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Abstract. Permutation tableaux were introduced in the study of totally
positive Grassmannian cells, and are connected with the steady state of
asymmetric exclusion process which is an important model from statistical
mechanics. In this paper, we firstly establish a shape preserving involution
on the set of permutation tableaux of length n, which directly shows that
the number of permutation tableaux of length n with k essential 1’s equals
the number of permutation tableaux of length n with n — k unrestricted
rows. In addition, we introduce three combinatorial structures, called free
permutation tableaux, restricted set partitions and labeled Dyck paths.
We discuss the properties about their internal structures and present the
correspondence hetween the set of free permutation tableaux of length n
and the set of restricted set partitions of {1,2,...,n}, and we also give a
bijection between the set of restricted set partitions of {1,2,...,n} and the
set of labeled Dyck paths of length 2n and finally make a generalization of
the latter bijection.
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1 Introduction

Permutation tableaux were introduced by Steingrimsson and Williams [19]
in the study of totally positive Grassmannian cells [12,16,21). They are
closely related to the PASEP (partially asymmetric exclusion process) mod-
el in statistical physics [4,7-9]. Permutation tableaux are also in one-to-one
correspondence with alternative tableaux, see Viennot {20] and Nadeau [14].

A permutation tableau is defined by a Ferrers diagram possibly with
empty rows such that the cells are filled with 0’s and 1’s, and

(1) each column contains at least one 1,
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(2) there does not exist a 0 with a 1 above (in the same column) and a
1 to the left (in the same row).

The length of a permutation tableau is defined as the number of rows plus
the number of columns. A 1 is called topmost 1 if it is the topmost 1 of some
column. A 1 is said to be essential if it is the topmost 1 of some column
or it is the leftmost 1 of some row. A 1 is called superfluous if it contains
a 1 above itself in the same column. A 1 is called superfluous-essential 1
(sup-ess 1 for short), if it is the leftmost 1 of some row but it is not the
topmost 1 of some column. Note that there is at most one sup-ess 1 in a
row. A 0 is said to be top-restricted if there is a 1 above itself in the same
column. Similarly, a 0 is defined as a left-restricted O if there is a 1 to its
left in the same row. A row (resp., column) is restricted if it contains a
top-restricted 0 (resp., left-restricted 0), otherwise it is called unrestricted
row (resp., unrestricted column). A permutation tableau T of length n is
labeled by the elements in the set [n] = {1,2,...,n} in increasing order
from the top right corner to the bottom left corner. The set [n] is referred
to as the label set of T. We use (4, 7) to denote the cell with row label i
and column label j. The shape of a permutation tableau T is defined as
the shape of the underlying Ferrers diagram of T' with empty rows allowed.
In other words, the shape of T is a partition (A1, Ag,...,Ax), where A; is
the number of cells in i-th row of the underlying Ferrers diagram of T', for
i=1,2,...,k. For example, Figure 1.1 exhibits a permutation tableau of
shape (5,5,4,2,1,0) and length 11. There are six essential 1's in cells (1, 5),
(1,10), (2,3), (2,8), (4,6) and (9,10), but there is a unique sup-ess 1 in
cell (9,10). There are five top-restricted 0's in cells (2,10), (4,8), (4,10),
(7,8) and (7,10), and four left-restricted 0’s in cells (1, 3), (1,6), (1,8) and
(2,6). Rows 2, 4 and 7 are restricted rows, columns 3, 6 and 8 are restricted
columns, and the other rows or columns are unrestricted.

Corteel and Nadeau [6] found a bijection from permutation tableaux
of length n with k columns and permutations of [n] with k descents. Ste-
ingrimsson and Williams [19] established a one-to-one correspondence be-
tween permutation tableaux of length n with k rows and permutations of
[n] with k& weak excedances. By using the conjugate operation on per-
mutation tableaux, Corteel and Williams [8] introduced an involution on
permutation tableaux (equivalently, on permutations) which generalizes the
particle-hole symmetry of the PASEP, and reveals a symmetry in the PT
chain, where PT chain is a Markov chain on the permutation tableaux.
More details on permutation tableaux and permutations can also see [1,5].
On the other hand, Chen, Liu and Wang [2] gave a bijection hetween the
set of permutation tableaux of length n with k rows and the set of linked
partitions of [n] with £ blocks.

In this paper, we firstly establish a shape preserving involution on the
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Figure 1.1: A permutation tableau T of length 11.

set of permutation tableaux of length n to directly determine the equidis-
tribution property of the essential 1’s and unrestricted rows. In addition,
we define a kind of permutation tableaux as free permutation tableaux if
they do not contain any top-restricted 0 or sup-ess 1, and we also introduce
a new class of set partitions, called restricted set partitions. We discuss the
internal structure of restricted set partitions from hoth the standard rep-
resentation and the graphic representation. Furthermore, by utilizing the
bijection of Chen, Liu and Wang [2], we show that the set of free permu-
tation tableaux of length n is in one-to-one correspondence with the set of
restricted set partitions of [n]. Finally, we present a labelling scheme on
Dyck paths and obtain a bijection between the set of restricted set par-
titions of [n] and the set of labeled Dyck paths of length 2n and make a
generalization of the bijection.

