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Abstract

Frequency assigmmnent problem was produced in research-
ing mnobile communication networks. A proper total coloring of
a graph G is a coloring of hoth edges and vertices of G such that
no two adjacent or incident elements receive the samne color. As
known. the vertex distinguishing total coloring is one of suit-
able tools for investigating the frequency assigiment problem.
We introduce a new graph total coloring, called (4)-adjacent
vertex distinguishing total coloring ((4)- AVDTC), in this pa-
per. Our coloring contains the adjacent vertex distinguishing
total coloring. The minimum nunber of colors required for
every (4)-AVDTC of G is called the (4)-AVDTC chromatic
number of (7. We will show that using at most A(G) + 4 col-
ors can do at least 4 different adjacent vertex distinguishing
actions to some communication networks G. The exact (4)-
AVDTC chromatic numbers of several classes of graphs are
determined here and a problemn is presented.

Keywords: Total coloring; Adjacent vertex distinguishing to-
tal colorings: (4)-adjacent vertex distinguishing total colorings
MSC(2000): 05C15

1 Introduction

Graph coloring theory lhas a wide range of applications in wmany
fields, such as physics, chemistry, computer science, network theory,
social science. and nore specific as, timme tabling and scheduling, fre-
quency assigninent, register allocation, computer security, electronic
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banking, coding theory, communication network, logistics and so on.
Since customers have increased dramatically, it will yield a conflic-
tion hetween the increasing customers and the limited expansion of
communication network resources. In order to solve the frequency
assigiunent problem, some scholars put forward the concept of vertex
distinguishing colorings of graphs, which it had been concerned and
studied extensively over one decade.

Burris and Schelp [3] introduced a non-traditional graph edge
coloring: A proper edge coloring of a simnple graph G is called a
vertex distinguishing edge coloring (VDEC) if for any two distinct
vertices u and v of G, the set of colors assigned to the edges incident
to u differs from the set of colors assigned to the edges incident to
¢. The miniimum munber of colors required for all VDECs of G was
denoted by x L((). Let ng -~ ng(G) denote the number of vertices of
degree d in G. It is clear that (X ;((lc")) > ngy for all d (# 0) with respect
to §(G) < d < A(G). Furthermore, Burris and Schelp presented a
famous conjecture: Let G be a simple graph having no isolated edge,
at most one isolated vertexr, mazimum degree A and minimum degree
8, and let k be the smallest integer such that (%) > ny for all d (# 0)
with respect to § < d < A. Then k < x4(G) < k+1. A weak
version of the VDEC was introduced in [5], named as the adjacent
verter distinguishing edge coloring (AVDEC). Zhang et al. in [5)
required that for each edge xy of G. the set of colors assigned to
the edges incident to x differs fromn the set of colors assigned to the
edges incident to y in an AVDEC, and used x.,(G) to denote the
smallest nunber of £ colors required for which G admits a k-AVDEC.
They also proposed a conjecture: Every simple graph G having no
isolated edges and being not a cycle of five vertices holds x!,(G) <
A(G)+-2. Vizing in |[4] and Behzad in [1] presented independently the
famous total coloring conjecture: Let G be a simple graph with order
n > 2, then G has ils total chromatic number x"(G) < A(G) + 2.
Based on the VDTC. Zhang et al. in [6] introduced a concept of
adjacent verler distinguishing lotal coloring (AVDTC), and showed
a conjecture: Let G be a simple graph with ordern > 2; then G has its
AVDTC chromatic number x ! (G) < A(G)+-3. It is very difficult to
settle down the above conjectures, and no counterexaimnples to every
one of the conjectures have heen discovered up to now. As attacking
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the ahove problems and conjectures, we present several new colorings
with many distinguishing constrains for considering graph coloring
problems comprehensively than before. We will show that using at
most A(G) t-4 colors can do at least 4 different distinguishing actions
to some communication networks G.

Let G be a simple graph and f : V(G) U E(G) — {1,2,--- ,k}
be a proper total k-coloring of G. Setting C(f,u) = {f(e) : e €
Ne()}, C(fu) - {f(2) % ¢ N} U{f)}, Clf,u] = C(f,u) U
{f(w)} and Ca|f,u] — C(f,u) U C(f,u), where N(u) stands for the
set of neighbors of a vertex u, Ne(u) is the set of edges incident
to u. Let C{f;x} = {C(f,x),C{f,z),C[f,z],Co[f,z]}. For each
edge xy € E(G), the notation C{f;z} # C{f;y} means that the
four proper distinguishing coustraints C(f,z) # C(f,y), C{f,z) #
C{f.y), C|f.x] / C|f,y| and Calf,z] # Ca[f,y] hold true at the

saime tine.

