Construction of super edge-connected multigraphs with prescribed degrees*

Xianglan Cao^{1,2}, Yingzhi Tian², Jixiang Meng²

1 Department of Mathematices College of Science, Shihezi University,
Shihezi, Xinjiang Province, 832000, P.R.China

2 College of Mathematics and System Sciences, Xinjiang University,
Urumqi 830046, P.R.China

Abstract. Let G=(V,E) be a connected multigraph with order n. $\delta(G)$ and $\lambda(G)$ are the minimum degree and edge connectivity, respectively. The multigraph G is called maximally edge-connected if $\lambda(G)=\delta(G)$ and super edge-connected if every minimum edge-cut consists of edges incident with a vertex of minimum degree. A sequence $D=(d_1,d_2,\cdots,d_n)$ with $d_1\geq d_2\geq \cdots \geq d_n$ is called a multigraphic sequence if there is a multigraph with vertices v_1,v_2,\cdots,v_n such that $d(v_i)=d_i$ for each $i=1,2,\cdots,n$. The multigraphic sequence D is super edge-connected fi there exists a super edge-connected multigraph G with degree sequence D. In this paper, we present that a multigraphic sequence D with $d_n=1$ is super edge-connected if and only if $\sum_{i=1}^n d_i \geq 2n$ and give a sufficient and necessary condition for a multigraphic sequence D with $d_n=2$ to be super edge-connected. Moreover, we show that a multigraphic sequence D with $d_n=2$ to be super edge-connected.

Keywords: Super edge-connected, degree sequence, multigraphic sequence.

1 Introduction

Let G=(V,E) be a finite multigraph without loops with vertex set V(G) and edge set E(G). The set $N(u)=\{v:uv\in E(G)\}$ is called the neighborhood of the vertex u, and the set $N[u]=N(u)\cup\{u\}$ is called closed neighborhood. For a subset S of V, N(S) denotes the neighborhood of S, i.e., $N(S)=\bigcup_{u\in S}N(u)\setminus S$, and N[S] denotes the closed neighborhood of S, i.e., $N[S]=\bigcup_{u\in S}N[u]$. The degree of vertex u is d(u)=|N(u)| and minimum degree of G is $\delta(G)=\min\{d(u):u\in V(G)\}$. For two vertex sets $V_1,V_2\subseteq V(G),\ [V_1,V_2]_G$ is the set of edges with one end in V_1 and the other end in V_2 . The girth g(G) of the multigraph G is the length of

^{*}Corresponding author. Email: caoxianglan99@sina.com (X.Cao).

its shortest cycle if G contains cycles, define $g(G) = +\infty$ otherwise. The length of a longest cycle of G is denoted by c(G). We use $\lambda(G)$ to denote the edge-connectivity of G. In a multigraph G, subdivision of an edge uv is the operation of replacing uv with a path $u\omega v$ through a new vertex ω . The notation $\lfloor \frac{r}{s} \rfloor$ represents an integer which satisfies $\frac{r}{s} - 1 < \lfloor \frac{r}{s} \rfloor \leq \frac{r}{s}$, where r and s are integers. For example, $\lfloor \frac{5}{2} \rfloor = 2$. For notation and terminology not defined here, we refer to [4].

A network can be conveniently modeled as a graph G=(V,E), with vertices representing nodes and edges representing links. A classic measure of network reliability is the connectivity $\kappa(G)$ and the edge-connectivity $\lambda(G)$. In general, the large $\kappa(G)$ (or $\lambda(G)$) is, the more reliable the network is. For $\kappa(G) \leq \lambda(G) \leq \delta(G)$, a graph G with $\kappa(G) = \delta(G)$ ($\lambda(G) = \delta(G)$) is naturally said to be maximally connected (maximally edge-connected), or κ -optimal (λ -optimal) for simplicity. As more refined indices of reliability than maximal connectivity and maximal edge-connectivity, super connectivity and super edge-connectivity were proposed in [1] [3]. A graph G is super-connected, super- κ , for short (resp. super edge-connected, super- λ , for short) if every minimum vertex-cut (resp. edge-cut) isolates a vertex of G.