2 An Involution on Permutation Tableaux

The objective of this section is to present a simple involution on the set of
permutation tableaux of length n which directly show the equidistribution
of the essential 1’s and unrestricted rows. The involution also deduces
some other interesting properties on the internal structure of permutation
tableaux.

Let T(n) denote the set of permutation tableaux of length n and let
T'(n, k) denote the set of permutation tableaux of length n with k essential
I's. Let T*(n, k) denote the set of permutation tableaux of length n with
k unrestricted rows. We have the following involution and the explicit
construction is given in the proof.
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Theorem 2.1. Forn > 1 and 0 < k < n — 1, there is a shape preserving
involution ¢ on the set of permutation tableauz of length n such that

(1) if T € T(n) is a permutation tableau of length n, then T* = ¢(T) is
also a permutation tableau of length n and *(T) = T;

(2) if T € T(n,k) is a permutation tableau of length n with k essential
1’s, then T* = (T) € T*(n,n — k) is a permutation tableau of length
n with n — k unrestricted rows.

Proof. Given a permutation tableau T € T'(n), we shall first construct a
permutation tableau T* = o(T) € T(n) of the same shape as T and then
we show that (1) and (2) hold for all T and T*.

If T consists of n empty rows, then we set T* = T. Otherwise, we
proceed to construct T* according to the fillings of each row in T. There
are two cases as follows.

Case 1: For any row i of T, if it contains at least one top-restricted 0 but
does not contain any sup-ess 1, then we change all the top-restricted 0’s in
row ¢ to 1’s.

For example, row 2 in the permutation tableau shown in Figure 2.1

contains two top-restricted 0’s in cells (2,13) and (2,14), but it does not
contain any sup-ess 1. Then we change the top-restricted 0's to 1’s. Also
see row 4.
Case 2: For any row i of T, if it contains at least one sup-ess 1 but does
not contain any top-restricted 0, then we change all superfluous 1’s in row
i to 0’s, where the superfluous 1’s are to the left of the leftmost topmost
1 that possibly exists in the row. Here a topmost 1 is called the leftmost
topmost 1 in row i, if it is the leftmost one among all the topmost 1's in
row i.

As an illustration, see row 5 of the permutation tableau T' € T'(15,11)
shown in Figure 2.1. There is a sup-ess 1 in cell (5,14) but there does not
exist any top-restricted 0 in row 5. Note that it contains two topmost 1’s
in cells (5,7) and (5,9), where the 1 in cell (5,9) is the leftmost topmost
1 in the row. Then we change the superfluous 1’s in cells (5,11), (5,12),
(5,13) and (5,14) to 0’s, but we do not change the 1 in cell (5, 8).

The other rows in T that do not satisfy the conditions in either Case 1 or
Case 2 are fixed. Then we have the desired T*. Note that we interchange
top-restricted 0’s with superfluous 1’s in the two cases and there exist
topmost 1’s above the top-restricted 0’s and superfluous 1’s in the same
column. Then it is easily known that the result T* = ¢(T') is a permutation
tableau of length n with the same shape as T and p must be an involution
on T'(n) such that @*>(T) =T.

Finally we prove the correspondence between the number of essential
1’s in T and the number of unrestricted rows in 7*. Note that the re-
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stricted rows in T are either obtained from the rows in T by changing the
superfluous 1’s to 0’s mentioned in Case 2, or exactly the rows in T con-
taining both sup-ess 1’s and top-restricted 0’s. That is to say the number
of restricted rows in T* equals the number of sup-ess 1’s in T'. Moreover,
the number of rows of T* is equal to the number of rows of T" and the num-
ber of columns of T exactly equals the number of topmost 1’s in T. Then
the number of unrestricted rows in T* is equal to the difference between
n and the total number of topmost 1’s and sup-ess 1’s, i.e., the difference
between n and the number of essential 1’s in T'. Hence if T € T'(n, k), then
T* = ¢(T) € T*(n,n — k) is a permutation tableau of length n with n — k
unrestricted rows. The proof is completed. |

For example, Figure 2.1 illustrates the involution ¢ hetween a permuta-
tion tableau T of length 15 with 11 essential 1’s and a permutation tableau
T* of length 15 with 4 unrestricted rows, where the 1’s and 0’s in bold type
are interchanged with each other under the involution ¢.

ol1f{1{oloflo|1]o0] ol1|l1]{ololol1]o
ololo[1|1]ol1]0l o{1{1|1]|1(0l1]0
olol1]l1|1]ol1]o}s olof1|1]1|0]1]o0
&

ololo{olo[o|olol ofl1|1[1|1|lof1]0
ol1)1{2l1f1]1l1ls olololofof[1]1]1
1{1{1f1]1|1]1]1le 111l
ololo|lo|1jl8 & 7 olofolo|1[d ¥ 7
15 14 13 12 11 15 14 13 12 11

T € T(15,11) T* € T*(15,4)

Figure 2.1: Involution .