Definition 1.0 [6] Let f: V(G)UE(G) — {1,2,...,k} be a proper
total coloring of a simple graph G. We call f a k-adjacent vertez
distinguishing total coloring (k-AVDTC) of G if C[f, u] # C|f,v] for
each edge uv ¢ E(G). The minimum number of k colors required for
which G admits a k-AVDTC is denoted as x // (G) called the AVDTC

chromatic number of G.

Definition 1.1 [7| Let f: V(G)UE(G) — {1,2,...,k} be a proper
total coloring of a simple graph G. We call f a k-adjacent vertex
strong distinguishing total coloring (k-AVSDTC) of G if Cyf, u] #
Co|f,v] for each edge uv € E(G). The minimum number of k colors
required for which G admits a k-AVSDTC is denoted as x/,(G)
called the AVSDTC chromatic number of G.

Motivated from the above definitions, we introduce a new graph
total coloring. called (41)-adjacent vertex distinguishing total coloring
((4)-AVDTC) as follows.

Definition 1.2 Let f: V(G)UE(G) -+ {1,2,...,k} be a proper to-
tal coloring of a simple graph G having N(u) # N(v) for vv € E(G).
We call f a k-(4)-adjacent vertex distinguishing total coloring(k-(4)-
AVDTC) of G if C{f:x} # C{f:y} for each edge zy € E(G). The
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minimum number of & colors required for which G admits a k-(4)-
AVDTC is denoted by x&)ns(G) and called the (4)-AVDTC chro-

matic number of G.

Clearly, complete graplhs do not admit (4)-AVDTCs. For a simple
graph G, it is not hard to see x7.(G) < x4 (G) < x(4)as(G). The
following results will be used in the next section.

Lemma 1.3 (6] Lel G be a simple graph. If G contains adjacent
vertices whose degrees are the mazimum degree A, then x4, (G) >
A(G) +2

Theorem 1.4 (7] Lel P, be a path with order n (n > 3). Then

[ 4, if n=1 (mod 2);
X u\I(P") { 5. 1f n = (InOd 2).

Theorem 1.5 |7] Let C,, be a cycle of order n. Then

" 4, if n# 4,10 and 0 (mod 2);
X ast(Cn) { 5, otherwise.

Theorem 1.6 (7| Let K., be a complete bipartite graph with
m>n>1andm t n>3. Then

mil. ifm n>2o0orm>2andm>n=1;
ll?f([\'" n) m - 2’ 7f m -- == 1;
m t 3, Lf m = n.

2 Main results

Theorem 2.1 Let P, be a path with ordern > 4. Then X {4),,(Pn) =

5.

Proof We can write P, - vyvg -+ - v,— v, and define a total coloring
f of P,. We cousider Py - vjvauzvy, first of all. By the distinguish-
ing rule, without loss of generality, we set f(v1) = 1, f(v2) = 2, then
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f(v3) ~ 3 (otherwise, C(f,v1) -: C(f,vq)) and f(vg) = 4 (otherwise,
C{f,vi) = C{f,vi41),¢ = 2,3). Set f(vive) = 3, then f(vous) =
4 (otherwise, Cy|f,v1| - Ca|f,v2]) and f(vsvs) = 5 (otherwise,
Ca[f,va] = Ca|f,vs] or C[f,va] = C[f,v3] or Co[f,v3] = Calf,v4]).
Therefore, we obtaiu x&)as(PI;) =z 5. Notice that x’("i)as(Pn) >
X (4)as(P1) 5 for n > 5. We show xz"l)as(P,.) < 5 in the following.
In fact, we need only to prove that P, has a 5-(4)-AVDTC.

By induction on orders of P, for n > 5. Ohviously, Ps has a
5-(4)-AVDTC. Suppose that f is a 5-(4)-AVDTC of P, for n > 5.
Now we show that P,y has a 5-(4)-AVDTC f* by f*(vp-1) = oy,
f*(opavn) - oo, f*(va) - ay, where {a1,a2,a3} C {1,2,3,4,5},
and defining f*(u) - f(u),u ¢ V(Pn); f*(vnvns1) = ai1; f*(Vng1) =
ag € {1,2,3.4.5}\ Cy|f. vn].

