A Note on Roman Bondage Number of Graphs

Saieed Akbari, Sahar Qajar

Department of Mathematical Sciences, Sharif University of Technology, School of Mathematics, Institute for Research in Fundamental Sciences, IPM, P.O. Box 19395-5746 Tehran, Iran.

Abstract

A Roman dominating function, (or simply RDF) on a graph G = (V(G), E(G)) is a labeling $f : V(G) \to \{0, 1, 2\}$ satisfying the condition that every vertex with label 0 has at least a neighbor with label 2. The Roman domination number, $\gamma_R(G)$ of G, is the minimum of $\sum_{v \in V(G)} f(v)$ over such functions. The Roman bondage number $b_R(G)$ of a graph G with maximum degree at least two is the minimum cardinality among all sets $E \subseteq E(G)$ for which $\gamma_R(G-E) > \gamma_R(G)$. It was conjectured that if G is a graph of order n with maximum degree at least two, then $b_R(G) \le n-1$. In this paper we settle this conjecture. More precisely, we prove that for every connected graph of order $n \ge 3$, $b_R(G) \le \min\{n-1, n-\gamma_R(G)+5\}$.

2010 Mathematics Subject Classification: 05C69, 05C78.

Keywords: Roman bondage number, Roman domination number.

1 Introduction

In this paper all graphs are simple. For a graph G, V(G) and E(G) denote the vertex set and the edge set of G, respectively. For a vertex u in V(G),

⁰ E-mail Addresses: s_akbari@sharif.edu (S. Akbari), sqajar@ipm.ir (S. Qajar).

N(u) denotes the set of its neighbors and we write d(u) = |N(u)|.

A subset $D \subseteq V(G)$ of the vertices of a graph G is a dominating set if every vertex of G-D has a neighbor in D. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set. A labeling $f:V(G) \to \{0,1,2\}$ is a Roman dominating function (or simply RDF), if every vertex u with f(u)=0, has a neighbor v with f(v)=2. Let (V_0,V_1,V_2) be an ordered partition of V(G), where $V_i=\{v\in V(G):f(v)=i\}$, for i=0,1,2. There is a one to one correspondence between all Roman domination functions and all ordered partitions (V_0,V_1,V_2) of V(G) with this property that each vertex of V_0 , has a neighbor in V_2 , and we write $f=(V_0,V_1,V_2)$. The weight of a Roman domination function f, denoted by u(f), is the value $\sum_{v\in V(G)} f(v)$, and the Roman domination number of G, denoted by $\gamma_R(G)$, is the minimum weight of a Roman domination function and such function is called a $\gamma_R(G)$ -function.

The bondage number, denoted by b(G), is the minimum cardinality among all sets $E \subseteq E(G)$ for which $\gamma(G-E) > \gamma(G)$. The Roman bondage number $b_R(G)$ of a graph G with maximum degree at least two, is the minimum cardinality of all sets $E \subseteq E(G)$ for which $\gamma_R(G-E) > \gamma_R(G)$. This concept introduced and studied for the first time in [3]. In [3], the authors introduced some upper bounds for $b_R(G)$ and proved that for any tree, T, then $b_R(T) \le 3$. These authors obtained some new upper bounds for the Roman bondage number of planar graphs too, see [4].

Fink et al [2] proved that for every graph G of order n, $b(G) \leq n-1$. Ebadi and PushpaLatha [1] conjectured that if G is a graph of order n with maximum degree at least two, then $b_R(G) \leq n-1$. In this paper it is shown that this conjecture is true. Also, we prove that for every connected graph of order $n \geq 3$, $b_R(G) \leq n - \gamma_R(G) + 5$.

2 Results

Theorem 1 If G is a connected graph of order $n \geq 3$, then

$$b_R(G) \le \min\{n-1, n-\gamma_R(G)+5\}.$$

Proof. Since G is connected and $n \geq 3$, there are three vertices $u, u_1, u_2 \in V(G)$ such that $u_1, u_2 \in N(u)$. Let E_u denote the set of all edges of G incidence with u. We have

$$\gamma_R(G - E_u) = \gamma_R(G - u) + 1 \ge \gamma_R(G).$$

If $\gamma_R(G) < \gamma_R(G-u) + 1$, then $b_R(G) \le d(u) \le n-1$. On the other hand, if $V_0 = N(u)$, $V_1 = V(G) \setminus (N(u) \cup \{u\})$ and $V_2 = \{u\}$, then $f = (V_0, V_1, V_2)$ is an RDF for G and so $\gamma_R(G) \le w(f) = n - |E_u| + 1$. Thus, $b_R(G) \le n - \gamma_R(G) + 1$ and $b_R(G) \le \min\{n-1, n-\gamma_R(G) + 1\}$.

