2 n -2,
n+l if §(G)=2n—-2andj>n-1,
n if 6(G)2n—-2andj=n-2,
{ J if §(G)2n—2andj<n-—2

djks(G) = ¢

Proof. Since 6(G) > k —~ 1 =n — 4, it follows that o(G) < 4. If a(G) = 4,
then v,5(G) = n, and Observation 1 implies that d;rs(G) = 1. If o(G) = 3,
then it is easy to see that for each v € V, there exists a vertex u € N[v]
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such that d(u) = k — 1 or d(u) = k. It follows from Proposition A that
7xs(G) = n, and hence Observation 1 implies that d;xs(G) = 1.

Let a(G) = 2 and assume that there exists an a(G)-set {x,y} such that
max{d(z),d(y)} < n — 3. Then each vertex v € V(G) — {z,y} is adjacent
to z or y. It follows from Proposition A that yxs(G) = n, and hence
Observation 1 implies that d;xs(G) = 1.

Let a(G) = 2 and assume that there exist two adjacent vertices z,y
such that max{d(z),d(y)} < n—3. If d(2) < n — 3 for some vertex z €
V(G) — Nlz], then the result follows from part two of this theorem. If
d(z) = n — 2 for each z € V(G) — Nz}, then each vertex is adjacent to =
or y and hence ¢ is the unique signed k-dominating function of G and so
diks(G) = 1.

Assume that a(G) = 2, 6(G) = n — 3 and for each two vertices z,y
with min{d(z),d(y)} = n — 3 we have max{d(z),d(y)} > n—2. Let z
be a vertex of minimum degree n — 3 and let V(G) — N[z] = {v1,v2}.
Clearly the functions € and f; : V(G) — {-1,1} defined by fi(v;) = -1
and f;(w) =1 for each vertex w € V(G) \ {v;} and each i € {1,2} are the
set of all signed k-dominating functions of G. Now it is easy to see that
djks(G) = min{j, 3}.

If (G) = 2, §(G) = n—4 and for each two vertices z, y with min{d(z),
d(y)} = n — 4 we have max{d(z),d(y)} > n — 2, then the result follows as
above.

Now let (G) > n—2. Then obviously 1xs(G) = n—2. If {v1,v2,...,vs}
is the vertex set of G, then the functions € and f; : V(G) — {~1,1} defined
by fi(vi) = —1 and f;(z) = 1 for each vertex € V(G) \ {v;} and each
i€ {1,2,...,n} are the set of all signed k-dominating functions of G. Now
an argument similar to that described in the proof of Proposition 8 proves
the result. O

2 Properties of the signed (j, k)-domatic num-
ber

In this section we present basic properties of d;xs(G) and sharp bounds on
the signed (j, k)-domatic number of a graph.

Theorem 10. If G is a graph of order n with minimum degree 6(G) > k—1,
then

'YkS(G) . djks(G) <j-n.
Moreover, if Yks(G)-djrs(G) = j-n, then for each d,ks(G) -family { f1, fo, - -
fd} with d = djks(G) on G, each function f; is a vks(G)-function and
Z,:l fi(z) =7 for all z € V(QG).
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Proof. If { f1, f2,..., fa} is a signed (3, k)-dominating family on G such that
d = djxs(G), then the definitions imply

d d
S ws@<Y S fi@)
i=1

i=1zeV(G)

d
o Y s Y i=j-n

zeV(G) i=1 z€V(G)

d-s(G)

If vs(G) - djks(G) = j - n, then the two inequalities occurring in the proof
become equalities. Hence for the d;rs(G)-family {f1, fa,..., fa} on G and
for each i, 3 ¢y (g) fi(*) = Yks(G), and thus each function f; is a vks(G)-

function and Y2, fi(z) = j for all z € V(G). 0
Theorem 11. If G is a graph with minimum degree 6(G) > k — 1, then
SEUGED)

Proof. Let {fi, f2,-..,fa} be a signed (4, k)-dominating family on G such
that d = djxs(G). If v € V(G) is a vertex of minimum degree §(G), then
it follows that

djks(G)

d
d-k = zksz . fil=)

i=1 i=1 z€N|[v]
d
= Y. > filz)
zEN[v] i=l

zEN(v]

and this implies the desired upper bound on the signed (j, k)-domatic num-
ber. a

The special cases j = k =1or j =1 or j = k of Theorems 10 and
11 can be found in [12] or {4] or [9]. The upper bound on the product
Ys(G) - djrs(G) leads to a bound on the sum.