Consequently, we conclude the equidistribution of the essential 1’s and
unrestricted rows.

Corollary 2.2. The number of permutation tableauz of length n with k
essential 1’s is equal to the number of permutation tebleauz of length n
with n — k unrestricted rows.

In addition, we have the following properties of ¢ about the restricted
columns.

Corollary 2.3. Let T be a permutation tableau of length n with columns
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J1,92+. -+, Jk being restricted. Then columns j1,j2,...,Jk are ezactly the
restricted columns of T* = (T).

Proof. First, we show that if columns jj, j2, ..., jr are restricted columns
in a permutation tableau T, then columns ji, ja, ..., jx are also restricted
in T* = o(T).

For any t = 1,2,...,k, the restricted column j; of T contains at least
one left-restricted 0 in cell (i, j;) for some row i, and there is a 1 to the
left of the 0 in row i. Moreover, there does not exist any 1 above the left-
restricted 0 and the left-restricted 0 in cell (¢, j;) will not be changed under
the action of ¢.

If there is a 1 in row 7 of T to the left of the left-restricted 0 in cell
(2, 7¢) such that it is the topmost 1 of some column j, where j > j;, then
the 1 is also to be the topmost 1 of column j in T* = ¢(T'), namely the
0 in cell (2,7;) is also left-restricted in T and the column j; is preserved
to be restricted in T*. Otherwise, if all the 1’s in row 7 of T to the left
of the 0 in cell (4, j,) are superfluous 1’s, then we consider the topmost 1’s
above these superfluous 1’s in the same columns. Assume that one of these
topmost 1’s is in cell (m, j), where m < i and j > j;. Then the 1 in cell
(m, j) remains unchanged in T, which implies that the 0 in cell (m, j,)
must be left-restricted, i.e., column j; is also restricted in 7.

Next, we prove that ¢ does not increase the number of restricted column-
s, i.e., if column j of T is unrestricted, then column j of T* = p(T') is also
unrestricted. Note that for any 0 in column 7, the entries to the left of
the 0 in the same row must be 0’s. We choose a 0 in column j randomly
and suppose that the 0 is in cell (i, j) for some row i. Then we discuss the
entries to the left of it in the following two cases.

Case 1: If there is a top-restricted 0 in row ¢ to the left of the left-restricted
0 in cell (¢,7), then the 0 in cell (¢,j) is also top-restricted (otherwise
there must exist a left-restricted 0 in column j above the 0 in cell (3, j), a
contradiction to column j being unrestricted). Thus all the top-restricted
0’s in row 1 are either changed to 1’s or unchanged simultaneously under
the action of ¢, which implies that there does not exist any left-restricted
0 in column j of T*.

Case 2: If all the 0’s in row ¢ to the left of the 0 in cell (%, j) are not top-
restricted, then the cells (m, £) are filled with 0’s, for any m < i and £ >j .
Therefore the 0’s in row i to the left of cell (¢, j) are preserved to be 0's in
T*, i.e., the 0 in cell (i, 7) is also not left-restricted in T™. Since we choose
the 0 in column j randomly, we have that column j is still unrestricted
in T*. Therefore there does not exist any left-restricted 0 in column j of
T* = o(T). ]

From the construction of ¢, it is not difficult to see that there exist
a number of permutation tableaux T satisfying o(T) = T, i.e., the fixed
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points of . Moreover, since n! is even for n > 2 and ¢ is an involution
on the set of permutation tableaux of length n, we deduce the following
conclusion.

Corollary 2.4. Forn > 2, the number of permutation tableauz T of length
n satisfying o(T) =T is even.

In addition, the following corollary is easily obtained.

Corollary 2.5. Forn > 1 and 0 £ k < n—1, let T be a permutation
tableau of length n with k essential 1’s. If T satisfies p(T) = T, then we
conclude that

(a) T also contains n — k unrestricted rows;

(b) either T does not contain any top-restricted 0 or sup-ess 1, or each
rows of T contains both of the two types of elements simultaneously.

3 Free Permutation Tableaux

We define a permutation tableau T as a free permutation tableau if T
does not contain any top-restricted 0 or sup-ess 1. In this section, we
shall consider the correspondence of the internal structure among the free
permutation tableaux, restricted set partitions and labeled Dyck paths,
where the latter two structures are defined in Section 3.2 and 3.3. To this
end, we utilize linked partitions as an intermediate structure between free
permutation tableaux and restricted set partitions, and present a bijection
between restricted set partitions and labeled Dyck paths, which gives an
indirect correspondence between free permutation tableaux and labeled
lattice paths.