By the definition of the coloring f*, we have a table

vertices C(/7v) C{™v) _ ClIN ol Colf v

v C(fv) C{v)y  Clfiv] Calf, vi]
Un {(k],():g} {(Y[,(Y;h(!q} {011,02,063} {011,042,03,0!4}
Unttl  {ay} {ces, g} {a1,a4} {1, 03,4}

and claim that f* is a 5-(4)-AVDTC of P, s hy the induction hy-
pothese. Therefore, \/2’1)"8([’,,) =5 for n > 4. a

Theorem 2.2 Let C, be a cycle with order n > 4. Then
1 (v ) n
X(él)us( 7N 2

Proof We denote a cycle C,, of order n > 4 as C, = vjvg---vv;
and define a total coloring f of C, in the following. First, we con-
sider the case Cy =+ vjvguzvy. By the distinguishing rule, without
loss of generality, we let f(v) =+ 1, f(ve) = 2, f(vs) = 1, then
S(vq) = 3 (otherwise, C(f,vi) = {1,2} for i = 1,2,3,4); next set
Sf(ore) - 3, then f(vgvg) 4, f(vzvg) = 5 (otherwise, Co[f, vo] =
Caolf.v3]) and f(uyeq) =+ 2 (otherwise, Co[f,v1] = Ca[f,v2]). There-
fore, xz’d)ns((h) = 5. Notice that xz"l)as(C',,) > x’("l)as(C4) = 5. We
prove x’("‘)as(C,,) < 5 hy showing that C, has a 5-(4)-AVDTC.

Case 1. n.= 0 (mod 5). For 1 <1 < n, we define a total coloring
f of C, as follows: f(v;)  1.i =1 (mod 5); f(v;) = 2 for i =
2 (mod 5): f(v;) = 3 for i 3 (wod 5); f(v;) = 4,7 = 4 (mod 5);
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f(v;) - 5 for i = 0 (mod 5). f(viviy1) = 3 for ¢ = 1 (mod 5);
Fleiviga) = 4 for i = 2 (mod 5); f(viviy1) =5 for i = 3 (inod 5);
flvivigr) - 1 for i =i 4 (mod 5); f(viviy1) = 2 for 7 = 0 (inod 5).
This coloring f shows

Tvertices C(f,v:) C{(f,vi) C[f,v] Ca[f,vi]

TTwy {2,300 (1,25} {1,2,3} {1,2,3,5}
vy (3,4} {1,2,3} {2,3,4} {1,2,3,4}
- {45}  {2.3,4} {3,4,5} {2,3,4,5}
" {1,5}  {3.4,5} {1,4,5} {1,3,4,5}
o5 {1.2} {1,455} {1,2,5} {1,2,4,5}

For other vertices of C,,, we have C(f,v;) = C(f,v;), C(f,vi) =
C(f.vj), C|f.vi| = C[[.vj], Co|f,vi] = Ca|f,v;] for ¢ = j (1nod 5).
Therefore, X {4),,(Cu) == 5 since f is realy a 5-(4)-AVDTC of C..

Case 2. n . 1 (mod 5). We construct a total coloring f of C,
as follows: f(v) = 3, f(vn) — 4, f(nive) = 1, f(vpv1) = 5. For
2<i<n l.weset f(r;) - 1 for i =1 (mnod 5); f(v;) = 2
for # = 2 (mod 5): f(v;) = 3 for i = 3 (mod 5); f(v;) = 4 for
¢ = 4 (mod 5): f(v;) 5 for v = 0 (mod 5). f(vvi+1) = 3 for
¢ 0 1 (mod 5): f(eivigr) - 4,4 5= 2 (mnod 5); f(viviy) = 5 for
1= 3 (mod 5); f(vivig1) -1 for i = 4 (mod 5); f(viviy1) = 2 for
¢ = 0 (mnod 5). Based on the coloring f, we have the color sets
C{f,v:} of the key vertices v; in the following tabhle

Settices C(Jio) G Clhed] Calfood

” 0,57 12,3,4) {1,3,5] {1,2,3,4,5]
U2 {14} {23} {1a234} {172a374}
vy (4.5} {2,3,4} {3,4,5} {2,3,4,5}
v (1,5} {3.4,5} {1.4,5} {1,3,4,5}
vs (1,2} {1.4,5} {1,2,5} {1,2,4,5}
v 2.3} {1,2,5} {1,2,3} {1,2,3,5}
o (3.4}  {1.2,3} {2,3,4} {1,2,3,4}
vy (1.5} {2.3,4} {3,4,5} {2,3,4,5}
" (1.5} {3.4,5) {1,4,5) {1,3,4,5}
V1 (1.2} {1.4,5} {1,2,5} {1,2,4,5}
vaer {12} {45} {1,2,5) {1,2,4,5}
n (2.5} {3,4,5} {2,4,5} {2,3,4,5}
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For other vertices of C,, we have C(f,v;) = C(f,v;), C{f,vi) =
C(f,v;), C|f.vi] == C|f, v;]. Colf,vi] = Ca[f,v;] wheni = j (mod 5)
and 6 < 4,5 <n -2, We conclude that f is a 5-(4)-AVDTC of C,,
thus, 2’4)“(0") = 5.