Corollary 12. If G is a graph of order n with minimum degree 6(G) >
k —1, then
Yks(G) + djks(G) < jn+ 1.
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Proof. According to Theorem 10, we have

Yks(G) + djrs(G) St djrs(G).

(G)
Theorem 11 implies that 1 < d_,-ks(G') < M—GEL"'—Q < Jkﬂ Using these
inequalities, and the fact that the function g(z) = = + (jn)/z is decreasing
for 1 < £ < /77 and increasing for \/jn < (jn)/k, we deduce that

5(G) +dius(G) < max {n-+ 1,k + =in+

and the proof is complete. ]

Theorem 13. If a graph G contains a vertex v such that d(v) < k, then
djks(G) < J.

Proof. Let {f1, fa2,..., fa} be a signed (j, k)-dominating family on G such
that d = d;xs(G). Since 3.y, fi(z) 2 k and [N[v]| < k + 1, we deduce
that fi(z) =1 for each z € N[v] and each i € {1,2,...,d}. In particular,
fi(v) =1for each i € {1,2,...,d}. It follows that

d
djks(G) =d = _ fi(v) < j,

i=1
and this is the desired upper bound. O

Let j > 1 be an integer, and let n = j+4. If P, = r125...z, is a path
of order n, then define for 3 < ¢t < n— 2 the function f, : V(P,) = {-1,1}
by fi(z:) = —1 and fi(z) =1 for z € V(P,) \ {z:}. Then it easy to see
that {fs, f4,..., fa—2} is signed (4, 1)-dominating family on P,. Therefore
Theorem 13 implies that d;j;s(Pj+4) = j.

Let j > 1 be an integer, and let n = j + 5. Now let F}, be a fan with
vertex set {Z1,Zs,...,Z,} such that z;z5 ... 2,2, is a cycle of length n and
Zn, is adjacent to z; for each i = 2,3,...,n — 2. For 3 <t < n — 3 define
ft 1 V(FR) = {-1,1} by fi(z) = -1 and fi(z) =1 for z € V(F,) \ {z¢}.
Then it easy to see that {fs, fa, ..., fa—3} is signed (4, 2)-dominating family
on F;,. Therefore Theorem 13 implies that d;z5(F}45) = 7.

These two examples demonstrate that Theorem 13 is sharp.

Corollary 14. Let 1 < k < 2 be an integer. If T is a nontrivial tree, then
djks(T) < j, and if the diameter of T is at most three, then d;xs(T) = 1.

Proof. Theorem 13 implies d;xs(T) < j for k = 1,2. Now let f be a SkD
function of T'. If the diameter of T is at most three, then each vertex of T is
a leaf or a neighbor of a leaf and thus f(z) = 1 for every vertex z € V(T).
This shows that djrs(T) = 1. a
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The path P, with n = j+4 in the example above shows that the bound
d;j15(T) < j in Corollary 14 is sharp.

Let j > 2 be an integer, and let P = z,z,...z; be a path of order j.
Forl <i < jlet P; = usufu! and P! = v;v[v! be two paths of order 3. Now
let T be the disjoint union of P, P; and P/ such that z; is adjacent to u
and v] for 1 < i < j. Define for 1 < ¢ < j the function f; : V(T) — {-1,1}
by fi(z:) = —1 and fi(z) = 1 for z € V(T) \ {z:}. Then it is easy to
see that {f1, fa,..., f;} is signed (j, 2)-dominating family on T. Therefore
Theorem 13 implies that d;2s(T) = j.

This example demonstrates that the inequality d;j25(T") < j in Corollary
14 is sharp too.

As an application of Theorem 11, we will prove the following Nordhaus-
Gaddum type result.

Theorem 15. If j,k > 1 are integers and G a graph of order n such that
8(G) 2 k—1and §(G) 2 k—1, then

diks(G) + djxs(G) < J—(llkLll

Moreover, if djxs(G) + djis(G) = i(-"T’*'ll, then G is regular.