3.1 Permutation Tableaux and Linked Partitions

Linked partitions arise in the study of certain transforms in free proba-
bility theory, see Dykema [11]. A linked partition of [n] is a collection of
nonempty subsets By, Bs, ..., By of [n], called blocks, such that the union
of By, By,. .., By is [n] and any two distinct blocks are nearly disjoint. Two
blocks B; and Bj; are said to be nearly disjoint if for any k € B; N B;, one
of the following conditions holds:

(a) k =min(B;),|B;| > 1 and k # min(B;), or
(b) k& =min(B;),|B;| > 1 and k # min(B;).

We adopt the linear representation of linked partitions, introduced hy
Chen, Wu and Yan [3]. For a linked partition 7 of [n], first we draw n
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vertices 1,2,...,n on a horizontal line in increasing order. For each block
B = {1,142, ...,1k}, we write the elements %,, 12, ..., in increasing order,
and use min(B) to denote the minimal element ¢; of B. If k > 2, then
we draw an arc joining 7; and any other vertex in B. We shall use a pair
(1,7) to denote an arc between i and j, where we assume that ¢ < j and
call i the left-hand endpoint, j the right-hand endpoint. Two arcs (i1, j1)
and (iz, j2) form a crossing if i) < i2 < j1 < j2, and they form a nesting
if i1 < i3 < jo < j1. For example, the linear representation of linked
partition 7 = {1,3}{2,4,5}{4,6,7,9}{6,8}{10} is illustrated in Figure 3.1,
and there are a few of crossings formed by (1, 3) and (2, 4), (1,3) and (2, 5),
(2,5) and (4,9), etc., while there is only one nesting: (4,9) and (6, 8).

Figure 3.1: The linear representation of {1,3}{2,4,5}{4,6,7,9}{6, 8}{10}.

Chen, Liu and Wang {2] gave a classification of vertices in the linear
representation of a linked partition. Given a linked partition 7 of [n], if a
vertex 1 is only a left-hand endpoint, then i is called an origin, or a vertex i
is called a transient if it is both a left-hand point and a right-hand endpoint,
or it is defined as a singleton if it is an isolated vertex, or a destination if
it is only a right-hand endpoint. Figure 3.2 illustrates the four types of
elements. We call a singleton k is covered by an arc (3,j) if i < k < j, and
an arc (%, j) is covered by another arc (£, m) if £ < i < j < m. It is obvious
that the arcs (4, 7) and (£, m) form a nesting.

~ ~F .~

origin transient singleton destination

Figure 3.2: Four types of elements in linked partitions.

Chen, Liu and Wang (2, Theorem 3.1] gave a bijection between the
set of permutation tableaux of length » and the set of linked partitions of
[n]. They use a fact proved by Corteel and Nadeau [6] that a permutation
tableau is determined by its topmost 1’s and rightmost top-restricted 0’s,
where the rightmost top-restricted 0 is the rightmost top-restricted 0 in a
row. We shall utilize the bijection to determine the correspondence between
free permutation tableaux and restricted set partitions in Section 3.2.
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Theorem 3.1 (Chen, Liu and Wang [2], Theorem 3.1). For n > 1 and
1 < k < n, there is a bijection ¢ between the set of permutation tableauz of
length n with k rows and the set of linked partitions of [n] with k blocks.

Moreover, they also obtain a conclusion as follows.

Corollary 3.2 (Chen, Liu and Wang [2], Corollary 3.3). For 0 < k <
n—2, the number of permutation tableauz of length n with k rightmost top-
restricted 0’s equals the number of linked partitions of [n] with k transients.

3.2 Free Permutation Tableaux and Restricted Set Par-
titions

In this subsection, we introduce a new kind of set partitions of [n), called
restricted set partitions, and discuss the correspondence between the set of
restricted set partitions of [n] and the set of free permutation tableaux of
length n.
A partition of [n] is a collection m = {B, By, ..., Bx} such that
(1) for any i = 1,2,...,k, B; # 0;
(2) forany i,j =1,2,...,k,if i # j, then B;N B; = §;
(3) BiuByU.--UB; = [n]
It is easily known that an ordinary set partition of [n] is exactly a linked
partition of [n] without any transient. Then we adopt the linear represen-
tation and the classification of vertices (except for the transients) defined in
Section 3.1 to give a graphic representation for the ordinary set partitions.
More information about set partitions, one could see Stanley [18].
A restricted set partition is an ordinary set partition of [n] satisfying
both of the following conditions:

(1) Singleton-covered-avoiding condition (SCA condition for short): if
there is a singleton k in 7, then there does not exist any arc covering
k.

(2) Nesting-destroyed condition (ND condition for short): if two arcs
(1,51) and (i2,j2) form a nesting, where i; < i3 < ja» < j1, then
there must exist an arc (ia, k) satisfying k > j;. See Figure 3.3.

