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Abstract

A Roman dominating function, (or simply RDF) on a graph
G = (V(G),E(G)) is a labeling f : V(G) — {0,1,2} satisfying
the condition that every vertex with label 0 has at least a neigh-
bor with label 2. The Roman domination number, yr(G) of G,
is the minimum of 3° .y g) f(v) over such functions. The Roman
bondage number br(G) of a graph G with maximum degree at least
two is the minimum cardinality among all sets E C E(G) for which
¥r(G — E) > vr(G). It was conjectured that if G is a graph of order
n with maximum degree at least two, then br(G) < n—1. In this pa-
per we settle this conjecture. More precisely, we prove that for every
connected graph of order n > 3, br(G) < min{n —1,n—vr(G) +5}.
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1 Introduction

In this paper all graphs are simple. For a graph G, V(G) and E(G) denote
the vertex set and the edge set of G, respectively. For a vertex u in V(G),
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N(u) denotes the set of its neighbors and we write d(u) = |[N(u)|.

A subset D C V(G) of the vertices of a graph G is a dominating set
if every vertex of G — D has a neighbor in D. The domination number of
G, denoted by ¥(G), is the minimum cardinality of a dominating set. A
labeling f : V(G) — {0,1,2} is a Roman dominating function (or simply
RDF), if every vertex u with f(u) = 0, has a neighbor v with f(v) = 2.
Let (Vo, V1, V2) be an ordered partition of V(G), where V; = {v € V(G) :
f(v) =1}, for i =0,1,2. There is a one to one correspondence between all
Roman domination functions and all ordered partitions (Vo, V3, V) of V(G)
with this property that each vertex of Vj, has a neighbor in V3, and we write
f = (Vo,V1,V2). The weight of a Roman domination function f, denoted
by w(f), is the value 3~ ¢y gy f(v), and the Roman domination number
of G, denoted by vg(G), is the minimum weight of a Roman domination
function and such function is called a yg(G)-function.

The bondage number, denoted by 5(G), is the minimum cardinality
among all sets E C E(G) for which v(G — E) > 4(G). The Roman bondage
number br(G) of a graph G with maximum degree at least two, is the min-
imum cardinality of all sets E C E(G) for which yg(G — E) > vg(G). This
concept introduced and studied for the first time in {3]. In (3], the authors
introduced some upper bounds for bg(G) and proved that for any tree, T,
then bp(T) < 3. These authors obtained some new upper bounds for the
Roman bondage number of planar graphs too, see [4].

Fink et al [2] proved that for every graph G of order n, b(G) < n — 1.
Ebadi and PushpaLatha [1] conjectured that if G is a graph of order n
with maximum degree at least two, then bp(G) < n— 1. In this paper it is
shown that this conjecture is true. Also, we prove that for every connected
graph of order n > 3, br(G) < n — yr(G) + 5.
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2 Results

Theorem 1 If G is a connected graph of order n > 3, then

br(G) < min{n — 1,n — vr(G) + 5}.

Proof. Since G is connected and n > 3, there are three vertices «, u;,us €
V(G) such that uj,us € N(u). Let E, denote the set of all edges of G
incidence with u. We have

Yr(G — Ey) =vr(G —u) +1 2 7r(G).

If yr(G) < Yr(G — u) + 1, then br(G) < d(u) < n—1. On the other hand,
if Vo = N(u), Vi = V(G)\(N(uv)U{u}) and V5 = {u}, then f = (Vo, V1, 2)
is an RDF for G and so yr(G) < w(f) = n — |Ey| + 1. Thus, bg(G) <
n—vr(G) +1 and bgr(G) < min{n — 1,n — vr(G) + 1}.

So assume that
Yr(G — Ey) = Yr(G — u) +1 = yr(G).
Let
D= U{Vg, f = (Vo,V1,V2) is a yr(G — u)-function}.

We claim that D N N(u) = @. Toward a contradiction, let w € D N N(u).
Since w € D, there exists a yr(G — u)-function f = (5, V4, V2) in which
f(w) = 2. Thus (Vo U {u}, V], V) is an RDF for G, a contradiction.

