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Abstract Let G = (V, E) be a simple graph, I(G) its incidence matrix.
The incidence energy of G, denoted by IE(G), is the sum of the singular
values of I(G). The incidence energy IE(G) of a graph is recently pro-
posed quantities. However, IE(G) is closely related with the eigenvalues
of the Laplacian and signless Laplacian matrices of G. The trees with the
maximal, the second maximal, the third maximal, the smallest, the second
smallest and the third smallest incidence energy were characterized. In
this paper, the trees with the fourth and fifth smallest incidence energy are
characterized by quasi-order method and Coulson integral formula, respec-
tively. In addition, the fourth maximal incidence energy among all trees
on n vertices is characterized.

1 Introduction

Let G be a simple graph with order n. Let A be the adjacency matrix
of G with eigenvalues A\; > Ay > .-+ 2 An.
The energy of G is defined as

n
E(G) =) _ I\l
i=1
This quantity has a clear connection to chemical problems and for more
details on graph energy see the reviews (17,19,28]. Nikiforov [27] recently
extended the concept of energy to all (not necessarily square) matrices,
defining the energy of a matrix M as the sum of the singular values of M.
Recall that the singular values of a matrix M are equal to the square roots
of the eigenvalues of the (square) matrix MM?*.
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In line with Nikiforov’s idea, Jooyandeh et al. [23] introduced the
incidence energy IE(G) of a graph G, IE(G) was defined as the energy of
its incidence matrix J(G). More details on incidence energy can be found
in (1,2,5,8,9,15,16,21,22].

Let D(G) = diag(dy,da,- -+ ,d,) be the diagonal matrix of vertex de-
gree. The Laplacian matrix L(G) of G is L(G) = D(G) — A(G) with
eigenvalues py > p2 > -+ 2 fin, and the signless Laplacian matrix L¥(G)
of G is L*(G) = D(G) + A(G) with eigenvalues p1+ > pot >+ > pn™.
All eigenvalues of both L(G) and L*(G) are real and non-negative.

The Laplacian-like energy LEL(G) of a graph G, introduced in [20],
is the sum of the square roots of eigenvalues of its Laplacian matrix, i.e.,

LEL(G)=)_ &

J=1
The following results are well known [11,16,25,26]:

Lemma 1.1 The spectra of L(G) and L*(G) coincide if and only if the
graph G is bipartite.

Lemma 1.2 If IE(G) is the incidence energy of a bipartite graph G, and
M1, B2, - - , o are the eigenvalues of the Laplacian matrix of G, then

IE(G) =) &, = LEL(G).
j=1

In other words, for bipartite graphs the incidence energy IE and the
Laplacian-like energy LEL coincide.

Since trees are bipartite, any result on LEL(G) on trees is automati-
cally applicable for TE(G).

Denote by 9(G, =) the characteristic polynomial of the Laplacian ma-
trix of the graph G. It is known [24] that this polynomial is of the form

n
¥(G,z) = det(zl — L) =Y (~1)¢;(G)z",
J=1
where ¢;(G) > 0.
The characteristic polynomial of the adjacent matrix A of a graph G
is called the characteristic polynomial of G, denoted by
#(G,z) =det(z] —A) =z" + 12" +--- + ap.
It is well-known that the characteristic polynomial of a bipartite graph G
takes the form
n/2] (n/2]
(G, z) = Z azjz""zj = Z (—l)jsz:t"_zj,
i=1 J=1

where by; = (—1)7ag; and by; > 0 for all j = 1,--.,|n/2], especially
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bo = ap = 1. Moreover, the characteristic polynomial of a tree T can be

expressed as
(n/2] ) )
¢(T,z) = Y_ (-1)/m(T, j)z""%,
i=1
where m(T, 7) is the number of j-matching of T'.
For LEL(G) and E(T), Gutman et al. [14] obtained the Coulson
integral formulas as:

+o0 n
LEL(G) = /0 n[> " ¢;(G)a% g’;,

j20
o YL Lo/
B(T) =2 / = In( Y m(T,5)z%)da.