A graph G is vertex-transitive if, for any pair u, v of vertices, there is an automorphism that maps u to v.

An Harary graph H(n,k) has vertex set $\{1, 2, \dots, n-1\}$. According to the parities of n and k, there are three types of Harary graph. In the following, additions are all taken modulo n.

Type 1: When k is even, suppose k = 2r. Two vertices i and j of H(n, 2r) are adjacent if and only if $|i - j| \le r$.

Type 2: When k is odd and n is even, suppose k=2r+1. Then H(n,k) is obtained from H(n,2r) by adding edges $\{(i,i+\frac{n}{2}): i=0,1,\cdots,\frac{n}{2}-1\}$.

Type 3: When k and n are both odd, suppose k=2r+1. Then H(n,k) is obtained from H(n,2r) by adding edges $\{(i,i+\frac{n+1}{2}:i=0,1,\cdots,\frac{n-3}{2}\}\cup\{(0,\frac{n-1}{2})\}.$

The first two types of Harary graph are vertex-transitive. And in this paper, all of the Harary graphs we referred are *Type* 1 or *Type* 2. For vertex-transitive graphs, the following two results are known:

Theorem 1.1 ([11]) All connected vertex-transitive graphs are λ -optimal.

Theorem 1.2 ([14]) A connected vertex-transitive graph G which is neither a cycle nor a complete graph is super- λ if and only if it contains no clique K_k where k is the degree of G.

Since the complete graph K_n is super- λ , Theorem 1.2 implies the following corollary.

Corollary 1.3 If $k \geq 3$, then the Harary graph H(n,k) is super- λ .

A sequence $D=(d_1,d_2,\cdots,d_n)$ of nonnegative integers is called the degree sequence of a graph G if the vertices of G can be labeled v_1, v_2, \cdots, v_n such that $d(v_i)=d_i$ for each $i=1,2,\cdots,n$. A sequence $D=(d_1,d_2,\cdots,d_n)$ of nonnegative integers is called graphical if it is the degree sequence of some simple graph (no loops and multiple edges). Graphical sequence was characterized by Havel [10], Erdös and Gallai [7], and Hakimi [8]. Edmonds [6] and Wang [15] proved that any graphical sequence $D=(d_1,d_2,\cdots,d_n)$ with $d_1 \geq d_2 \geq \cdots \geq d_n \geq 2$ is maximally edge-connected; and show that a graphical sequence $D=(d_1,d_2,\cdots,d_n)$ with $d_1 \geq d_2 \geq \cdots \geq d_n = 1$ is maximally edge-connected if and only if $\sum_{i=1}^n d_i \geq 2(n-1)$. In [13] Tian et al. studied the super edge-connectedness for a given graphical sequence D. For more results on graphs and their degree sequences, see the survey paper [9].

Multigraphic sequence was characterized by Senior [12] and Hakimi [8]. A sequence $D=(d_1,d_2,\cdots,d_n)$ of nonnegative integers is *multigraphic* if there exists a multigraph with vertices v_1,v_2,\cdots,v_n such that $d(v_i)=d_i$ for each $i=1,2,\cdots,n$.

Let $D=(d_1,d_2,\cdots,d_n)$ be a multigraphic sequence. Denote $\langle D \rangle$ the collection of all nonisomorphic multigraphs with degree sequence D. Let P be a multigraph theoretical property. We say that the multigraphic sequence D has property P if there is a multigraph $G \in \langle D \rangle$ such that G has property P. In particular, the multigraphic sequence D is said to be maximally(super) dege-connected if there exists a maximally(super) edge-connected multigraph $G \in \langle D \rangle$.