Case 3. n = 2 (inod 5). We make a total coloring f of C,
by defining f(vy) = 3, f(vn) = 4, f(vive) = 1, f(vav1) = 5; for
2<i<n-1,welet f(v;) .~ 1fori=1 (iod 5); f(v;) =2 fori=
2 (mod 5); f(v;) = 3 for i ::3 (mod 5); f(vi) = 4,7 = 4 (mod 5);
f(v;) « 5 for ¢ = 0 (mod 5). f(viviy1) = 3 for ¢ = 1 (mmod 5);
fleiviyy) = 4 for ¢ - 2 (mmod 5); f(viviyy) = 5,2 = 3 (mod 5);
fluivipy) - THor i . 4 (mod 5); f(vivig1) = 2 for ¢ = 0 (mod 5).
The coustruction of the coloring f enables us to list the color sets
C{f.vi} of the key vertices v; in the following table

vertices C{f,v;) C{f,vi) C[f,vi] Ca[f,uvi]

o TLEY {2,304 11,3,5) {1,2,3,4,5)
em o {14} {23} {1,2,4} {1,2,3,4}
v {45} {234} {3,4,5} {2,3,4,5)
vi {15} {3,4,5} {1.4,5)} {1,3,4,5}
v {12} {1,4,5} {1.2,5} {1,2,4,5}
w {23} {1,2,5} {1,2,3} {1,2,3,5)
v {34} {123} {2,3,4} {1,2,3,4}
w {45} {2,3,4}) {3,4,5} {2,3,4,5}
v {15} {3,4,5} {1,4,5} {1,3,4,5}
10 {].2} {1,4,5} {1,2,5} {1,2,4,5}
va {23} {145} {1,2,3} {1,2,3,45)
w35 (134 (45 (1315)

For other vertices of C,, we have C(f,v;) = C(f,v;), C(f,v:) =
C{f,v;), C|f.vi] = C|f, v}, Co|f,vi] = Ca[f,v;] wheni = j (mod 5)
and 6 < 4,5 < n--2. The above deduction shows that f is really a
5-(4)-AVDTC of C,,, that is, X,(,A)ns(C") = 5.

Case 4. n 3 (mod 5). We coustruct a total coloring f of C,
in the way f(v1) 5, f(v2) 3, f(v3) =2, f(vn-1) =2, f(vn) =1,
flrywg) = 1. f(vouy) = 4, f(vsvg) = 3, f(vn—1vn) = 4, f(vavi) = 2;
ford <i<n 2, f(v;) = Lfori=1(mod 5); f(v;) =2 fori=
2 (mod 5): f(v) 3 fori .3 (mod 5); f(v;) = 4,7 = 4 (inod 5);
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f(v;) = 5 for ¢ = 0 (mod 5). f(vivig1) = 3 for ¢ = 1 (mod 5);
fleiviyy) - 4d — 2 (mod 5); f(vivigy1) = 5 for ¢ = 3 (mod 5);
f(vivigg) = 1 for i = 4 (mod 5); f(vivip1) = 2 for 2 = 0 (1nod 5).
This coloring f gives the following table

) Vel tlces C(f) ’U;) C(f’ ’U,) C[f7 ’Ui] C?[fv ‘Ui]
] {1 2} {1 3 5} {1,2,5} {1,2,3,5}
e {1,4)  {2.3,5) {1,3,4) {1,2,3,4,5)
Uy {3,4} {2,3,4} {2,3,4} {2,3,4}
(on {1.3} {2,4,5} {1,3,4} {1,2,3,4,5}
Uy {1,2} {1,4,5} {1,2,5} {1,2,4,5}
g {2,3} {1,2,5} {1,2,3} {1,2,3,5}
v {34} {123} {2.3.4) {1,2,3.4}
VR {4,5} {2,3,4} {3,4,5} {2,3,4,5}
o {15} {3,4,5) {L4,5} {1,3,4,5)
vl0 {1.2}  {1,4,5} {1,2,5} {1,2,4,5}
(U {2.3} {1,2,5} {1,2,3} {1,2,3,5}
U, . | {3.4} {1,2} {2,3,4} {1,2,3,4}
Up {2,4} {1,2,5} {1,2,4} {1,2,4,5}