0 j=0

Let s(G) be a subdivision graph of the graph G, which is obtained by

inserting an additional vertex into each edge of G. A connection between

the number of j-matching of s(T") and coefficients ¢;(T’) of the polynomial
¥(G, z) was the following:

Lemma 1.3[6] Let T be a tree on n vertices. Then m(s(T); j)} = ¢;(T) for
0<j<n

For two trees T} and T, of the same order n, by using the Coulson
integral formula and the above results, we have that if m(T1,j) < m(T3,7)
for all j =1,---,|n/2], then E(T1) < E(T3), if there exists at least one
index jj, such that m(T, j1) < m(T2, j1), then E(Ty) < E(T?); if ¢;(Th) <
cj(TZ) or m(s(Tl)aJ) < m(S(Tg),]) for allg = 13 v )n—lx then LEL(TI) <
LEL(T,), thus TE(T,) < IE(T); if there exists at least one index j; such
that ¢;, (T1) < ¢;,(T2) or m(s(T1),j) < m(s(Tz), j), then IE(Ty) < IE(T3).

Let ® be a forest, p(®) be the product of the numbers of vertices in
the components of ®. Then ¢;(G) can be computed in the following way.

Lemma 1.4(24] The coefficients c; of the polynomial ¥(G,z) are given by
the formula ¢; = 3" p(®) for 1 < j < n; where the summation is over all
sub-forests ® of G’ which have j edges.

Denote by Sy,,n, be the double star on n vertices (n = ny + na +
2,my 2 ny > 1) obtained by adding an edge between the centers of Sy, 41,
and Sp,+1. Let T, n,n, be a tree on n vertices obtained from the path
P; = ujusuz by adding ny, ng, n3 pendant edges on u,, up, us, respectively,
where n; + ng + n3 + 3 = n, and ny,nz > 1.

Among the trees, it has been known [16] that the path P, has maxi-
mum incidence energy and that the star S, has minimal incidence energy.
Recently Tang and Hou [29) characterized the trees with the second small-
est, the third smallest, the second maximal and third maximal incidence

95



energy among all trees on n vertices. These results can be stated as:

Lemma 1.5[16,29] If T is a tree on n > 6 vertices, and T # Sy, Sn—-3,1,
Sn_4'2, then IE(T) > IE(Sn_‘q,z) > IE(Sn_a,l) > IE(S,).

In this paper, we characterize the trees with the fourth smallest, the
fifth smallest and the fourth maximal incidence energy among all trees on n
vertices by quasi-order method and Coulson integral formula, respectively.

2 The fourth smallest incidence energy

The following o-trans formation can transform every tree which is not

a star into a double star. The definition of o-transformation and some
known results were given in the following.

Let up be a vertex of a tree T of degree p+ 1. Suppose that ugu; ,ugus,

-+, uglp are pendant edges incident with g, and that v is the neighbor

of up distinct from uj,us, - ,up. Then we form a tree T* = (T, up) by
removing the edges uoui,uou2,- - ,uoup from T and adding p new pen-
dant edges voui,vousz,- - ,Yup incident with vo. We say that T* is a

o-transformation of T.

Lemma 2.1(4] Let T is not a star and T* = (T, uo) be a o-transformation
of a tree T of order n. Then ¢;(T) > ¢;(T*) for 2 < j < n— 2, and
¢j(T) =cj(T*) for j =0,1,n —1,n.

Lemma 2.2(29] If n; > ny > 1, Then ¢;(Sn,,n,) > ¢j(Sn,+1,np—-1) for

2<j<n—-2, and ¢;(Sn,,n,) = €j(Sny41,my—-1) for j =0,1,n -1, n.

Lemma 2.3[23] For any graph G, IE(G) = 1E(s(G)), where E(s(G)) is
the energy of its subdivision graph s(G).