Chou and Frank [5] have studied that any multigraphic sequence $D=(d_1,d_2,\cdots,d_n)$ with $d_1\geq d_2\geq\cdots\geq d_n\geq 2$ is maximally edge-connected. In this paper, we prove that a multigraphic sequence D with $d_n=1$ is super edge-connected if and only if $\sum\limits_{i=1}^n d_i\geq 2n$ or $D=(n-1,1,\cdots,1)$. We also give a sufficient and necessary condition for a multigraphic sequence D with $d_n=2$ to be super edge-connected. Furthermore, we show that a multigraphic sequence D with $d_n\geq 3$ is always super edge-connected.

2 Results

The following three results will be used frequently.

Lemma 2.1 ([8]) A sequence $d_1 \geq d_2 \geq \cdots \geq d_n$, where $n \geq 2$, of nonnegative integers is multigraphic if and only if the sum $\sum_{i=1}^{n} d_i$ is even and

 $d_1 \leq d_2 + d_3 + \cdots + d_n.$

Lemma 2.2 ([2]) Let $d_1 \geq d_2 \geq \cdots \geq d_n \geq 1$ be a sequence of nonnegative integers and let $2 \leq j \leq n$ be an index. Then the sequence $\{d_1, d_2, \cdots, d_n\}$ is multigraphic if and only if the sequence $\{d_1 - 1, d_2, d_3, \cdots, d_{j-1}, d_j - 1, d_{j+1}, \cdots, d_n\}$ is multigraphic.

Lemma 2.3 ([5]) Any multigraphic sequence $D = (d_1, d_2, \dots, d_n)$ with $d_1 \geq d_2 \geq \dots \geq d_n \geq 2$ is maximally edge-connected.

In this paper we consider the super edge-connectedness of the multigraphic sequence D, and get the following results.

Theorem 2.4 Let $D=(d_1, d_2, \dots, d_n)$ be a multigraphic sequence with $d_1 \geq d_2 \geq \dots \geq d_n = 1$. Then D is super edge-connected if and only if $\sum_{i=1}^n d_i \geq 2n$ or $D=(n-1, 1, \dots, 1)$.

Proof. Suppose D is super edge-connected. Let $G \in \langle D \rangle$ such that G is super edge-connected. Then G is not isomorphic to a tree except $K_{1, n-1}$. Thus $\sum_{i=1}^{n} d_i \geq 2n$ or $D = (n-1, 1, \dots, 1)$.

Now we prove the converse, suppose that D is not super edge-connected. If $D=(n-1,1,\cdots,1)$, then $K_{1,n-1}\in\langle D\rangle$ is a super edge-connected graph, a contradiction. If $\sum\limits_{i=1}^n d_i\geq 2n$, then $G\in\langle D\rangle$ is not isomorphic to a tree. In this case we choose a connected multigraph $G_1\in\langle D\rangle$ such that $c(G_1)$ is maximized. Let $C_1=x_1x_2\cdots x_t$ be a longest cycle in G_1 . Then $N[V(C_1)]\neq V(G_1)$ (for otherwise, G_1 is super edge-connected). Thus there exists a path x_iyz where $x_i\in V(C_1), y\in N(V(C_1))\backslash V(C_1)$ and $z\in V(G_1)\backslash N[V(C_1)]$. Construct a connected multigraph G_2 from G_1 by deleting two edges x_ix_{i+1} and yz, and adding two edges yx_{i+1} and x_iz . It is easy to see that $G_2\in\langle D\rangle$ and $C_2=x_1\cdots x_iyx_{i+1}\cdots x_t$ is a cycle of G_2 , which contradicts to $c(G_1)\geq c(G_2)$.

