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Abstract. Let G = (V, E) be a connected multigraph with order n. 6(G) and A(G)
are the minimum degree and edge connectivity, respectively. The multigraph G is
called maximally edge-connected if A(G) = 6(G) and super edge-connected if every
minimum edge-cut consists of edges incident with a vertex of minimum degree. A
sequence D = (dy,d2,--- ,dn) with dj > d2 > --- > dn is called a multigraphic
sequence if there is a multigraph with vertices v1,v2,--- ,vn such that d(v;) = d; for
each i = 1,2,.-. ,n. The multigraphic sequence D is super edge-connected if there
exists a super edge-connected multigraph G with degree sequence D. In this paper, we
present that a multigraphic sequence D with dn = 1 is super edge-connected if and only

if E d; > 2n and give a sufficient and necessary condition for a multigraphic sequence

D w1th dn = 2 to be super edge-connected. Moreover, we show that a multigraphic
sequence D with d,, > 3 is always super edge-connected.
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1 Introduction

Let G = (V, E) be a finite multigraph without loops with vertex set V(G)
and edge set E(G). The set N(u) = {v : uv € E(G)} is called the
neighborhood of the vertex u, and the set Nfu] = N(u) U {u} is called
closed neighborhood. For a subset S of V', N(S) denotes the neighborhood
of S, i.e, N(S) = U,es N(u) \ S, and N|[S] denotes the closed neighbor-
hood of §, i.e., N[S] = |J,cg N[u]. The degree of vertex u is d(u) = |[N(u)|
and minimum degree of G is §(G) = min{d(x) : u € V(G)}. For two vertex
sets Vi, Va C V(G), (W1, V2]c is the set of edges with one end in V; and
the other end in V5. The girth g(G) of the multigraph G is the length of
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its shortest cycle if G contains cycles, define g(G) = +oo otherwise. The
length of a longest cycle of G is denoted by ¢(G). We use A(G) to denote
the edge-connectivity of G. In a multigraph G, subdivision of an edge uv is
the operation of replacing uv with a path uwv through a new vertex w. The
notation |Z| represents an integer which satisfies £ —1 < [1] < §, where
r and s are integers. For example, |_ | =2. For notation and termmology
not defined here, we refer to [4].

A network can be conveniently modeled as a graph G = (V, E), with ver-
tices representing nodes and edges representing links. A classic measure of
network reliability is the connectivity x(G) and the edge-connectivity A(G).
In general, the large x(G) (or A(G)) is, the more reliable the network is.
For k(G) < A(G) < §(G), a graph G with &(G) = §(G) (MG) = §(G)) is
naturally said to be mazimally connected (mazimally edge-connected), or
k-optimal (A-optimal) for simplicity. As more refined indices of reliability
than maximal connectivity and maximal edge-connectivity, super connec-
tivity and super edge-connectivity were proposed in (1] [3]. A graph G is
super-connected, super-«, for short (resp. super edge-connected, super-J,
for short) if every minimum vertex-cut (resp. edge-cut) isolates a vertex of
G.

A graph G is vertex-transitive if, for any pair u, v of vertices, there is
an automorphism that maps u to v.

An Harary graph H(n, k) has vertex set {1, 2, ---, n — 1}. According
to the parities of n and k, there are three types of Harary graph. In the
following, additions are all taken modulo n.

Type 1: When k is even, suppose k = 2r. Two vertices ¢ and j of
H(n,2r) are adjacent if and only if |i — j| < r.

Type 2: When k is odd and n is even, suppose k = 2r+1. Then H(n, k)
is obtained from H(n,2r) by adding edges {(i, i+%):i=0,1,---, §-1}.

Type 3: When k and n are both odd, suppose £ = 2r + 1. Then
H(n, k) is obtained from H(n,2r) by adding edges {(i,i + 2 : i =
0,1,--, %3} U{(0, 2.

The ﬁrst two types of Harary graph are vertex-transitive. And in this
paper, all of the Harary graphs we referred are Type 1 or Type 2. For
vertex-transitive graphs, the following two results are known:

Theorem 1.1 ([11]) All connected vertez-transitive graphs are A-optimal.

Theorem 1.2 ([14]) A connected vertez-transitive graph G which is nei-
ther a cycle nor a complete graph is super-) if and only if it contains no
clique K where k is the degree of G.