For example, Figure 3.4 illustrates a restricted set partition 7 of {1,2,.. ., 11}.
Note that the unique singleton 9 of 7 is not covered by any arc, i.e., 7 sat-
isfies the SCA condition, and there is a nesting in 7 formed by arcs (3, 7)
and (4, 6), but there also exists the arc (4, 8) such that 7 satisfies the ND
condition. For convenience, we call the structure described in ND condition
shown in Figure 3.3 the ND structure.
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i 2 J2 7 k
Figure 3.3: The ND structure.

1 2 3 4 5 6 7 & 9 10 11

Figure 3.4: A restricted set partition = = {1,2}{3, 5, 7}{4, 6, 8}{9}{10, 11}.

The SCA condition and ND condition present the restrictions on the
linear representation of a restricted set partition. Here we have an equiva-
lent and simpler definition for restricted set partitions. Given a set A, let
max(A) and min(A) denote the maximum and minimum elements of A,
respectively. Then we have the following result.

Theorem 3.3. Let w be a partition of [n] with m blocks By, Ba,...,Bm
such that
max(B;) < max(Bz) < - -+ < max(Bp). 3.1)

Then & is a resiricted set partition if and only if
min(B;) < min(B;) < - -+ < min(By,). (3.2)

Proof. First, we prove that if a partition # = {By,Ba,...,Bn} of [n]
satisfies both (3.1) and (3.2), then m must be a restricted set partition,
namely we prove that 7 satisfies both SCA condition and ND condition.
We prove this by contradiction. Suppose 7 contains a singleton k, where
1 < k < n, and there is an arc (2, ) covering k with 1 < i<k < j<n.
Let B, = {k} and {i,j} € B;. Then min(B,) = max(B;) = k and i =
min(By), j < max(B;). Since ¢ < k < j and all the blocks By, Ba,...,Bn
of 7 satisfy (3.1), we have s < t and k = max(B;) < j < max(B),
but k = min(B,) > i = min(By), a contradiction to (3.2). Hence SCA
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condition holds. In addition, suppose that there are two arcs (i1, ) and
(i2, j2) forming a nesting with i; < i2 < j» < j; such that there does not
exist any arc (i2, k) with k > j;. Let {i1,51} € B; and {i2,j2} € Bs. Then
s < t, jo < max(B;) < j1 £ max(B;), but iz = min(B,) > ¢; = min(By), a
contradiction to (3.2). Therefore 7 also satisfies the ND condition. Above
all, w is a restricted set partition of [n].

On the other hand, we prove that if # = {By, B, ..., Bn} is a restricted
set partition and it satisfies (3.1), then 7 also satisfies (3.2). By contra-
diction, we assume that there exists a label i € {1,2,...,m — 1} satisfying
min(B;) > min(B;4+;). Then since max(B;) < max(B;+;), B; and Biy,
cannot be singleton blocks at the same time. Let B; = {a;,a2,...,ax},
where k > 1 and a2 < ag < -+ < ar < a; and let Biyy = {by,bo,...,be},
where £ > 1 and by < b3 < -++ < b < b;. From (3.1), we have a; =
max(B;) < by = max(B;41). First, we assume £ > 2. If k = 1, ie,,
B; = {a,} is a singleton block, then we have a; < b; and a; = min(B;) >
b2 = min(B;;;). That is to say that there exists an arc (bg,b;) covering
the singleton a;, a contradiction to the SCA condition. Thus & > 2, name-
ly neither B; nor B;,; is a singleton block. Then it is easily known that
a2 = min(B;) > by = min(B;4+1) and a; = max(B;) < by = max(Bi}1),
i.e., b2 < a3 < @3 < by, which implies that in the linear representation of
m, the arc (bg, b1) covers the arc (a2,a;) but there does not exist any arc
(a2,7) with j > b;, a contradiction to the ND condition. Finally, there
is only one case left: k£ > 2 and £ = 1. Let B;y; = {b;}. Note that
a1 = max(B;) < b; = max(B;;+;) and az = min(B;) > by = min(B;4),
i.e., a1 < by < ag, a contradiction to as < a;. Therefore if 7 is a restricted
set partition of [n] satisfying (3.1), then = also satisfies (3.2).

By utilizing the bijection ¢ in Theorem 3.1 introduced by Chen, Liu
and Wang (2], we directly obtain a one-to-one correspondence between free
permutation tableaux and restricted set partitions.

Theorem 3.4. For n > 1, the map ¢ is a bijection between the set of free
permutation tableauz of length n and the set of restricted set partitions of

[n].

Proof. Let T be a free permutation tableau of length n, namely T does
not contain any top-restricted 0 or sup-ess 1, and let # = ¢(T') is a linked
partition of {n]. First, we prove that 7 = ¢(T') is a restricted set partition
of [n], i.e., 7 satisfies both the SCA condition and the ND condition. We
prove it by contradiction.