Now we give the following observations which are used in the subse-
quent arguments.

Lemma 2.4 (1) If n > 10, then Cj(T _4,0,1) > Cj(Tl,n_5,1) fora<j<
n-— 2; Cj(Tn_q,o,l) = Cj(Tl.n—S,l) for J = 0, 1,2, 3,n - l,n.

(2) If n > 10, then ¢;(Sn—5.3) = ¢;(T1,n-5,1) and there exists at least one
index j; such that Cj, (Sn_5'3) > ¢y, (Tl,n—S,l)-

Proof. By lemma 1.4, we have

Tason) = G+0 ("7 )+ G+ (501 ) w2 (311
+2j( ?:f)+(j+1)(;:; ) +2j( ;:;)



+36-0 (25 ) +6+n (575 )=+ ("7*)
+e+n (521 ) +@-a (505 ) +a+n(505).

Cj(Tl,n—5,1)=(j+1)( 35)+(‘7+1)( f)+2j(j"1)
+2j( ;‘:i’ ) +(j.|.1)( ;‘:f ) +(J'+1)( ?:g )+2j( ?:g)

.h

¢j(Sn-s,3) = (J-l-l)( J5>+(j+1)(’;:f)+3x2j(;:
;

: )+(j+1) .:

(J+1)(“J5) +ai+y (02
+(7J—5)(;_g)+(]+1)(;1___ )
S0 65(Tn-ao) = &s(Tinest) = -3 ( F23),

¢i(Sn-53) = ¢3(Tin-5,1)= - 1)( it ) +6-9(527)

+(j—7)(§i§ )

Thus we have that if n > 10, then ¢;(Th_40,1) > ¢j(T1,n-5.1) for
4<j<n—-2¢j(Th-401) = ¢j(Th,n-5,) for 5 =0,1,2,3,n —1,n. And
for n > 10,

-5 -5
x(Sn-sa) = ealTinos) =( 77 ) =3( 5% ) >0
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n 5

-2

c3(Sn-5,3)—ca(Ti,n-5,) =2 > 0;

N
:
O’\

o l

= /"\/\
"“I
\—/v

—5
c4(Sn-5,3) — c4(T1,n—5,1) =3 ( ) ( n 9 ) >0;
¢5(Sn—5,3) — cs(T1,n—5,1) =4 ( n Z 5 ) 2 ( n ; 5 ) >
CG(S—53)_CG(Tln—51)=5(ngs)+(n 5) n-3—5 2> 0;
¢j(Sn-5,3)—¢j(T1,n-s5,1) > 0for 7 < j < n—2and ¢;(Sn-53)—¢j(T1,n-5,1) =

Oforj=0,1,n-1,n.

Thus we have that if n > 10, then ¢;(Sn-5,3) 2> ¢;(T1,n—5,1) and there
exists at least one index j; such that ¢;, (Sn—53) > ¢;,(T1,n-5,1)-

The proof now is complete.

Combine Lemmas 1.1, 1.2 and 2.4, we have the following result.

Theorem 2.5 If n > 10, then IE(Th_40,1) > IE(T1n-5,1) and
IE(Sn_s,a) > IE(TI,,,_5,1).

Lemma 2.6 If n > 8 and ny > ny > 0, then m(s(Tn,.nyns);7) >
m($(Tn—1,n14+1,n5); J) for 2< j < ny+np+n3+1, and
M($(Thz,n1,n)i 7) = MAS(Tna=1,m,+1,n5)55) for j =0,1,n1 + nz +n3 + 2.