Since the complete graph K, is super-A, Theorem 1.2 implies the fol-
lowing corollary.



Corollary 1.3 If k > 3, then the Harary graph H(n,k) is super-A.

A sequence D = (dy,d2,- - ,dn) of nonnegative integers is called the
degree sequence of a graph G if the vertices of G can be labeled vy, vs, - -+,
v, such that d(v;) = d; foreachi = 1,2, -+ ,n. Asequence D = (d;,dz,- -,
d,) of nonnegative integers is called graphical if it is the degree sequence of
some simple graph (no loops and multiple edges). Graphical sequence was
characterized by Havel [10], Erdds and Gallai [7], and Hakimi [8). Edmonds
[6] and Wang [15] proved that any graphical sequence D = (dy,ds, - ,dy)
with d; > dy 2 -+ > d,, > 2 is maximally edge-connected; and show that
a graphical sequence D = (d;,ds,--* ,d,) with d>dy > 2d, =1

is maximally edge-connected if and only if Z d; > 2(n —1). In [13] Tian

et al. studied the super edge-connectedness for a given graphical sequence
D. For more results on graphs and their degree sequences, see the survey
paper [9].

Multigraphic sequence was characterized by Senior {12] and Hakimi [8].
A sequence D = (d;,ds, -+ ,d,) of nonnegative integers is multigraphic if
there exists a multigraph with vertices vy, vg, -+ - , v, such that d(v;) = d;
for each i =1,2,--- ,n.

Let D = (dy,ds, - ,dn) be a multigraphic sequence. Denote (D) the
collection of all nonisomorphic multigraphs with degree sequence D. Let
P be a multigraph theoretical property. We say that the multigraphic
sequence D has property P if there is a multigraph G € (D) such that
G has property P. In particular, the multigraphic sequence D is said to
be mazimally (super) dege-connected if there exists a maximally(super)
edge-connected multigraph G € (D).

Chou and Frank [5] have studied that any multigraphic sequence D =
(d1,da,--- ,d,) withdy >dp > --- > d, > 2 is maximally edge-connected.
In this paper, we prove that a multigraphic sequence D with d,, = 1 is super

n
edge-connected if and only if }"d; > 2nor D = (n-1,1,...,1). We
also give a sufficient and necestss:ry condition for a multigraphic sequence
D with d,, = 2 to be super edge-connected. Furthermore, we show that a
multigraphic sequence D with d,, > 3 is always super edge-connected.

2 Results

The following three results will be used frequently.
Lemma 2.1 ([8]) A sequence dy > dp > -++ > d,,, where n > 2, of non-

n
negative integers is multigraphic if and only if the sum ) d; is even and
i=1



di <dyg+ds+- +dp.

negative integers and let 2 < j < n be an index. Then the sequence

{d1, da, -+ -, dn} is multigraphic if and only if the sequence {d; —1, ds, d3,
cooydjy, dj — 1, djqq, -+, dn} is multigraphic.

Lemma 2.2 ([2]) Let dy > d2 > -+ > dn > 1 be a sequence of non-

Lemma 2.3 ([5]) Any multigraphic sequence D = (dy, dg, - , dn) with
dy >dy > > d, > 2 is mazimally edge-connected.

In this paper we consider the super edge-connectedness of the multi-
graphic sequence D, and get the following results.

Theorem 2.4 Let D = (d1, da, - -+ , dn) be a multigraphic sequence with

dy >dy >+ 2d, =1. Then D is super edge-connected if and only if

diz22norD=(n-1,1,.--,1).

i=1

Proof. Suppose D is super edge-connected. Let G € (D) such that G is

super edge-connected. Then G is not isomorphic to a tree except K, n—1.
n

Thus ) di>2norD=(n-1,1,---,1).

=1
Now we prove the converse, suppose that D is not super edge-connected.