Proof. Since 6(G) > k —~1 and 6(G) > k — 1, it follows from Theorem 11
that

i6@) +1)  JEG) +1)
k k

=%wmna@+m

djks(G) +djxs(G) <

=%w@+m-mm—n+m

IA

J
k(n + 1)1

and this is the desired Nordhaus-Gaddum inequality. If G is not regular,
then A(G) — 6(G) > 1, and the above inequality chain leads to the better
bound djxs(G) + djrs(G) < &. This completes the proof. O

Theorem 16. If v is a vertex of a graph G such that d(v) is odd and k is
odd or d(v) is even and k is even, then

dixs(G) < I (d(w) + 1)
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Proof. Let {f1, f2,..., fa} be a signed (3, k)-dominating family on G such
that d = djxs(G). Assume first that d(v) and & are odd. The definition
yields to 3 . ¢y fi(z) 2 k for each i € {1,2,...,d}. On the left-hand
side of this inequality a sum of an even number of odd summands occurs.
Therefore it is an even number, and as k is odd, we obtain 3 c 1, fi(z) 2
k+1 for each ¢ € {1,2,...,d}. It follows that

d
dw)+1) = Y i= Y Y fil=)

z€N|v] z€N[v] i=1
d
= 2 2 @)
i=1 zeN|v]|
d
Y (k+1)=d(k+1),

i=1

v

and this leads to the desired bound.

Assume next that d(v) and k are even. Note that 3 i, fi(z) 2 &
for each ¢ € {1,2,...,d}. On the left-hand side of this inequality a sum of
an odd number of odd summands occurs. Therefore it is an odd number,
and as k is even, we obtain ZzeN[u] fi(z) 2 k+1foreachic€ {1,2,...,d}.
Now the desired bound follows as above, and the proof is complete. O

The next result is an immediate consequence of Theorem 16.

Corollary 17. If G is a graph such that §(G) and k are odd or §(G) and
k are even, then

J
. L — .
diks(G) < 7 (0(G) +1)
As an Application of Corollary 17 we will improve the Nordhaus-Gaddum

bound in Theorem 15 for some cases.

Theorem 18. Let k£ > 1 be an integer, and let G be a graph of order n
such that 6(G) > k—1 and §(G) > k—1. f A(G) — 6(G) > 1 or k is even
or k and §(G) are odd or k is odd and §(G) and n are even, then

diks(G) + dss(@) < J(_"ktl_)

Proof. If A(G) — 6(G) > 1, then Theorem 15 implies the desired bound.
Thus assume now that G is §(G)-regular.
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Case 1: Assume that k is even. If §(G) is even, then it follows from
Theorem 11 and Corollary 17 that

diks(G) + djks(G) < k+1(5(G)+1)+k(6(G)+1)
= k+1(6(G)+1)+k(n 5(G)=1+1)
< J(nzjl)’

If 5(G) is odd, then n is even and thus §(G) = n — §(G) — 1 is even.
Combining Theorem 11 and Corollary 17, we find that

dxs(G) +dns(@) < L(6(6)+1)+ L 1=(() +1)

J el Y
= E(n -4(G)) + m(&(G) +1)

jn+1)
< S5

and this completes the proof of Case 1.
Case 2: Assume that k is odd. If 6(G) is odd, then it follows from
Theorem 11 and Corollary 17 that

1
dis(G) +dsns(@) < 715 (06) +1) + Lm () < LD
If §(G) is even and n is even, then §(G) = n — §(G) — 1 is odd, and we
obtain the desired bound as above. O

Theorem 19. If G is a graph such that d;xs(G) is even for some odd j or
d;rs(G) is odd for some even j, then

dixs(6) < L2 (6(6) +1).

Proof. Let {f1, fa2,...,fa} be a signed (4, k)-dominating family on G such
that d = djks(G). Assume first that j is odd and d is even. If z € V(G)

is an arbitrary vertex, then Z,_l fi(z) < 7. On the left-hand side of this
inequality a sum of an even number of odd summands occurs. Therefore it
is an even number, and as j is odd, we obtain Y0, fi(x) < j — 1 for each
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z € V(G). If v is a vertex of minimum degree, then it follows that

d

d
d-k = Y k<> 3 fila)

i=1 i=1 zeN|v]

d
= X D filw)

IEN[U] i=1

< Y G-

zeN[v]
= (&) +1)(F-1),

and this yields to the desired bound. Assume second that j is even and
dis odd. If z € V(G) is an arbitrary vertex, then 21_1 fi(z) < 3. On
the left-hand side of this inequality a sum of an odd number of odd sum-
mands occurs. Therefore it is an odd number, and as j is even, we obtain
Z,_l fi(z) £ j —1 for each z € V(G). Now the desired bound follows as
above, and the proof is complete. O

If we suppose in the case j = 1 that dixs(G) = dis(G) is an even integer,
then Theorem 19 leads to the contradiction dis(G) < 0. Consequently, we
obtain the next known result.