Theorem 2.5 Let $D=(d_1, d_2, \dots, d_n)$ be a multigraphic sequence with $d_1 \geq \dots \geq d_{n-t} > d_{n-t+1} = \dots = d_n = 2$. Then D is super edge-connected if and only if D=(s+1, s+1, 2) or D=(s+2, s, 2) or $\sum_{i=1}^{n-t} d_i \geq \sum_{i=n-t+1}^{n} d_i = 2t$, where s and t are integers with $s \geq 2$ and $1 \leq t \leq n-1$.

Proof. Suppose that D is super edge-connected. Let $G \in \langle D \rangle$ such that G is super edge-connected. If n = 3, then D = (s + 1, s + 1, 2)

or D=(s+2,s,2), where s is an integer with $s\geq 2$. If $n\geq 4$, then the set $\{v_{n-t+1},v_{n-t+2},\cdots,v_n\}$ is an independent set by the super edge-connectedness of G. Thus $\sum_{i=1}^{n-t}d_i\geq \sum_{i=n-t+1}^nd_i=2t$ is obtained.

If D=(s+1,s+1,2) or D=(s+2,s,2), then the super edge-connected graph $G_1 \in \langle D \rangle$ or $G_2 \in \langle D \rangle$ (see Figure 1). Therefore, D is super edge-connected. We now show the sufficiency by induction on $\sum_{i=1}^{n} d_i$.

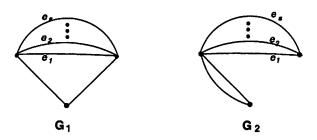


Figure 1.

If $\sum_{i=1}^n d_i = 4t$, then $\sum_{i=1}^{n-t} d_i = \sum_{i=n-t+1}^n d_i = 2t$. In the following, we construct a super edge-connected multigraph with D as its degree sequence. Let p_i be an integer such that $3 \le d_i - 2p_i \le 4$, $i = 1, 2, \dots, n-t$. Let $c_i = d_i - 2p_i$.

Claim 1. The sequence $C=(c_1,c_2,\cdots,c_{n-t})$ is a multigraphic with $n-t\geq 2$.

If n-t=2 (i.e. $d_1\geq d_2>d_3=\cdots=d_n=2$), then $d_1+d_2=2t$ and so both d_1 and d_2 are even or odd. Thus, $c_1=c_2$.

If $n-t \geq 3$. We have $c_1 \leq 4 \leq 6 \leq 3(n-t-1) \leq \sum_{i=2}^{n-t} c_i$ as $3 \leq d_i - 2p_i = c_i \leq 4$ for $i = 1, 2, \dots, n-t$.

Therefore, when $n-t \geq 2$, we have $c_1 \leq c_2 + \cdots + c_{n-t}$. Obviously $\sum_{i=1}^{n-t} c_i$ is even. Thus the sequence $C = (c_1, c_2, \cdots, c_{n-t})$ is multigraphic by Lemma 2.1, which completes the proof of the claim.

Claim 2. $\sum_{i=1}^{n-t} p_i < t.$

Since $3(n-t) \leq \sum_{i=1}^{n-t} (d_i - 2p_i) = \sum_{i=1}^{n-t} d_i - 2\sum_{i=1}^{n-t} p_i = 2t - 2\sum_{i=1}^{n-t} p_i$ and $t \leq n-1$, we have $\sum_{i=1}^{n-t} p_i \leq \frac{5t-3n}{2} < \frac{5t-3t}{2} = t$, and thus the claim is proven.

If n-t=1 (i.e. $d_1>d_2=\cdots=d_n=2$), then there is a super edge-connected graph $G_3\in\langle D\rangle$ (see Figure 2).

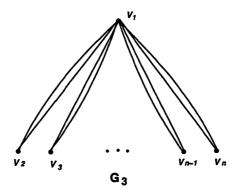


Figure 2.