If D=(n-1,1,..-,1), then K; o1 € (D) is a super edge-connected
graph, a contradiction. If Y d; > 2n, then G € (D) is not isomorphic to

i=1
a tree. In this case we choose a connected multigraph G; € (D) such that
¢(Gy) is maximized. Let C; = z1x2---z; be a longest cycle in G;. Then
N[V(C1)] # V(Gi1) (for otherwise, G, is super edge-connected). Thus
there exists a path z;yz where z; € V(Ci),y € N(V(Ci))\V(C:1) and
z € V(G1)\N[V(C))). Construct a connected multigraph G2 from G; by
deleting two edges z;z;+; and yz, and adding two edges yz;+1 and z;2. It
is easy to see that G2 € (D) and Cy = z1 - - - T;yTi41 -+ - Tt is a cycle of Gy,

which contradicts to ¢(G1) = ¢(G2). O
Theorem 2.5 Let D = (dy, da, :-- , dn) be a multigraphic sequence with
dy 2 2dpt >dpetyy = =d, =2. Then D is super edge-connected

n—t
ifand only if D = (s +1,s+1,2) or D = (s +2,8,2) or 3 d; >
t=1
n
Y.  di =2t, where s and t are integers withs >2 and1 <t <n-—1.
i=n—t41

Proof. Suppose that D is super edge-connected. Let G € (D) such
that G is super edge-connected. If n = 3, then D = (s + 1,5 + 1,2)



or D = (s+2,s,2), where s is an integer with s > 2. If n > 4, then

the set {Un—t+1,Vn—t+2," - ,Un} is an independent set by the super edge-
n—t T

connectedness of G. Thus Y d; > 3~ d; =2t is obtained.
3 i=n—t+1

i=1
If D= (s+1,5+1,2) or D = (s+2,s,2), then the super edge-connected
graph G, € (D) or G, € (D) (see Figure 1). Therefore, D is super edge-
n

connected. We now show the sufficiency by induction on ~ d;.
i=1

e, ey
Gy G2
Figure 1.
n n~t n
If d;i = 4t, then Y. d; = > d; = 2t. In the following, we
i=1 i=1 i=n—t+1

construct a super edge-connected multigraph with D as its degree sequence.
Let p; be an integer such that 3 < d; —2p; < 4,i=1,2,---,n—t. Let
C; = d,‘ - 2p,‘.

Claim 1. The sequence C = (c1,¢2, - ,cn—t) is a multigraphic with
n—t>2.
Ifn—t=2%Ge d >d; >d3=---=d, =2), thend; +dy = 2t and

so both dy and ds are even or odd. Thus, ¢; = c3.
—t
Ifn—t>3. Wehavec) <4<6<3(n—-t-1)< "2 c;as3 <d;—2p; =

~
ci<dfori=1,2, -, n—t. '
Therefore, when n —t > 2, we have ¢; < ¢2 + +++ + c,—;. Obviously
n—t
Y ci is even. Thus the sequence C = (e1,¢z,+++ ,cn—¢) is multigraphic by
i=1
emma 2.1, which completes the proof of the claim.

n—t
Claim 2. } p; <t.

i=1

n—t n—t n—-t n—t
Since 3(n —t) < Y (di—2p) = > di—2)Y p; =2t—-2Y p; and
i=1 i=1 i=1 i=1

n—t
t<n-—1,wehave }_ p; < %’1 < @ = ¢, and thus the claim is proven.
i=1



Ifn—t=1(ie dy >dy =--- =d, = 2), then there is a super
edge-connected graph G3 € (D) (see Figure 2).

£}

Va2 Vs Vot Va

Figure 2.

If n—t > 2. By Claim 1 and Lemma 2.3, we have C = (¢1,¢2,"** ,Cn—t)
is a multigraphic and there exists a 3 edge-connected graph G’ € (C). The
multigraph G” obtained from G’ by adding p; loops on the vertex v; for
i=1,2,.--,n—t, and thus the sequence D' = (dy, da, -+, dp—¢) is the
degree sequence of G". Therefore the multigraph G obtained from G” by

n—t
subdividing the E pi(by Claim 2, we have Y p; < t) loops and any other
i=1 i=1
n—t

t — Y pi edges of G” is super edge-connected and has D as its degree
sequence.

n n
Now we assume that it is true for all integers less than > d; (3 d; >
i=1 i=1
4t).