For other vertices of C,, we have C(f,v;) = C(f,v;), C(f,vi) =
C(f,v), Cf, vi] = C[f,v{], Ca|f,vi] = Co[f,vj] wheni = j ( mod 5)
and 6 < i,j < n--3. Therefore, f is a 5-(4)-AVDTC of C,, and hence
X (4)as(Cn) =7 5.

Case 5. n - 4 (mnod 5). We build up a total coloring f of
Ch by setting f(vn. 1) 1, f(va) = 4, f(vn-1va) = 2, f(van1) =
{6}; for 1 < i < mn -2, f(v;) = 1 forz’ = 1 (mnod 5); f(v;) = 2
for i = 2 (mod 5): f(v;) = 3 for ¢ = 3 (mod 5); f(vi) = 4 for
i=4 (mod 5): f(vi) -~ 5 for i = 0 (mmod 5). f(viviy1) = 3 for
i = 1 (mod 5): f(v;viyy) 4,4 = 2 (mod 5); f(v;vig1) = 5 for
¢ = 3 (mod 5); f(viviy1) = 1 for i = 4 (mnod 5); f(viviy1) = 2 for
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7 -: 0 (mod 5). Therehy, we have

vertices C(f,vi) C(f,vi) C|f,u] Calf,vi]
o {3,5] 11,24} {1,3,5] {1,2,3,4,5]
v (3.4} {123} {2,3,4) {1,2,3,4}
vy {45}  {2,3,4} {3,4,5} {2,3,4,5)
o {1,5}  {3,4,5} {1,4,5} {1,3,4,5}
vs {12} {1.4,5} {1,2,5} {1,2,4,5}
v {23} {1.2,5} {1,2,3} {1,2,3,5}
er {34} {1.2,3} {2,3,4} {1,2,3,4)
Uy {4.5}  {2,3,4} {3,4,5} {2,3,4,5}
w {15} {3.4,5} {1,4,5)} {1,3,4,5)}
o {1,2}) {145} {1,2,5)} {1,2,4,5)
wes {23} {1.2,5) {1,2,3} {1,2,3,5}
w-n  {3.4}  {1,2}  {2,3,4} {1,2,3,4}
vaer {24} {1.2,4) {1,2,4} {1,2,4}
v {25} {14} {2,4,5} {1,2,4,5}

Clearly, C([ vi) - C(fs vj) <fv vi) = C(fa vj)a C[fa Ui] = C[f, 'Uj]
and Colfovi]  Colf. v, ] when i = j (mnod 5) and 6 < 4,5 < n—4.
Therefore. f is a 5-(1)-AVDTC of C,,, thus, x (4)“(0") =5

The proof of the theorem is completed. O

Theorem 2.3 Let K, , be a complete bipartite graph with m >
n>1and m-4-n>3. Then

mill, ifm-n>220rm>2andm>n=1;

X(4)ns(1"" n) m 4 2, /f mo- T == 1;
m {4, ifin=n.

Proof We can describe a complete bipartite graph K, , by its
vertex set V(K,,, n) o {ursug, . um U {vy, ve, ..., v, } and its edge
sel. £(K,,.,) {ujv; 4 - 1,2,...,m, § =1,2,...,n}. Without
loss of gener alu_v suppose that f is a total coloring of Ky, , and S
is a color set under f. For the purpose of clarity, we write C(f,u) =
S\C(f.u), C(f.u) - S\C(f.u). Clf,u] = S\CIf,u] and T, u] =
S\ Co[f.u] for u ¢ V(K,,.0).
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Case 1. m - n>2 orm >2and m >n = 1. It is obvious
for case i > 2 and . > n - 1. Now we consider case m — n > 2.
By Theorem1 1.6, we have xz’q)as(l{m,n) > xo(Kmn) =2 m + 1.

