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ABSTRACT. In this paper, we perform a further investigation for the g-analogues
of the classical Bernoulli numbers and polynomials. By applying summation

transform techniques, we establish some new recurrence relations for these

type numbers and polynomials. We also present some illustrative special cases

as well as immediate consequences of the main results.

1. INTRODUCTION

In his oft-cited papers [4, 5], Carlitz firstly brought out the concepts of the g-
extensions of the classical Bernoulli numbers and polynomials. Since then, many
authors have studied Carlitz’s g-Bernoulli numbers and polynomials and discovered
that these numbers and polynomial possess many surprising properties in many
different areas of mathematics; see, for example, [8, 11, 15, 16, 17, 18, 19, 20, 21,
26, 27, 29]. This paper is primarily concerned with the g-analogues of the classical
Bernoulli numbers and polynomials considered by Kupershmidt [23], Kim and Kim
[22] different from Carlitz’s ¢-Bernoulli numbers and polynomials. We establish
some new recurrence relations for them following the recent work of Alzer and
Kwong [3]. These results are the corresponding generalizations of some known
formulae on the classical Bernoulli numbers and polynomials.

We adopt the common notation on g-seties in the standard books [9]. Through-
out this paper, the parameter g is a fixed nonzero complex number with |q| < 1.
The g-shifted factorial (a, q), is defined for positive integer n and complex number
a by

n—1
1
a; =1, (a;9),= l—ak, Q) ey = T—————. 1.1
(a;g)o (a;q) kll( ¢), (@9)-n= s (1.1)
The g-number factorial [n}y! is defined for positive integer n by
0l! =1, [n]y!=(1]4[2;-:[n ~ 1]n]q, (1.2)

with [z], being the g-number given by [z]; = (1-¢)}/(1 —g) for complex number z.
The g-binomial coefficient (also called Gaussian binomial coefficient) 1] is defined
for non-negative integer n by

nl __ (@@ _ [l - n
[k]q'(q;q)k(q;q)n-k‘[kl.,!~ln—k1q! k=01-m o (19)
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The g-analogue of exponential function e4(t) is defined by (see, e.g., [12, 13])

“(t)= H - (1~ (1 T -(1-q)g*t) Z [n] 7 (It <1/11 - ql). (1.4)

n=0

We now turn to the g-analogues of the classical Bernoulli numbers and polyno-
mials. These type g-Bernoulli numbers B, ; and g-Bernoulli polynomials By 4(x)
are usually defined by the g-analogue of exponential function (see, e.g., [22, 23]):

_ ¢t — |3 teg(zt m
eq(t) -1 = an,qln_]q! and p (‘;§$ ) ZB 'q(x)[_n];i, (1~5)

n=0

respectively. Obviously, the case ¢ = 1 in (1.5) yields the classical Bernoulli num-
bers B, and Bernoulli polynomials B,(z) given by

_I—ZB,,I and efe ~—ZB,.(1)—. (1.6)

n=0 n=0

In fact, the above g-Bernoulli polynomials can also be defined recursively by the
g-Bernoulli numbers, as follows, (see, e.g., [22])

R wn

k=0 kq

with the g-Bernoulli numbers obey the recurrence relation:

k=1 1

This paper is organized as follows. In the second section, we give some new
recurrence relations for the g-Bernoulli numbers and polynomials described in (1.5),
and deduce some known formulae including Alzer and Kwong [3] on the classical
Bernoulli numbers and polynomials. The third section is contributed to the proof
of the main result by applying summation transform techniques.

2. THE RESTATEMENT OF RESULTS

Like the definition of the g-number shifted factorial stated in (9], we use the
following notation: [a]g,0 = 1 and

1

algin = [algla +1]g---[a+n—1]g, [alg—n = e—14la =24 [a-n)’ (2.1)

for positive integer n and complex number a. We present our results, as follows.
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Theorem 2.1. Let m,n be nonnegative integers and r be any integer. Then, for
g-commuting variables x and y such that zy = qyz,

3 [m] gk gmnk=("3") Bntkira(y)

k=0 k [n+k+1]q1‘

( I)n—k —n(m+k+1)+(*17) Brtktrg(z +y)
k_ . [m+ &k + 1)

r-l
+ (_1)n+lxm+n+1 [m]q! : [n]q

m+n+r] [n-}-r—l—z]
[m+n+r]q = T e

n
x 2™ 1B . (y). (2.2)

We next show some special cases of Theorem 2.1. In view of (1.3) and (2.1), we
get that for non-negative integers n, k, r,

1

R+ k+15_, =fn+klyn+ k-1 [n+k+1-7]g =] [n -: k]q. (2.3)

Clearly, the case r being non-negative integer in Theorem 2.1 means the second
summation of the right hand side of (2.2) vanishes. It follows from (2.3) and
Theorem 2.1 that we state the following result.