So assume that

$$\gamma_R(G-E_u)=\gamma_R(G-u)+1=\gamma_R(G).$$

Let

$$D = \{ \{V_2, f = (V_0, V_1, V_2) \text{ is a } \gamma_R(G - u) \text{-function} \}.$$

We claim that $D \cap N(u) = \emptyset$. Toward a contradiction, let $w \in D \cap N(u)$. Since $w \in D$, there exists a $\gamma_R(G - u)$ -function $f = (V_0, V_1, V_2)$ in which f(w) = 2. Thus $(V_0 \cup \{u\}, V_1, V_2)$ is an RDF for G, a contradiction.

Let E_1 denote the set of all edges of G-u between u_1 and D. Since $D \cap N(u) = \emptyset$, $|E_1 \cup E_u| \leq n-1$. On the other hand, if $V_0 = (N(u) \cup N(u_1)) \setminus \{u, u_1\}$, $V_1 = V(G) \setminus (N(u) \cup N(u_1))$ and $V_2 = \{u, u_1\}$, then $f = (V_0, V_1, V_2)$ is an RDF for G and $\gamma_R(G) \leq w(f) \leq 4 + (n - |E_1 \cup E_u| - 1)$. Thus, $|E_1 \cup E_u| \leq n - \gamma_R(G) + 3$ and $|E_1 \cup E_u| \leq \min\{n-1, n-\gamma_R(G) + 3\}$.

If
$$\gamma_R(G-u) < \gamma_R(G-u-E_1)$$
, then since $\gamma_R(G-E_u-E_1) = \gamma_R(G-E_u-E_1)$

 $u-E_1)+1$, we find that

$$\gamma_R(G) = \gamma_R(G - E_u)
= \gamma_R(G - u) + 1
< \gamma_R(G - u - E_1) + 1
= \gamma_R(G - E_u - E_1),$$

and therefore $b_R(G) \leq \min\{n-1, n-\gamma_R(G)+3\}$.

So we can assume that $\gamma_R(G-u)=\gamma_R(G-u-E_1)$. Since every $\gamma_R(G-u-E_1)$ -function is an RDF for G-u and $\gamma_R(G-u)=\gamma_R(G-u-E_1)$, every $\gamma_R(G-u-E_1)$ -function is a $\gamma_R(G-u)$ -function. We claim that for every $\gamma_R(G-u-E_1)$ -function $f,\ f(u_1)=1$. Let $f=(V_0,V_1,V_2)$ be a $\gamma_R(G-u-E_1)$ -function. By the above argument and the definition of $D,\ f$ is a $\gamma_R(G-u)$ -function and $V_2\subseteq D$. Since $D\cap N(u)=\emptyset$, we conclude that $f(u_1)\neq 2$. If $f(u_1)=0$, then since f is a $\gamma_R(G-u)$ -function, u_1 should be adjacent to a vertex of D in $G-u-E_1$, a contradiction. Therefore $f(u_1)=1$.

Now, let

$$D' = \bigcup \{V_2, f = (V_0, V_1, V_2) \text{ is a } \gamma_R(G - u - E_1)\text{-function}\}.$$

Since every $\gamma_R(G-u-E_1)$ -function is a $\gamma_R(G-u)$ -function, we have $D'\subseteq D$.