Now we prove that Ky, , has an (m + 1)-(4)-AVDTC f by setting

flw)) =41 1fordi=1,2....,m; f(v;) = 1for j =1,2,...,m
fluivg) - 441 fori+j4-1 < m+1and f(u;v;) = i+j+1 (mod m)
foriyj+1>milandi=1,2....,m,7=1,2,...,n. Then we have

C(f,ui) # C(f.v;) and C[f,u;] # C|[f,v;] since the degrees d(u;) =
n and d(v;) ~ m with 1 <i < mand 1 < j < n. According to
the definition of f, we obtain C(f, u;) # C(f,v;) because C(f,u;) =
{1.i v 1} and C{f.v) =~ {1.2,...,m+ 1}; Co[f,us] # Ca[f,v;] for
Colf,w] = S\ Colf w] ~ {m 41}, Co(f,wi] = S\ Coff,w] = {5}
for 2 < i <m, Cy|f.v;] S\ Cylf,v;] =0 for 1 < j < n, where
S={1,2,....,m-t 1}. Therefore, f is a m + 1-(4)-AVDTC of Ky, »,
which means x E’:l)(,.e(”"7",") ©om 4 1.

Cuase 2. - n - 1. By Theorem 1.6, x2’4 0s(Kmn) 2 Xast(Kmn)
> m 4 2. Without loss of generality, we define a total coloring f of
Kyn by defining f(uy) - mt 2, f(u;)) =2fori=23,...,n+1;
flu;) =~ 1forj 1.2..... ny fluwy) =i+j+lfori+j+1<
mt 2 and f(uw;)) -4 1 jt1(modm)fori+j+1>m++2
i~ 1,2.....nt Vand 5 1,2,...,n. Then we have C(f,u;) #
C(f,v;) and C|f,u;] / C|f,v;] for d(u;) = n and d(v;) = m when
1<i<nitland 1l < j < n According to the definition of f,
C(f,ui) / C(J.vj)since C(f,uy) = {1,m+2} and C(f,u;) = {1,2}
fori - 2.....0 4 1 and C(f.vj) == {1,2,m -2} for j =1,2,...,n.
And, Cyf. ui] / Colf,vj| for Calf,ui]l = S\ Co[f,wi] = {i + 1} for
i=1.2,....n11and Colf,vj] = S\Co[f,vj]=0forj=1,2,...,n,
where S = {1.2,....m +2}. Therehy, we claim that f is an (m + 2)-
(4)-AVDTC of K,,.,. namely, x 2'4)(! (Kma)=m+2.

Case 3. m  n. By Theorem 1.6, X {4),s(Kmm) 2 X a5t(Km,m) =
m+ 3. If ,\»-2’4)"5(1(,,,.,,,) -+ 3, then there must exist Coff,w;] =
Colf.vj| for some w;.v; with 1 < ¢,j < m under the total color-
ing f: a contradiction. So y z/.l)a.s(l{'"v"') > m + 4. We now show
le&l)a.s(l\”"v"') <'m { 4 hy delining a total coloring f as: f(uiv;) = j
for 1 < j < m: f(ujwj) = (i+j) (mod m +2) for 2 <7 < m
and 1 < j <m; f(uy) - m 11, flu)) = m+3for2 <i<my
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Figure 1: An example for illustrating Case 2 iu the proof of Theorem 2.3.

f(vj) -:m+ 4 for 1 < j < m. Therehy, we can compute
(@) C(fou))\{m 3, m14} = {m+1,m+2}, C(f,u;)\{m+3, m+

C(fov)\{m 1 3,mi4} - {j Ljtr1}for2<ji<m.

() C(fowr)  {m 4 1,m+ 4}, C(f,u) = {m + 3,m + 4} for
2<i<m, C{forj) - {mt1lmi+3,m+4}for1<j<m.

(i) m4 4 ¢ C|f,ui] for 1 <4 < m and m +4 € C[f,v] for
1< j<m.

(iv) Calf.uy] - {m12,m+3}, Colf,u;] = {i—1,i} for2 < i < m;
Colfom] = {2m+2}, Colf,vj] = (i —Lj+1} for2<j<m—1,
Colfovm] = {m 1}

The above (7), (#i), (#4) and (iv) enable us to conclude that f is
really1 an (m 1 1)-(4)-AVDTC of K,,.m, and hence Xl(il)as(Kmsm) =
m | 4.

The theorem is covered. (]

By some empirical data, we present a problem for further re-
searching vertex distinguishing colorings:

Problem Let G be a simple, connected graph with n > 3 vertices. If
N(u) # N(v) for every edge uv ¢ E(G), then x”4)as(G) < A(G)+4.
Furthermore, whether there erists a proper suggmph H of G such
that X zl-l)us(]-l) > X ,(I-'l)(m(c)'
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