If $n-t \geq 2$. By Claim 1 and Lemma 2.3, we have $C = (c_1, c_2, \cdots, c_{n-t})$ is a multigraphic and there exists a 3 edge-connected graph $G' \in \langle C \rangle$. The multigraph G'' obtained from G' by adding p_i loops on the vertex v_i for $i=1,2,\cdots,n-t$, and thus the sequence $D'=(d_1,d_2,\cdots,d_{n-t})$ is the degree sequence of G''. Therefore the multigraph G obtained from G'' by subdividing the $\sum_{i=1}^{n-t} p_i$ (by Claim 2, we have $\sum_{i=1}^{n-t} p_i < t$) loops and any other

 $t - \sum_{i=1}^{n-t} p_i$ edges of G'' is super edge-connected and has D as its degree sequence.

Now we assume that it is true for all integers less than $\sum_{i=1}^{n} d_i$ ($\sum_{i=1}^{n} d_i > 4t$).

Case 1. $d_1 \geq d_2 \geq \cdots \geq d_l > 3$ $(2 \leq l \leq n-t)$. Let $c_1 = d_1 - 1$, $c_l = d_l - 1$ and $c_i = d_i$ for $i \in \{2, \cdots, l-1, l+1, \cdots, n\}$. Then $C = (c_1, c_2, \cdots, c_n)$ is a multigraphic sequence by Lemma 2.2. Moreover, $\sum_{i=1}^{n-t} c_i = \sum_{i=1}^{n-t} d_i - 2 \geq 2t + 2 - 2 = 2t$ and $\sum_{i=1}^{n} c_i < \sum_{i=1}^{n} d_i$. By induction, there exists a multigraph $G' \in \langle C \rangle$ such that G' is super edge-connected. The multigraph G obtained from G' by adding an edge between v_1 and v_l , and G is also super edge-connected.

Case 2. $d_1 \ge 4$ and $d_2 = \cdots = d_{n-t} = 3$.

In this case, we have $n-t \geq 2$ (if not, n-t=1, then $d_1 \geq 4$ and $d_2=d_3=\cdots=d_n=2$, and so $\sum_{i=1}^n d_i=d_1+(d_2+d_3+\cdots+d_n)\leq (d_2+d_3+\cdots+d_n)+(d_2+d_3+\cdots+d_n)=4t$, which contradicts the hypothesis $\sum_{i=1}^n d_i>4t$).

Subcase 2.1. $d_1 \leq d_2 + \cdots + d_{n-t} = 3(n-t-1)$.

Obviously, $\sum_{i=1}^{n-t} d_i$ is even. Therefore $D' = (d_1, d_2, \dots, d_{n-t})$ is a multigraphic sequence. By Lemma 2.3, there exists a 3 edge-connected graph $G' \in \langle D' \rangle$ with at least t edges. The multigraph G obtained from G' by subdividing any t edges of G' is super edge-connected and has D as its degree sequence.

Subcase 2.2. $d_1 > d_2 + \cdots + d_{n-t} = 3(n-t-1)$.

The numbers of vertices of 2 degree and 3 degree are t and n-t-1, respectively. Since $d_1+3(n-t-1)+2t$ is even, we have both d_1 and 3(n-t-1) are even or odd and so $d_1-3(n-t-1)$ is even.

Let $m = \frac{d_1 - 3(n - t - 1)}{2}$, $p = \lfloor \frac{t - m}{3} \rfloor$ and q = (n - t - 1) - p - 1. Therefore t - m - 3p = 2 or 1. We can verify that the graph G_4 or G_5 in Figure 3 is super edge-connected and has D as its degree sequence.

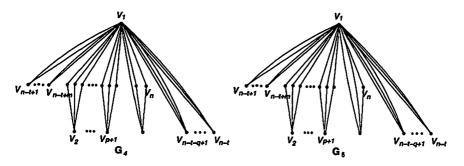


Figure 3. The proof of Theorem 2.5

Case 3. $d_1 = \cdots = d_{n-t} = 3$.