Case 1. dy > dy > >d1>3(2<l<n—t)
Letcl_dl—l g =d —1and ¢; =d; fori € {2,.- -1,1+
1,---,n}. Then C (C],Cz, -+ ,€gn) is a multigraphic sequence by Lemma

2.2 Moreover,Zc,—Zd-—2>2t+2 2=2tand2c,<2d
i=1
By induction, there e)usts a multigraph G’ € (C) such that G is super

edge-connected. The multigraph G obtained from G’ by adding an edge
between v; and v;, and G is also super edge-connected.

Case 2. dj>4anddy =---=d,_;: = 3.



In this case, we have n —t > 2(if not, n — ¢t = 1, then d; > 4 and
n
=d3 =-..=dn=2, a.ndso Zd, =dl+(d2+d3+"+dn) S

i=1

(d2 +ds+ - +dy)+ (d2 +d3 + -+ + d,) = 4t, which contradicts the
n
hypothesis ) d; > 4t).

i=1

Subcase 2.1. dl <dg+: +dpt=3n—-t-1).
Obviously, Z d; is even. Therefore D' = (d, da, - -+ , dn—¢) is a multi-

graphic sequence By Lemma 2.3, there exists a 3 edge-connected graph
G' € (D') with at least t edges. The multigraph G obtained from G’ by
subdividing any t edges of G’ is super edge-connected and has D as its
degree sequence.

Subcase 2.2. dy >dy+ -+ dpt =3(n—1t - 1).

The numbers of vertices of 2 degree and 3 degree are t and n — ¢ — 1,
respectively. Since d; + 3(n — t — 1) + 2t is even, we have both d; and
3(n —t — 1) are even or odd and so d; — 3(n —t — 1) is even.

Let m = "L—-?-(-Tzﬂ,p= [552] and ¢ = (n —t— 1) —p— 1. Therefore
t—m—3p=2or 1. We can verify that the graph G4 or G5 in Figure 3 is
super edge-connected and has D as its degree sequence.

Ve Vot Vn_,_q" Vit Ve Vet Vn.'.q" [/

Figure 3. The proof of Theorem 2.5

Case3 dy = --—d,.,_t—3.
E di=3n—-1t) = zd — 2t is even, since D = (dy, da, --- , dy) is
=1 =1
a multlgraphlc sequence a.nd dn—t4+1 = -+ = dp = 2. Thus the sequence
= (dy,dy, - ,dn—:) is multigraphic. By Lemma 2.3, there is a 3-edge-

connected multigraph G’ € (D’). Then the multigraph G obtained from



G’ by subdividing any t edges of G’ is super edge-connected and has D as
its degree sequence. O

Theorem 2.6 Let D = (dy, d3, - , dn) be a multigraphic sequence with
dy>dy > >d, =k>3. Then D is super edge-connected.

Proof. If n = 2, then the graph G which has two vertices and & multiple
edges is a super edge-connected graph and has D as its degree sequence.

In the following, we assume n > 3.
By induction on Z d;. If Z d; = nk, then H(n, k) € (D) and is super
edge-connected by Corollary 1 3 Thus we now assume that it is true for

all integers less than Z di ( 2 di > nk +1).
i=1

Casel.d; >dy>--dy>k>32<t<n-1)

Letey =di—1,¢; =d;—1land¢; =d; fori = {2,-.- ,t—1,t+1,--- ,n}.
Then the sequence C = (cy, ¢2, *- , ¢p) is a multigraphic sequence by
Lemma 2.2. By induction, there is a multigraph G’ € (C) such that G’
is super edge-connected. G obtained from G’ by joining v; to v, is super
edge-connected and G € (D).

Case 2. d1>d2 codp, =k >3.
Let ¢ = [ & JThendl (n—1)g+r0<r<n-1.

Subcase 2.1. ¢ = k.

Then d) = (n — 1)k. We can construct a multigraph by vertex set V =
{v1, va, -+ -, vn}, that is we add k edges between v; and v; (i = 2,3, -+ ,n).
Obviously, the multigraph is super edge-connected and has D as its degree
sequence.

Subcase 2.2. ¢ < k.
Let dy + (n — 1)k = N. Then N is even since IV is a degree sum. Note
thatr=di —(n—1)g=N-(n-1Dk—-(n-1)g=N - (n—-1)(k+q).