Proof. Suppose I' is a graph with a vertex v; of degree 1, and let vy be
the vertex adjacent to v,. Let I'; be the induced subgraph obtained by
removing v;, and I';; the induced subgraph obtained by removing {v1,v2}.
Obiviously m(T'; j) = m(T'y;5) + m(Ty2; 5 — 1). Thus from Fig.1, we have
m(s(Tﬂm"x.na) .7) m(s(Tnz l,n;+1,n3) .7) 7""'(6"91z - 1) m(GIOJ - 1)
By some computations,

i3 ("M ) (o)

i-1 j—2
+ny n3+n1—_1+n2—1+1 +ng n3—1+n.1+n2—1+1
i—2 J=2
+ nany ( n3—1+n.1—1+n2—1 ),
ji—3
m(Guij=1) = (TR TIAL)

- - -1
e (BT e ()

—14mny— ~1
+n3(n2—1)( na +T;-1_31+n2 ),

m(s(Tnz.nx.ns;j)) - m(s(Tnz—l,ﬂx'i'l;"a;j))



=(ny —-n2+2)(

+ (n1 —n2+l)n3 (

So m(S(Tn, R ,ns);

n +ng +ng —

ny+ne+nzg—2
ji-3

)en

ji—2

ny+ng+n3—3

)

7) > M($(Tny—1,n, 41,5 ) 7) for 2 < j < my +mp +

n3z + 1 and m(s(Tng,n,,na);j) = m(s(Tn,_l,mH,ns);j) for j =0,1,n1 +

ng +ng + 2.

Ga'[vzov:s' G;-{u,, Vg }
n,
\\"'//
\/
7 \V
II'J
eé* e R
7.\ A G AN
G. n,-1 n, 8 n,-1
6'v4 Gf‘d}
n, n
A\ £
AN~ o ‘7. AR A
* n, G, nsl

Fig.1

Combine Lemmas 1.1, 1.3 and 2.6, we have the following result.



Theorem 2.7 If n > 8 and n; > ns > 0, then
IE(Tnz.‘nl.ﬂs) > IE(Tnz—l,nx-i-l.ns)'

n-6

n-5

Fig.2

Lemma 2.8 If n > 8, then m(s(S,-5,3); j) < m(s(T1,n-62);5) for 2 <
§ < n—2 and m(s(Sa—5,3); §) = m(5(Tins,2); §) for j = 0,1,n - 1, 7.

Proof. By similar argument as in Lemma 2.8, from Fig.2, we have
m(s(T1,n-6,2); 7) — M(s(Sn-5,3); J) = m(Gra;j — 1) = m(G11;5 — 1).

Sincem(Glz;j"l):( ?:f ) + ( ?:; ) +(n—6)( 1;:;1)

+2( ?:; )+2( ;‘:g ) +2(n—6)( ;.‘:g )



and m(G1y;j — 1) = ( P ) +("’5)( i )

then we have m(s(T1,n—s6,2);J) — M(5(Sn-53);7) = 2 ( ?:;

n—-95 n—6
+2< i—3 ) +2(n—6)< i—3 )
Thus if n > 8, then m(s(Sn-5,3);7) < M(s(Tin-g,2);J) for 2<j <
n — 2, and m(s(Sn-s,3);J) = Mm(s(T1,n-6,2);7) for j =0,1,n —1,n. This
complete the proof of the lemma.
By Lemmas 2.3 and 2.8, we can get the following result.

Theorem 2.9 If n > 8, then IE(S,—s53) < IE(T1 n-62)-

Any tree with the diameter greater than 4 can be transformed to the
tree with the diameter equal to 4 by o-transformation. By Lemma 1.1
and Lemma 2.1, the diameter of the fourth smallest and the fifth smallest
incidence energy among all trees on n vertices would be no more than 4.
Thus we have the following theorem which is our main result in this section.

Theorem 2.10 If T is a tree on n > 10, and T # Sp,Sn-3,1,5n-4,2
Tl,n_5,1, then IE(S.") < IE(S _3,1) < IE(Sn_.;,z) < IE(Tl,n—s,l) <
IE(T), i. e., Tin—5, is the unique tree with fourth smallest incidence
energy among all trees on n vertices. The fifth smallest incidence energy
among all trees on n vertices must be one of the trees T,_4,0,1 and S,_53.