Corollary 2.2. Let m,n,r be nonnegative integers. Then, for g-commuting vari-
ables  and y such that xy = qyz,

m

Z[ ] [n+k]q 2™ k== (") Byt kmrq (v)

. _ Z [ ] [m + k] (—z)**q —-n(m»k+1)+(""‘)Bm_,_k_w(z +y). (24)

Since the classical Bernoulli polynomials satisfy the different equation, as follows,
(see, e.g., [1))
B.(z +1) = Ba(z) =nz"! (n>0), (2.5)

so by taking ¢ & 1,m = n,z = 1 and then substituting = for y in (2.4), we get that
for nonnegative integers m, r,

5 () et

k=0
k+m odd

- .;.f: ( ) (m +h- )(-1)m-k(m +k)a™kr=1 (2.6)
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which was discovered by Alzer and Kwong [3] and used to deduce some interesting
identities for the classical Bernoulli numbers including the resuit:

m-—1
> (m) (m+k) (m+{c—r)3m+k_,_j =0 (0<j<m-2-7), (27)
prard k T J

k+m odd

which extends two formulae due to Kaneko [14], Chen and Sun [7], who proved
(2.7) for the special cases j = 1,7 =0 and j = 3,r = 0, respectively.

On the other hand, since By q(z) = 1, so by setting r = 1 in Theorem 2.1, we
immediately obtain the following result.

Corollary 2.3. Let m, n be nonnegyative integers. Then, for g-commuting variables
z and y such that zy = qyz,

i [m] Im—kq—nk—(";”') Bn+k+l.q(y)
k q

= n+k+1],
- = [n k= n(mtk+1)+(531) Bmik+14(2 +y)
Eo[k]q( 2" P Tmr k10,
_1ya+l,m+n+l [m]g! - [n]y!

It becomes obvious that by taking ¢ = 1 and z + y + z = 1 in Corollary 2.3,
with the help of the symmetric distribution of the classical Bernoulli polynomials
B,.(1 - z) = (-1)*B,(z) for non-negative integer n (see, e.g., (1}), we obtain the
result of Sun (28] on the classical Bernoulli polynomials, namely

_1ym S (™) gk Butksr@) | ia S~ (1) ook Bk (2)
1) kzzo(k)x n+k+1 +(=1) kzﬂ:)(k)z m+k+1
m! - n!

= (za)ymn (m+n+1)

(m,n>0). (2.9)

See also (7, 10} for different proofs of (2.9). It is worth noticing that the formula
(2.9) can be used to give the formula of Neuman and Schonbach [25] on the classical
Bernoulli numbers. For example, substituting ¢ —a for z and making the summation
operation 2::11 in both sides of (2.5), we get that for non-negative integers a,n,

a-1
Ba(1-a)=Bn+(-1)"n) (a—i)"". (2.10)

i=1
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Hence, by setting z = a,y = 0,z = 1 —a in (2.9), in light of (2.10) and the familiar
binomial theorem, we obtain that for non-negative integers m,n, a,

n nt+k+l m—k m+1 m+k+l n—k
-1 “E( )n+k+1 e Z( )m+k+1“

m! - n! m+n =, n , .
= ma Fntl _ Z'I. (O. - 'l)m, (2.11)

i=1

which was considered by Neuman and Schonbach [25] from the point of view of
numerical analysis. For different proofs of (2.11), one may consult [2, 6).

3. THE PROOF OF MAIN RESULT

In order to complete the proof of Theorem 2.1, we need the famous ¢-Chu-
Vandermonde summation formula described in [9], as follows.

Lemma 3.1. Let r be a positive integer, and let .1 ¢, be the basic hypergeometric
series defined by

(>
ai,az,. )a?'+l (al:a21~--7ar+l;q)n n
r r W4l = t 3.1
+l¢ [ b17b2) ' ] n=0 (q:blth;"'rbr;Q)n ( )
with (a1,...,8m;q)n = (@1;@)n - - - (@m;q)n. Then, for any non-negative integer n,
g% a at(h/a1;9)n
lg gl = 220 dn 3.2

We next give the detailed proof of Theorem 2.1.
The proof of Theorem 2.1. We firstly state the addition theorem for g-Bernoulli
polynomials, i.e., for g-commuting variables z and y such that zy = qyz,

n

Bhg(z+y) = Z [:] " *By (y) (n>0), (3.3)
q

k=0

which is easily derived by applying (1.4), (1.5) and the Cauchy product (see also [24,
Theorem 2.2 for a similar proof). Let k € [0,7] and let A be a variable associated
with k. With the help of (3.3), we discover