Let E; denote the set of all edges of G — u between u; and D. Since
DN N(u) =0, |[E, UE,| £ n—1. On the other hand, if Vo = (N(u) U
Nw)) \ {uv,u1}, i = V(G) \ (N(u) U N(u;)) and Vo = {u,u1}, then
f = (Vo, V1, V2) is an RDF for G and vr(G) < w(f) < 4+(n—|E1UE,|-1).
Thus, |[EyUE,| < n—yr(G)+3 and |E,UE,| < min{n—1,n—vr(G)+3}.

If yr(G — u) < yr(G — u — Ey), then since ygr(G — E, — E1) = yr(G —
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u—E;) + 1, we find that

7r(G) = vr(G - E.)

= R(G-u)+1
< MWw(G-u-E)+1
= r(G - E. - Ey),

and therefore bg(G) < min{n — 1,n — yg(G) + 3}.

So we can assume that yg(G — u) = Yp(G — u — E;). Since every
Yr(G—u~—E)-function is an RDF for G—u and yg(G—u) = yr(G—u—E,),
every Yr(G — v — Ep)-function is a yg(G — u)-function. We claim that for
every Yr(G — u — Ej)-function f, f(u1) = 1. Let f = (Vp,V4,V2) be a
Yr(G — u — E))-function. By the above argument and the definition of D,
f is aypr(G—u)-function and V2 C D. Since DNN(u) = @, we conclude that
f(u1) # 2. If f(uy) =0, then since f is a yp(G — u)-function, u; should
be adjacent to a vertex of D in G — u — Ej, a contradiction. Therefore

flur) =1

Now, let
D' = U{Vza f=(Vo,1,V2) is a yr(G — u — E))-function}.

Since every Yr(G — u — Ei)-function is a ygr(G — u)-function, we have
D' C D.

Let E; denote the set of all edges of G —u — E; between us and D’. We
claim that there is no z € D’ such that {u1,us} C N(z) in G—u. Toward a
contradiction, assume that there is a vertex z € N(u;)NN(uz)ND’ in G—u.
Let f = (Vo, 1, V2) be a Yr(G —u— E,)-function such that f(z) = 2. Since
f is a yr(G — u — E) )-function, by the previous paragraph f(u;) = 1. Now,
we conclude that (Vo U {u;1}, Vi — {¢1},V2) is an RDF for G — u of weight
Yr(G)—2 and this is a contradiction. This shows that |[E;UE,UE,| < n—1.
On the other hand, if Vo = (N(u) U N(u1) U N(up)) \ {v,u1,u2}, V) =
V(G)\ (N(u) UN(u1) U N(uz)) and Va = {u,u1,us}, then f = (Vo, 1, V2)
is an RDF for G and so yr(G) < w(f) < 6+ (n—|E UE;UE,|—1). Thus,
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|Ey U Es U Ey| < n—vg(G) + 5 and this implies that |E, U E, U E,| <
min{n — 1,n — vr(G) + 5}.

We claim that yg(G —u—E}) < Yyr(G—u—(E1UE3)). By the contrary,
suppose that yr(G—u—E;) = yp(G—u~(EUE)) = vr(G)—1. Similarly,
as we did before, every yp(G —u— (E1 U E3))-function, is a yp(G —u— E))-
function and so it is a yr(G — u)-function. Let f = (Vo,V1,V2) be a
Yr(G — u — (Ey U Ey))-function. Since f is a yr(G — u — E;)-function,
f(w) =1 and f is a yr(G — u)-function, f(ug) # 2. If f(u2) = 1, then
(Vou{u1,uz}, V) — {u1,u2}, VoU{u}) is an RDF for G of weight vz(G) -1,
a contradiction. If f(u2) = 0, then ug should be adjacent to a vertex u’ of
V2 in G—u—(E,UE;). On the other hand, f is a yr(G —u— E;)-function.
So w' € D’ and by definition of Es, ugu’ € Eo N E(G —u — (E1 U E)), a
contradiction. So the claim is proved.

We have y7r(G — E, — (Ey UE2)) = yr(G —u — (E; U Ep)) +1 and so

Yr(G) = 7r(G - E.)
= r(G—-u)+1
= v(G-u—-E)+1
< Yr(G—-u—(EyUEy))+1
= vgr(G - E, — (E; U Ey)).

Thus bp(G) < min{n — 1,n — yg(G) + 5}. The proof is complete. O

Corollary 1 If G is a graph of order n with mazimum degree at least two,
then bp(G) <n -—1.
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