 $\sum_{i=1}^{n-t} d_i = 3(n-t) = \sum_{i=1}^n d_i - 2t \text{ is even, since } D = (d_1, d_2, \cdots, d_n) \text{ is a multigraphic sequence and } d_{n-t+1} = \cdots = d_n = 2.$ Thus the sequence $D' = (d_1, d_2, \cdots, d_{n-t})$ is multigraphic. By Lemma 2.3, there is a 3-edge-connected multigraph $G' \in \langle D' \rangle$. Then the multigraph G obtained from

G' by subdividing any t edges of G' is super edge-connected and has D as its degree sequence.

Theorem 2.6 Let $D=(d_1, d_2, \dots, d_n)$ be a multigraphic sequence with $d_1 \geq d_2 \geq \dots \geq d_n = k \geq 3$. Then D is super edge-connected.

Proof. If n = 2, then the graph G which has two vertices and k multiple edges is a super edge-connected graph and has D as its degree sequence.

In the following, we assume $n \geq 3$.

By induction on $\sum_{i=1}^{n} d_i$. If $\sum_{i=1}^{n} d_i = nk$, then $H(n, k) \in \langle D \rangle$ and is super edge-connected by Corollary 1.3. Thus we now assume that it is true for all integers less than $\sum_{i=1}^{n} d_i (\sum_{i=1}^{n} d_i \ge nk + 1)$.

Case 1. $d_1 \ge d_2 \ge \cdots d_t > k \ge 3 (2 \le t \le n-1)$.

Let $c_1 = d_1 - 1$, $c_t = d_t - 1$ and $c_i = d_i$ for $i = \{2, \dots, t-1, t+1, \dots, n\}$. Then the sequence $C = (c_1, c_2, \dots, c_n)$ is a multigraphic sequence by Lemma 2.2. By induction, there is a multigraph $G' \in \langle C \rangle$ such that G' is super edge-connected. G obtained from G' by joining v_1 to v_t , is super edge-connected and $G \in \langle D \rangle$.

Case 2.
$$d_1 > d_2 = \cdots d_n = k \ge 3$$
.
Let $q = \lfloor \frac{d_1}{n-1} \rfloor$. Then $d_1 = (n-1)q + r$, $0 \le r < n-1$.

Subcase 2.1. q = k.

Then $d_1 = (n-1)k$. We can construct a multigraph by vertex set $V = \{v_1, v_2, \dots, v_n\}$, that is we add k edges between v_1 and v_i ($i = 2, 3, \dots, n$). Obviously, the multigraph is super edge-connected and has D as its degree sequence.

Subcase 2.2. q < k.

Let $d_1 + (n-1)k = N$. Then N is even since N is a degree sum. Note that $r = d_1 - (n-1)q = N - (n-1)k - (n-1)q = N - (n-1)(k+q)$.

Subcase 2.2.1. k-q is even, or k-q is odd and n-1 is even.

In the following we will construct a super edge-connected multigraph G with D as its degree sequence by using Harary graph H = H(n-1, k-q) with vertices $\{0, 1, \dots, n-2\}$ and an isolated vertex v_1 .

First we add (n-1)q edges between v_1 and H, that is adding q multiple edges between v_1 and each vertex $i \in V(H)$, $i \in \{0, 1, \dots, n-2\}$.

If k-q is even, then k+q is also even, and so r is even. We delete $\frac{r}{2}$ edges $(0,1), (2,3), \dots, (r-2,r-1)$ from H(n-1, k-q) and add r edges between v_1 and $\{0, 1, \dots, r-1\}$.

If k-q is odd and n-1 is even, then r is even. We delete $\frac{r}{2}$ edges $(0, \frac{n-1}{2}), (1, \frac{n-1}{2}+1), \cdots, (\frac{r}{2}-1, \frac{n-1}{2}+\frac{r}{2}-1)$ from H(n-1, k-q) and add r edges between v_1 and $\{0, \frac{n-1}{2}, 1, \frac{n-1}{2}+1, \cdots, \frac{r}{2}-1, \frac{n-1}{2}+\frac{r}{2}-1\}$.