Corollary 20. ({4]) The signed k-domatic number dis(G) is an odd inte-
ger.

The special case k =1 in Corollary 20 can be found in [12].

Theorem 21. Let j > 2 and k > 1 be integers, and let G be a graph with
minimum degree 6(G) > k — 1. Then djxs(G) = 1 if and only if for every
vertex v € V(G) the closed neighborhood N{[v] contains a vertex of degree
at most k.

Proof. Assume that N[v] contains a vertex of degree at most k for every
vertex v € V(G), and let f be a signed k-dominating function on G. If
d(v) < k, then it follows that f(v) = 1. If d(z) < k for a neighbor z of v,
then we observe f(v) =1 too. Hence f(v) =1 for each v € V(G) and thus
diks(G) = 1.

Conversely, assume that d;xs(G) = 1. If G contains a vertex w such
d(x) > k + 1 for each z € N[w] then for i = 1,2, the functions f; :
V(G) = {-1,1} such that fi(z) =1 for each z € V(G) and fo(w) = —
and fa(z) = 1 for each vertex z € V(G) \ {w} are signed k-dominating
functions on G such that fi(z) + fa(z) < 2 < j for each vertex z € V(G).
Thus {f1, f2} is a signed (j, k)-dominating family on G, a contradiction to
djxs(G) = 1. O
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Next we present a lower bound on the signed (7, k)-domatic number.

Theorem 22. Let j,k > 1 be integers such that j < k+ 1, and let G
be a graph with minimum degree 6(G) > k — 1. If G contains a vertex
v € V(G) such that all vertices of N[N[v]] have degree at least k + 1, then
djks(G) 2 5.

Proof. Let {u1,u2,...,u;} € N(v). The hypothesis that all vertices of
N[N[v]] have degree at least k + 1 implies that the functions f; : V(G) =
{-1,1} such that f;(u;) = —1 and f;(z) = 1 for each vertex z € V(G) \
{ui} are signed k-dominating functions on G for ¢ € {1,2,...,5}. Since
filz) + fa(z) + ...+ fi(z) < j for each vertex = € V(G), we observe that
{f1,f2,...,f;} is a signed (j, k)-dominating family on G, and Theorem 22
is proved. (]

Corollary 23. Let j, k > 1 be integers such that j < k+1. If G is a graph
of minimum degree §(G) > k + 1, then djrs(G) 2 j.

Theorem 24. Let j,k > 1 be integers such that j < k. If G is a (k + 1)-
regular graph of order n, then d;ks(G) = j.

Proof. Let f be an arbitrary signed k-dominating function on G. If we
define the sets P = {v € V(G)|f(v) =1} and M = {v € V(G)| f(v) =
—1}, then we firstly show that

P > [%izi)] &)

Because of 3 cni, f(z) 2 k for each vertex y € V(G), the (k + 1)-
regularity of G impllies that each vertex u € P is adjacent to at most one
vertex in M and each vertex v € M is adjacent to exactly k + 1 vertices in
P. Therefore we obtain

|P| > |M]|(k +1) = (n— |P|)(k +1),

and this leads to (1) immediately.

Now let {fi1, f2,..., fa} be a signed (3, k)-dominating family on G with
d = djks(G). Since Z‘;l fi(u) < j for every vertex u € V(G), each of
these sums contains at least [(d — j)/2] summands of value -1. Using this
and inequality (1), we see that the sum

d d
o Y=Y Y fil@ 2

zeV(G) i=1 i=1 zeV(Q)
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contains at least n[(d — j)/2] summands of value -1 and at least d[n(k +
1)/(k + 2)] summands of value 1. As the sum (2) consists of exactly dn
summands, it follows that

. [d%a] +d [%] < dn. 3)

and thus (3) leads to

n{d — j) + dn(k+1)
2 k+2
Since j < k, a simple calculation shows that this inequality implies d < j+2

and so d < j + 1. If we suppose that d = 7+ 1, then we observe that d and
7 are of different parity. Applying Theorem 19, we obtain the contradiction

< dn.

i1
j+1=d5‘7—r(k+2)<j+1.

Therefore d < j, and Corollary 23 yields to the desired result d = j. O

On the one hand Theorem 24 demonstrates that the bound in Corollary
23 is sharp, on the other hand Proposition 8 with §(G) = n—1 and j =
k = n — 2 shows that Theorem 24 is not valid in general when j = k.
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