Suppose that there is a singleton k in 7 = ¢(T') and there exists an
arc covering k. Let (¢, j) be the arc covering k& with j being maximum.
Then based on the construction of the map ¢~?! in Chen, Liu and Wang [2,
Theorem 3.1] from linked partitions to permutation tableaux, we surely
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obtain a permutation tableau ¢~!(7) containing a sup-ess 1 in cell (k, 5),
a contradiction. Therefore SCA condition holds.

Moreover, we assume that there are two arcs (i1, j1) and (i2, j2) forming
a nesting in the linear representation of m = ¢(T'), where i1 < i3 < j2 < j1.
Here we choose the arc (i3, 1) such that (i1, 71) covers the arc (iz, j2) and
41 is maximum. It is easy to see that there must be a sup-ess 1 in cell
(42,71) in the permutation tableau ¢~!(7), a contradiction. To avoid the
existence of the sup-ess 1 in cell (iz,j;), we can only add a topmost 1 in
row ip and to the left of cell (i2, j1), namely there must exist an arc (iz, k)
with k > 7;. Thus the ND condition holds.

On the other hand, from the proof mentioned ahove, it can be said with
certainty that given any restricted set partition 7 of [n], the permutation
tableau T = ¢~!(7) must be a free permutation tableau of length n. The
proof is completed. ]

For example, Figure 3.5 illustrates the corresponding free permutation
tableau of length 11 for the restricted set partition 7 in Figure 3.4.

0 |9
1 |10
11

Figure 3.5: The corresponding free permutation tableau of 7 shown in
Figure 3.4.

Furthermore, given a restricted set partition m of [n], we find that the
ND structure in the linear representation of 7 exactly corresponds to a
“triangle” in the free permutation tableau T = ¢~!(w). Here a triangle
in a free permutation tableau is defined as three cells (i1, 1), (¢2,j2) and
(i2, k), where i1 < i2 < j2 < j1 < k, each of which is filled with a topmost
1. For example, the ND structure in the restricted set partition shown in
Figure 3.4 is formed by arcs (3,7), (4,6) and (4,8), whose corresponding
triangle in the free permutation tableau shown in Figure 3.5 consists of
three cells (3,7), (4,6) and (4, 8) filled with topmost 1’s. Thus we have a
conclusion as follows.
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Corollary 3.5. The number of triangles in a free permutation tableau T
equals the number of ND structures in the restricted set partition m = ¢(T).

3.3 Restricted Set Partitions and Labeled Dyck Paths

A Dyck path of length 2n is a lattice path on the plane from the origin (0, 0)
to (2n,0) consisting of up steps u = (1, 1) and down steps d = (1, —1) such
that the path does not go across the z-axis. It is well-known that the
number of Dyck paths of length 2n equals the n-th Catalan number C,,
the sequence A000108 in OEIS [15]. In this part, we introduce a kind of
labeled Dyck paths and present a bijection between the set of restricted
set partitions of [n] and the set of labeled Dyck paths of length 2n and we
make a generalization of the bijection.

For n > 1, given a Dyck path P, we call a pair of two successive steps
ud in P a peak. Suppose there are k peaks in P, k > 1, then we denote
the marimal successive segments of up steps in P from left to right by
Uy, Us,..., U, where U, starts at the origin (0,0) and it is followed by the
leftmost down step of P, but for any i = 2,...,k, the step immediately
followed by U; and the step immediately following U; are both down steps.
Similarly, we denote the mazimal successive segments of down steps in P
from left to right by D;, Ds,..., Dy.

The labeled Dyck paths are defined as follows. Given a Dyck path of
length 2n, we use the alphabet {1,2,...,n} to label all the up steps from
left to right by increasing order. For all the down steps, if a down step is
the down step of a peak ud, then we label the down step d with the same
label as the up step u; otherwise we label the down steps from left to right
by the labels in {1,2,...,n} that has not been occupied by any down step
such that the following conditions hold:

(C1) For any maximal successive segment D; of down steps, let D; =
dyds - - - d; consist of j down steps from left to right with labels ay, ag,
..., aj, respectively. The labels a1, as,...,a; must satisfy

a2 <a3<---<a;<ag.
(C2) Let D; = dyd; - - - d; consisting of j down steps from left to right with
labels a;, a3, ..., a;, respectively, and let D;4, = d{d - - - d) consisting

of £ down steps from left to right with labels by, bs, . . ., b, respectively.
We demand the labels of D; and D;y; satisfy

a1 < by and ag < by,

For example, Figure 3.6 illustrates a labeled Dyck path of length 26.
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Figure 3.6: A labeled Dyck path of length 26.

Our labelling scheme of Dyck paths generalizes the one introduced by
Du [10]. Moreover, from the conditions (Cl1) and (C2), we deduce the
following interesting restriction on labeled Dyck paths.