Finally we identify each vertex i of H(n-1, k-q) with vertex v_{i+2} , $i=0,1,\cdots,n-2$. Then the obtained multigraph G has D as its degree sequence.

Now we show that G is super edge-connected. It is sufficient to check that $|[A, \overline{A}]_G| > k$, for any vertex set $A \subset V(G)$ with $|A| \ge 2$ and $|\overline{A}| = |V(G) \setminus A| \ge 2$.

Without loss of generality, we assume $A \subset V(H)$. If $q \geq 1$, then $|[A, \overline{A}]_G| \geq q|A| + k - q > k$. We assume that q = 0. If $|V(H) \setminus A| \geq 2$, then $|[A, \overline{A}]_G| \geq |[A, V(H) \setminus A]_H| > k - q = k$ by H is super edge-connected. If $|V(H) \setminus A| = 1$, then $|[A, \overline{A}]_G| \geq d_1 - 1 + k - q - 1 = d_1 - 2 + k > k$, since $d_1 \geq 3$.

Subcase 2.2.2. k-q is odd and n-1 is odd.

Then r is odd and so n-1-r is even. Obviously both k and q+1 are even or odd, and so k-(q+1) is even.

In the following we will construct a super edge-connected multigraph G with D as its degree sequence by vertex set $V = \{v_1, v_2, \dots, v_n\}$.

Let $V_1 = \{v_2, \dots, v_{1+r}\}$ and $V_2 = \{v_{2+r}, \dots, v_n\}$.

We construct a multigraph G by the following steps.

Step 1: We add $\frac{k-(q+1)}{2}$ cycles with the vertex set $\{v_2, v_3, \dots, v_n\}$ and the length of all the cycles is n-1, where one of the cycles(see Figure 4) is

$$C = v_2 v_3 \cdots v_r v_{n-1} v_{1+r} v_n v_2 (r = n-3)$$

or

$$C' = v_2 v_3 \cdots v_{1+r} v_{2+r} v_{4+r} \cdots v_{2i+r} \cdots v_{n-1} v_{n-2} v_{n-4} \cdots v_{n-2(i+1)} \cdots v_{3+r} v_n v_2 (r < n-3).$$

Step 2: We add q+1 edges between v_1 and v_i $(i=2,3,\cdots,1+r)$, q edges between v_1 and v_j $(j=2+r,\cdots,n)$, and one edge between v_{l+r} and v_{l+1+r} $(l=2,3,\cdots,n-1-r)$.

Now we show that G is super edge-connected. It is sufficient to check that $|[B, \overline{B}]_G| > k$ for any vertex set $B \subset V(G)$ with $|B| \ge 2$ and $|\overline{B}| = |V \setminus B| \ge 2$.

Without loss of generality, we assume $v_1 \in B$, $|B| = p \ge 2$ and $|\overline{B}| = n - p \ge 2$.

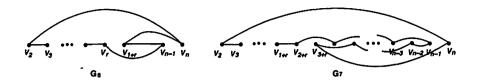


Figure 4.

Set $V' = V_1 \cup V_2 = \{v_2, v_3, \dots, v_{1+r}\} \cup \{v_{2+r}, v_{3+r}, \dots, v_n\} = \{v_2, v_3, \dots, v_n\}, V'_1 = B \cap V' \text{ and } V'_2 = \overline{B} \cap V'.$ As the number of the common edges of any cycle and any cut edge is even, we have $|[V'_1, V'_2]| \geq k - (q+1)$

If
$$\overline{B} \cap V_2 = \emptyset$$
 (i.e. $\overline{B} \cap V_1 = \overline{B}$), then

$$|[B, \overline{B}]_G| \ge |[\{v_1\}, \overline{B}]| + |[V_1', V_2']| \ge (n-p)(q+1) + k - (q+1) > k.$$