Zn: [:] (—z)" kg Bmtksrg(z +9)

= (m+k+1)gr

= (—z)"kg* " mtk+r T
e i o L R O
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If we change the order of the summations in the right hand side of (3.4) then the
above identity can be rewritten as

i ["] (—z)"*g* Bmiksrg(T +Y)
q

ol L [m + k +1]g;r
men+r n—k X
mtntr—i m+k+r] (-1)""q

,Z; z ) Z [ ] [ . (3.5)

For convenience, in the following we a]ways denote M by

n —1\yn—k )
M=% :} [m+,’°+r] [(:),6—4_{’]. (3.6)
k=0 q t g\ ®r
It is trivial to reduce M. Observe that for any integer 7,
1 r

= (1 g L Dmik (3.7)

[m+k+1]g;r (@ Dmtker

Hence, by applying (g;9)m = (¢;9)n(¢"*};¢)m—n for any integers m, n, we obtain
(=1)*¢*(4: 9)n (g ) me+

_l n 1_ r

(=07-a) ,; (% D)e(q Dn-(2: )i (6 Dmtktr—i

(=1)*(1 — )" (6; Dm v (=D*g*(g"**; Qg™ !5 q)x (3.8)
(69i(g Dmer—i £ @e(@™ gl

M

If we take a = ¢* in the following identity (see, e.g., [9, pp. 24]):

S CYLIT IV G e
™o = GO (-2) ) @9
then we get

=k, k k
@™k = %l_’r?z;;—:k(—l)"fk"*(') = (" q)k(~1)k g~ (), (3.10)

It follows from (3.8) and (3.10) that

= =1)"(1-9)"(¢:9)m = q'\""‘"‘(:)(q—n;q)k(qmﬂ;q)k
B (q; q)i(q; q)m+r—i kX—: (q; q)k(qm+r—i+l;q)k . (311)

To determinate the value of the variable ), with the help of Lemma 3.1, we choose
A=—kn+ (*3') and get

M o= CED0-97G9m ¢V
(@9):(6 Dmer—i (@ q)n
(11 = 9™ g ) 12

(@ 9)i(@™ Y Pntr—i
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It is easy to see that (¢" % q)n = (1 — ¢"%) - (1 — ¢"*"~"1), which means
(@ 5g)n=0whenr<i<n+r—landforn+r<i<m+n+r,

(@50 = (1) g (L = g (1= g
o (c1)ngrtr-i+(3) (8 Dior ,
( 1) ' (qu)t-r—n (3 13)

So if we take A = —kn + (*3*), then we get that for integer r > 1,

" " OSiST—l»
M=<0, r<i<n+r-1, (3.14)
(l _ q)rqn(m+1+r—i)+(;)%‘ﬁl i—:'n—n]q’ n+r<i<m+n+r,

and for integer r <0,

M= 0<i<n+r-1, (3.15)
(1 —-q)'q n(m+1+r—i)+(3) %—‘lqu'q‘j' . g T <i<m+n+r.
Hence, by applying (3.7), (3.14) and (3.15) to (3.5), we obtain
i ( z)n—k —n(m+k+1)+(*31) Biniktrg(z +y)
= [m+k+ 1
r—1 r—i.
=(-1 n 1~ r zm+n+r—iBi (q rQ)n
(1ri-9 Zo ) (0:9)i(@™ 5 Q)ntr—i
m— k —nk— (""") Bn+k+f.q(y) 3.16
+§[ ] [n+k+1), (3.16)
Since (¢;q)m = (¢;9)n(¢"+'; ¢)m—n for any integers m and n then
—i (QvQ)n+r— 1—i
" t; n vd)ndr=1—i—(r—1-1i TN 3.17
(@75 9n = (0 Dntrotmin(r1-i = @D 3.17)
and @a)
m41, = i = D d)mAntr—i 3.18
(q vq)n+'r—t (q q)m+n+ i-m (q’ q)m ( )
It follows from (3.17) and (3.18) that
r—1 r—i,
:L'm+n+r-‘B, (q ) q)ﬂ
2 o GO

gmtn+l (g Q)m(q,Q)n m + n + r] [n +r—-1- z]
(q Q)m+n+r =0 q n e

x xR o (y).  (3.19)
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Thus, combining (3.16) and (3.19) gives the desired result. This concludes the proof
of Theorem 2.1.
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