For T_40,1 and Sp_s3, if n > 9, then Cg(Sn_s_g) - CQ(Tn_,;,o_l) =
n—8 > 0, but Cn_z(sn_a';;) - C(n—2)(Tn-4,0.1) = —4 < 0. Thus the
fifth smallest incidence energy among all trees on n vertices can not be
determined by means of the above quasi-order method.

3 The fifth smallest incidence energy

Recently this quasi-order-incomparable problem was solved by means
of the Coulson integral formula combined by methods of real analysis, al-
gebra and combinatorics(3]. In this section, we will employ this method to
get the fifth smallest incidence energy.

The following lemmas are well-known results which will be found in
(3,6,10].

Lemma 3.1[10] Let G be a forest and e = uv be an edge of G. The
characteristic polynomial of G satisfies ¢(G,z) = ¢(G —e,z) — ¢(G —u —
v, z).
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Lemma 3.2[3] If G; and G are two graphs with the same number of
vertices, then E(G;) — E(G;) = _1_ /+°° lo ¢(Gl,ix)dx
’ ’ YT e EHCriD)

Lemma 3.3[6] If G is a graph with n vertices and m edges then ¢(S(G), z) =
™ "Y(G, z2).

s o

z-~:~<. o
—— L o S )
n—5 l‘]l n-4 n

Fig.3

By some calculation, their characteristic polynomials can be expressed
as follows.

Lemma 3.4 ¢(S(Tn-4,3),2) = (z* — 1)¢(S(Tns,3), 7)
—z(z? - 1)"~*(2® — 62 + 62% — 1) and ¢(S(Tn-30,1),2)
= (22 = 1)¢(S(Tn-1,01), %) — 2(22 — 1)*~4(2® — 5z + 622 — 1).

Proof. By Lemma 3.1 and Fig.3, we have that ¢(S(Tp-4,3), ) = z¢(T1, T)—
$(5(Tn-5,3), z), and $(I'1,z) = 2¢(S(Tn—s5,3), z) — 6(T}, z).
So ¢(S(Tn-—4,3)9$) = (x2 - 1)¢(S(Tn_5,3),.’8) - m¢(r,la .'B) and
$(8(Tn-3,0,1),7) = (2% — 1)¢(S(Tn-4,0,1), T) — (T3, 7).

By some simple calculation, ¢(T'}, z) = (22 — 1)"~4(2 — 624+ 622 —1)
and (T, z) = (22 — 1)"~4(z® — 5z* + 622 — 1).

Thus we have the above result,.

Before showing the main result, we give some useful lemmas. For
brevity, we let
fi(n,z) =22 + 01 (Tr-4,0,1)22" 3 + co(Tn-g,0,1)22" 5 + - - -
n

+en—1(Th-4,0,1)T = Zo ¢j(Tn-a,0,1)z %1,
Jj=
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f2(n,z) = z2l 4 cl(Sn—5,3)-’B2n—3 + Cz(Sn_5,3);1:2"_5 + ...
L .
+Cn—-1(Sn—53)T = z:ocj(sn_s’a)xzn—Z)—l.

o (5(Tamsa)iin) _ fima),
¢(S(Tn—4,0.1)1 2.'11) f2(n1 x) ’

It is easy to verify that

$(S(Tn-4,3), i)

¢(S(Tn—3,0,l)’ Z:E)
(@2 +1)fi(n,z) + (2 +1)" (b + 62 + 622 4+ 1)
T (22 + 1) fa(n,z) + 2(x2 + 1)" (26 + 5zt + 622 + 1)

Lemma 3.5 For n > 7 and = > 0, we have
¢(S(Th-4,3), ) > #(S(Ta—s53),1x) that is fHiln+1,z) _ faln, fl").
H(S(Tn-301),ix) =~ (S(Tn-40,1),1z)’ " faln+1,x) T faln,z)

H(S(Tn-4,3),5x) _ H(S(Th-s,3),1Z)
(S(Tn-3,0,1),iz) = #(S5(Tn-4,0,1), %)
(z8 + 6z* + 622 + 1) fo(n,z) > (28 + 5z* + 62% + 1) fi(n, 7).