If $\overline{B} \cap V_2 \neq \emptyset$ and $\overline{B} \cap V_1 \neq \emptyset$. By the construction of the cycles with the vertex set $\{v_2, v_3, \dots, v_n\}$, we obtain $|[V_1', V_2']| \geq k - (q+1) + 1 = k - q$, and so

$$|[B, \overline{B}]_G| \ge |[\{v_1\}, \overline{B}]| + |[V_1', V_2']| \ge (q+1) + (n-p-1)q + k - q > k.$$

If $\overline{B} \cap V_2 = \overline{B}$ (i.e. $\overline{B} \cap V_1 = \emptyset$). By the construction of the cycles with the vertex set $\{v_2, v_3, \dots, v_n\}$, we have $|[V_1', V_2']| \ge k - (q+1) + 2 = k - q + 1$ and so

$$|[B, \overline{B}]_G| \ge |[\{v_1\}, \overline{B}]| + |[V_1', V_2']| \ge (n-p)q + k - q + 1 > k.$$

Acknowledgments

This work is supported by the Foundation for High-level Talents of Shihezi University (No.RCZX201418), NSFC(No.11401510), the Foundation to the Educational Committee of Fujian (JA13240), the Science Technology Research and Development Applied Basic Research Youth project of Shihezi University(No.2014ZRKXYQ-LH06), Xiamen University of Technology(YKJ12030R) and NSFC(No.11301440).

References

[1] D. Bauer, C. Suffel, F. Boesch, R. Tindell, Connectivity extremal problems and the design of reliable probabilistic network, in: The Theory

- and Application of Graphs, Kalamazoo MI, 1980, Wiley, New York, 1981, pp. 45-54.
- [2] F. Boesch, F. Harary, Line removal algorithms for graphs and their degree lists, IEEE Trans. Circuits Syst. 23(12) (1976) 778-782.
- [3] F. Boesch, On unreliability polynomials and graph connectivity in reliable network sythesis, J. Graph Theory, 10 (1986) 339-352.
- [4] J. A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
- [5] W. Chou, H, Frank, Survivable communication networks and ternimal capacity matrix, IEEE Trans. Cricuit Theory CT-17 (1970) 192-197.
- [6] J. Edmonds, Existence of k-edge connected ordinary graphs with prescribed degree, J. Res. Nat. Bur. Stand. Ser. B, 68 (1964) 73-74.
- [7] P. Erdös, T. Gallai, Graphs with prescribed degrees of vertices (Hungarian), Mat. Lapok, 11 (1960) 264-274.
- [8] S. L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a graph, SIAM Appl. Math., 10 (1962) 496-506.
- [9] S. L. Hakimi, E. F. Schmeichel, Graphs and their degree sequences: A survey. Lecture Notes in Mathmeatics 642: Proceedings of 1976 International Conference on Theory and Applications of Graphs. springer-Verlag, Berlin (1978) 225-235.
- [10] V. Havel, A remark on the existence of finite graphs (Hungarian), Casopis Pest. Mat. 80 (1955) 477-480.
- [11] W. Mader, Minimale n-fach kantenzusammenhängenden Graphen, Math. Ann. 191 (1971) 21-28.
- [12] J. K. Senior, Partitions and their representative graphs, Amer. J. Maht. 73 (1951) 663-689.
- [13] Y. Tian, J. Meng, H. Lai, Z. Zhang, On the existence of super edgeconnected graphs with prescribed degrees, Discrete Mathematics, 328 (2014) 36-41.
- [14] R. Tindell, Connectivity of Cayley digraphs, in: A. Z. Du, D. F. Hsu (Eds.), Combinatorial Network Theory, Klumer, Dordrecht, 1996, pp. 41-46.
- [15] D. L. Wang, Construction of a maximally edge-connected graph with prescribed degrees, Stud. Appl. Math. 55(1) (1976) 87-92.