Proposition 3.6. Let P be a labeled Dyck paths. Then P avoids uudu,
namely P does not contain any successive segment consisting of four steps
u,u,d and u from left to right.

Proof. We shall prove it by contradiction. Assume that the labeled Dyck
path P contains a successive segment uudu. For the sake of convenience,
we denote the segment wudu by u uzd’uz. See Figure 3.7. According to the
labeling scheme of Dyck paths, we suppose that the four steps uq,u2,d’ and
ug are labeled by a,a+1,a+1 and a+2, respectively, where 1 <a <n-—2.
Denote the leftmost maximum successive segment of down steps to the
right of uyued'uz by D; = dyds - - - di with labels by, ba, . . ., by, respectively.

b
. ba
a+1 tla+2 bs
9
‘ I ug d't us .

uy ' bk—l

Figure 3.7: The labeled Dyck path P.

Based on (C1) and (C2), we have by < bz < --- < by < bj,a+1< b
and a+1 < by. Let P’ be the subpath of P starting at the origin (0,0) and
ending with d’. Since P’ contains u usd’ and P is a labeled Dyck path that
does not go across the z-axis, we conclude that the number of up steps in
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P’ is at least one more than the number of down steps in P/, which implies
that the number of the labels occupied by up steps in P’ is at least one
more than the number of the labels of down steps in P’. Thus there exists
a label ¢ € {1,2,...,a} that has not been used by any down step of P’.
Note that t < a < a+1 < by and by is the minimum label among all the
down steps to the right of uz. That is to say that the label t does not been
used in the whole labeled Dyck path P, a contradiction. |

More details about Dyck paths avoiding uudu are discussed in Mansour
(13] and Sapounakis, Tansoulas and Tsikouras [17]. Now we present the
main result of this part, a one-to-one correspondence between labeled Dyck
paths and restricted set partitions.

Theorem 3.7. For n > 1, there is a bijection i between the set of labeled
Dyck paths of length 2n and the set of restricted set partitions of [n).

Proof. Let P be a labeled Dyck path of length 2n. We construct a restricted
set partition 7 = 9(P) such that if m satisfies (3.1), then 7 also satisfies
(3.2).

Assume that P has m peaks and then it has m maximal successive seg-
ments of down steps, denoted by Dy, Ds,...,D,,. Forany i =1,2,...,m,
if D; = dydy---d; consisting of k down steps from left to right with la-
bels ay,ay,...,ax, respectively, then we set the i-th block of 7 as B; =
{a2,a3,...,ak,a1}. Thus the set partition 7 = {By, B,,...,Bn} of [n] is
obtained. Since the labels of down steps of P satisfy the conditions (C1)
and (C2), 7 satisfies both (3.1) and (3.2), which implies that = is a restrict-
ed set partition of [n]. For example, the labeled Dyck path shown in Figure
3.6 corresponds to the restricted set partition

m ={1,3,4}{2,7,8}{5,6,9,10,11,12}{13}.
See Figure 3.8.

°

1 2 3 4 5 6 7 8 9 10 1 12 13

Figure 3.8: m = (P) = {1,3,4}{2,7,8}{5,6,9,10,11,12}{13}.

The inverse map of 1 can be described as follows. Let # = {B,,...,Bn} ‘
be a restricted set partition of [n] with m blocks satisfying both (3.1) and
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(3.2). We construct a labeled Dyck path P of length 2n such that P =
¥~Y(r). For any i = 1,2,...,m, we reorder the elements of B; as B; =
{i1,12,...,%x} such that i3 < i3 < --- < ix < i1, where k > 1. First, we
use B; to construct the i-th maximal successive segment D; of down steps
of P. Let D; = did;---dy consisting of k& down steps. We label d; with
ij, for any j = 1,2,...,k. Let Dy be an empty segment consisting of the
origin (0,0) with label 0. For any i =0,1,2,...,m — 1, suppose that the
leftmost steps of D; and D;,; are labeled by a and b, respectively, where
1 €a < b<n Then we set Uiy = ujug - - Up—, consisting of b —a up
steps with labels a + 1, a +2, ..., b, respectively. Finally, we set

P=UD\U;D;---UpDp,

by joining the last vertex of U; and the first vertex of D;, fori =1,...,m—1.
Note that the up steps of P are labeled with {1,2,...,n} from left to
right by increasing order. Moreover, for any ¢ = 1,2,...,m, we suppose
that the up step followed by the maximal successive segment of down steps
D; is labeled by t. Then the leftmost down step of D; is also labeled by
t, and t is the maximal label among all the down steps in Dy, Ds,..., D;,
which implies that the total number of down steps in Dy, Ds,. .., D; is less
than or equal to t. That is to say that the number of up steps is always
greater than or equal to the number of down steps in the subpath ending
with D;, for any i = 1,2,...,m, namely P forms a Dyck path of length 2n
without going across the z-axis. In addition, since 7 is a partition of [n]
and its blocks {By, By,..., Bn,} satisfy both (3.1) and (3.2), the labels of
up steps and down steps of P satisfy the labelling scheme of Dyck paths.
Especially, the labels of down steps satisfy both (C1) and (C2). Therefore
P is the desired labeled Dyck path of length 2n. The proof is completed.
Furthermore, we deduce the following corollaries.