Let g2(n, z) = (2% 4+ 6z% 4 622 + 1) f2(n, z) and gy (n, x) = (z& +5z* +
6x% +1) f1(n, z), use k; to denote coefficient of z2"~%~! which is in g; and
k;- to denote coefficient of £2"~2/=! which is in gs.

By the proof in Lemma 2.4 and some calculation, we have

K = (683+101)( ; )+(47J+43)(" f)

+(12j+10)( §>+(J+1)(7J‘ 4 +(42]+94)( +f)
)

)

+(11j+34)( j;;‘ )+(j+4 (?+§ );
=(68j+71)(n34)+(47.7+15)(n f)
+(12j+6)('? >+(.7+1)(n 4>+(42]+84)(.7+11)

+(111+33)( "+g )+(j+4)( ;?+3 ) Thus

' n—4 n—4 n—4 n—4
kj—k,-—30( j )+28(j—-1)+4(j 2)+10(J+1)

Jj+2

So if z > 0. then go(n,z) — g1(n,z) > 0, that is,

(2 + 1) fi(n, z) + z(z? + 1) (28 + 62% + 622 + 1) _ fi(n,x)
(22 + 1) fa(n,z) + z(22 + 1)" " H (26 + 5zt + 622 + 1) ~ fa(n,z)’

, we only to prove

Proof. To prove
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Theorem 3.6 For n = 8,9,10, we have JE(T,_53) < IE(Tp-4,0,1); for
n > 11, we havw IE(T,,_53) > IE(Th-4,0,1).

Proof. Let h(n) = IE(Th_5,3) — IE(Tn-4,0,1), consider the following
equation

fl('n,:z:) —

f2(n7 x)

2271+ €1(Tn—4,01)2%" "2 + co(Tn-4,01)2* 5 + - - - + cre1(Tn-g,0,1)
z27=1 + ¢1(Sn-5,3)22"3 + c2(Sn_5,3)x?" "5 + - - - + p—1(Sn-53)T

fl (n) x) fl (Tl, _x)
have = . By Lemmas 2.3, 3.2 and 3.5, we have
M Ralniz) T Folm,—m) Y

h(n) = IE(Th-5,3) — IE(Th—4,0,1) = %E(S(Tn_s,;;)) - %E(S(Tn_.;,o,l))

_ 1 [ 4(S(Tn-sa)iz) 1 [*°.  fi(n,z)
= o /.w o8 S (S (Tcaon) ie) "~ 7 /o o8 . (moz) =

1 f*e fl(n — l’x)
> ;L log mdx.

Thus we have h(n) > h(n —1).
By some computer-aided calculations, we obtain that
h(10) = IE(Ts,3)) — IE(T6,0,1) = 11.3591 — 11.3606 = —0.0015;

h(11) = IE(Ts3)) — IE(T70,1) = 12.5344 — 12.5284 = 0.006.
The proof is thus complete.

4 Thg fourth maximal incidence energy

v G ’—I—‘“..—.

P, T2
T3 T4
P 0(21 6r n'g)
Fig.4
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Let T3, T3 and T4 be trees in Fig.4.

Lemma 4.1{29] If T is a tree on n > 6 vertices and T # Py, T3, T3, then
IE(P,) > IE(T?) > IE(T3) > IE(T).

Lemma 4.2[3] If n > 14, then the fourth maximal energy tree of vertices
n is the tree P,(2,6,n —9).

Combined with Lemmas 2.3, 4.1 and 4.2, we easily get the following
result.

Theorem 4.3 If T is a tree on n > 8 vertices, then the fourth maximal
incidence energy tree of vertices n is the tree Ty.
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