Subcase 2.2.1. k — q is even, or k — ¢ is odd and n — 1 is even.
In the following we will construct a super edge-connected multigraph G
with D as its degree sequence by using Harary graph H = H(n—1, k —q)

with vertices {0, 1, --- , n — 2} and an isolated vertex v;.
First we add (n —1)g edges between v; and H, that is adding ¢ multiple
edges between v; and each vertex i € V(H),i€{0,1,---,n—2}.

10



If k — q is even, then k + g is also even, and so 7 is even. We delete
edges (0,1), (2,3), ---, (r—2,7—1) from H(n -1, k—q) and add r edges
between v; and {0, 1, ---, 7 — 1}.

If k — g is odd and n — 1 is even, then r is even. We delete § edges
©0,231), (1,252 +1), -+, (5 -1,2%1 + 5 —1) from H(n—1, k—g) and
add r edges between v, and {0, -"—;—1-, 1,241, -0, F-1,2 4+ 21}

Finally we identify each vertex ¢ of H(n — 1, k — q) with vertex v; o,
i=0,1,--- ,n — 2, Then the obtained multigraph G has D as its degree
sequence.

Now we show that G is super edge-connected. It is sufficient to check
that |[A, A]g| > k, for any vertex set A C V(G) with |A] > 2 and [4| =
[V(G\A| = 2.

Without loss of generality, we assume A C V(H). If ¢ > 1, then
l[A, Alc| > q|A| +k — g > k. We assume that ¢ = 0. If [V (H)\A| > 2, then
[[A, A]c| 2| [A, V(H)\A]x| > k — g = k by H is super edge-connected. If
[V(H)\A| =1, then |[4,A]¢| > d1 —1+k—-qg—1=d; —2+k >k, since
dy > 3.

Subcase 2.2.2. k — ¢ is odd and n — 1 is odd.

Then 7 is odd and so n — 1 —r is even. Obviously both k and ¢ + 1 are
even or odd, and so k — (g + 1) is even.

In the following we will construct a super edge-connected multigraph G
with D as its degree sequence by vertex set V = {vy, v, -+~ , vn}.

Let I/1 = {'02’ MY vl+‘r} and V2 = {vz+fs Tty vn}-

We construct a multigraph G by the following steps.

Step 1: We add k—_(gil)- cycles with the vertex set {vo, v3, -+, vn} and
the length of all the cycles is n — 1, where one of the cycles(see Figure 4) is

C =vu3+ UpUpn_1V14rUnV2 (1 = n — 3)

or
C'= VU3 *  Vi4rU24rVsqr ¢ ** V2i4r ** ' Un—-1VUn—2Un—q - - Un—2(i+1)
©V3grUnt2 (T <m—3).
Step 2: We add g + 1 edges between v; and v; (i = 2,3,--- ,1+471), ¢q
edges between vy and v; (j = 2+7,---,n), and one edge between v;» and
Vit14r (l = 2,3,"' ,n— 1 “"7').

Now we show that G is super edge-connected. It is sufficient to check
that |[B, Blg| > k for any vertex set B C V(G) with |B| > 2 and |B| =
V\B|>2.

Without loss of generality, we assume v; € B, |B| =p > 2 and |[B| =
n—p=2.



Figure 4.

Set V! = ViUV = {vy, v3, -+, V1gr JU{V24r, Va4r, -+, Vn} = {v2, v3,
c~, v}, VY =BNV’ and Vj = BNV’. As the number of the common
edges of any cycle and any cut edge is even, we have |[V{, V3]| > k—(g+1)

If BNV, =0@(i.e. BNV, = B), then
B, Ble| 2 |[{v1}, Bl + V4, Vall 2 (n —p)(g +1) + k- (g +1) > k.

If BNVy # 0 and BNV, # 0. By the construction of the cycles with the
vertex set {vg, v3, ---, Un}, we obtain |[V{, V5]| 2k —(¢g+1)+1=k—gq,
and so

(B, Ble| 2 I[{v1}, Bll +|Vi, V2ll 2 (@ + 1)+ (n—p—1)g+k—g > k.

If BNV, = B (i.e.BNV, = 0). By the construction of the cycles with the
vertex set {v, Vs, +*+ , vp}, we have |[V{, VJ]| 2 k~(g+1)+2=k—g+1
and so

(B, Ble| 2 [[{m1}, Bl + Vi, V2]l 2 (n—p)a+k—g+1> k.
O
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