Let E_2 denote the set of all edges of $G-u-E_1$ between u_2 and D'. We claim that there is no $z\in D'$ such that $\{u_1,u_2\}\subseteq N(z)$ in G-u. Toward a contradiction, assume that there is a vertex $z\in N(u_1)\cap N(u_2)\cap D'$ in G-u. Let $f=(V_0,V_1,V_2)$ be a $\gamma_R(G-u-E_1)$ -function such that f(z)=2. Since f is a $\gamma_R(G-u-E_1)$ -function, by the previous paragraph $f(u_1)=1$. Now, we conclude that $(V_0\cup\{u_1\},V_1-\{u_1\},V_2)$ is an RDF for G-u of weight $\gamma_R(G)-2$ and this is a contradiction. This shows that $|E_1\cup E_2\cup E_u|\leq n-1$. On the other hand, if $V_0=(N(u)\cup N(u_1)\cup N(u_2))\setminus\{u,u_1,u_2\},\ V_1=V(G)\setminus(N(u)\cup N(u_1)\cup N(u_2))$ and $V_2=\{u,u_1,u_2\}$, then $f=(V_0,V_1,V_2)$ is an RDF for G and so $\gamma_R(G)\leq w(f)\leq 6+(n-|E_1\cup E_2\cup E_u|-1)$. Thus,

 $|E_1 \cup E_2 \cup E_u| \le n - \gamma_R(G) + 5$ and this implies that $|E_1 \cup E_2 \cup E_u| \le \min\{n-1, n-\gamma_R(G) + 5\}$.

We claim that $\gamma_R(G-u-E_1)<\gamma_R(G-u-(E_1\cup E_2))$. By the contrary, suppose that $\gamma_R(G-u-E_1)=\gamma_R(G-u-(E_1\cup E_2))=\gamma_R(G)-1$. Similarly, as we did before, every $\gamma_R(G-u-(E_1\cup E_2))$ -function, is a $\gamma_R(G-u-E_1)$ -function and so it is a $\gamma_R(G-u)$ -function. Let $f=(V_0,V_1,V_2)$ be a $\gamma_R(G-u-(E_1\cup E_2))$ -function. Since f is a $\gamma_R(G-u-E_1)$ -function, $f(u_1)=1$ and f is a $\gamma_R(G-u)$ -function, $f(u_2)\neq 2$. If $f(u_2)=1$, then $(V_0\cup\{u_1,u_2\},V_1-\{u_1,u_2\},V_2\cup\{u\})$ is an RDF for G of weight $\gamma_R(G)-1$, a contradiction. If $f(u_2)=0$, then u_2 should be adjacent to a vertex u' of V_2 in $G-u-(E_1\cup E_2)$. On the other hand, f is a $\gamma_R(G-u-E_1)$ -function. So $u'\in D'$ and by definition of E_2 , $u_2u'\in E_2\cap E(G-u-(E_1\cup E_2))$, a contradiction. So the claim is proved.

We have
$$\gamma_R(G - E_u - (E_1 \cup E_2)) = \gamma_R(G - u - (E_1 \cup E_2)) + 1$$
 and so
$$\gamma_R(G) = \gamma_R(G - E_u)$$

$$= \gamma_R(G - u) + 1$$

$$= \gamma_R(G - u - E_1) + 1$$

$$< \gamma_R(G - u - (E_1 \cup E_2)) + 1$$

$$= \gamma_R(G - E_u - (E_1 \cup E_2)).$$

Thus $b_R(G) \leq \min\{n-1, n-\gamma_R(G)+5\}$. The proof is complete. \square

Corollary 1 If G is a graph of order n with maximum degree at least two, then $b_R(G) \leq n-1$.

Acknowledgements. The authors are indebted to the School of Mathematics, Institute for Research in Fundamental Sciences (IPM) for support. The research of the first author was in part supported by a grant (No. 90050212) from the School of Mathematics, Institute for Research in Fundamental Sciences (IPM). Finally, the authors would like to express their deep gratitude to the referee for her/his careful reading and valuable suggestions.

References

- K. Ebadi, L. PushpaLatha, Roman bondage and Roman reinforcement number of graphs, Int. J. Contemp. Math. Sceinces, 5 (2010) no. 30, 1487-1497.
- [2] J.F. Fink, M.S. Jacobson, L.F. Kinch, J. Robert, The bondage number of a graph, Discrete Math. 86 (1990) 47-57.
- [3] N. Jafari Rad, L. Volkmann, Roman Bondage in graphs, Discuss. Math. Graph Theory, to appear.
- [4] N. Jafari Rad, L. Volkmann, One the Roman Bondage Number of Planar Graphs, Graphs and Combin., 27 (2011) 531-538.