Corollary 3.8. Forn > 1 and 1 < m < n, the map ¢ is a bijection

between the set of labeled Dyck paths of length 2n with m peaks and the set
of restricted set partitions of [n] with m blocks.

Corollary 3.9. Forn > 1 and 1 < m < n, the composition of g op~! is
a bijection between the set of free permutation tableauz of length n with m
rows and the set of labeled Dyck paths of length 2n with m peaks.

From the construction of 1, we generally obtain that 1 also gives the
one-to-one correspondence between the ordinary set partitions and general
labeled Dyck paths, where a general labeled Dyck path is a labeled Dyck
path but without the restriction as < by in (C2). Specifically, we conclude
it as follows.
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Corollary 3.10. The bijection v is also a bijection between the set of
ordinary set partitions of [n] and the set of general labeled Dyck path of
length 2n.

For example, Figure 3.9 illustrates the corresponding general labeled
Dyck path of length 18 for the ordinary set partition

m = {3}{4,2}{5, 1}{8, 7}3{9, 6},

where we order the five blocks of 7 by their maximal elements by increas-
ing order from left to right, and its standard representation mentioned in
Section 3.1 is m = {1,5}{2,4}{3}{6,9}{7,8}.

Figure 3.9: A general labeled Dyck path.

Acknowledgments. This work was partially supported by National Sci-
ence Foundation of China, Organization Department of Beijing Municipal
Committee (2013D005003000012).

References

[1] A. Burstein, Some properties of permutation tableaux, Ann. Combin.
11 (2007) 355-368.

[2] W.Y.C. Chen, L.H. Liu and C.J. Wang, Linked partitions and permu-
tation tableaux, Electron. J. Combin. 20 (2013) #P53 .

[3] W.Y.C. Chen, S.Y.J. Wu and C.H. Yan, Linked partitions and linked
cycles, European J. Combin. 29 (2008) 1408-1426.

{4] S. Corteel, R. Brak, A. Rechnitzer and J. Essam, A combinatorial
derivation of the PASEP stationary state, Electron. J. Combin. 13
(2006) #R108.

(5] S. Corteel and J. S. Kim, Combinatorics on permutation tableaux of
type A and type B, European J. Combin. 32 (2011) 563-579.

31



[6] S. Corteel and P. Nadeau, Bijections for permutation tableaux, Euro-
pean J. Combin. 30 (2009) 295-310.

[7] S. Corteel and L.K. Williams, Tableaux combinatorics for the sym-
metric exclusion process I, Adv. Appl. Math. 37 (2007) 293-310.

[8] S. Corteel and L.K. Williams, A Markov chain on permutations which
projects to the PASEP, Int. Math. Res. Not. (2007) Article ID rnm055.

[9] S. Corteel and L.K. Williams, Tableaux combinatorics for the asym-
metric exclusion process and Askey-Wilson polynomials, Duke Math.
J. 159 (2011) 385-415.

(10] R.R.X. Du, Enumeration on set partitions and (k, m)-ary Trees, PhD
thesis, Nankai University, 2005.

(11] K.J. Dykema, Multilinear function series and transforms in free prob-
ability theory, Adv. Math. 208 (2007) 351-407.

[12] T. Lam and L.K. Williams, Total positivity for cominuscule Grass-
mannians, New York J. Math. 14 (2008) 53-99.

[13] T. Mansour, Statistics on Dyck paths, J. Integer Sequences 9 (2006)
Article 06.1.5.

[14] P. Nadeau, The structure of alternative tableaux, J. Combin. Theory
Ser. A 118 (2011) 1638-1660.

[15] The OEIS Foundation Inc., The On-Line Encyclopedia of Integer Se-
quences, http://oeis.org.

[16] A. Postnikov, Total positivity, Grassmannians, and networks, arX-
ivimath/0609764.

[17] A. Sapounakis, I. Tasoulas and P. Tsikouras, Ordered trees and the
inorder traversal, Discrete Math. 306 (2006) 1732-1741.

[18] R.P. Stanley, Enumerative Combinatorics, Vol. I, Cambridge Univer-
sity Press, Cambridge, 1997.

[19] E. Steingrimsson and L. Williams, Permutation tableaux and permu-
tation patterns, J. Combin. Theory Ser. A 114 (2007) 211-234.

[20] X. Viennot, Alternative tableaux, permutations and partially asym-
metric exclusion process, Isaac Newton Institute, April 2007.

[21) L. Williams, Enumeration of totally positive Grassmann cells, Adv.
Math. 190 (2005) 319-342.

32



