The Characteristic Polynomial of a kind of
Hexagonal System and its Application*

Caixia Song, Qiongxiang Huang *

College of Mathematics and Systems Science,

Xinjiang University, Urumgi, Xinjiang 830046, P.R.China

Abstract The hexagonal system considered here , denoted by E2, is formed
by 3n (n > 2) hexagons shown in Fig.2(a). In this paper, we give the explicit
expression of characteristic polynomial ®4(E2, x). Subsequently, we obtain the
multiplicity of eigenvalues +1, the spectral radius, the nullity of E2. Furthermore,
the energy, Estrada index and the number of Kekulé structures of E? are deter-
mined.
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1 Introduction

Let G be a graph with vertex set V(G) = {vy,vs,...,v,} and A(G) be the ad-
Jacency matrix of G. Denote by d; the degree of the vertex v; and D(G) =
diag(d,,d,, . ..,d,) the diagonal matrix. The signless Laplacian matrix is defined
as Q(G) = D(G) + A(G). The characteristic polynomial ®p(G, x) = |xI, — M| is
called the A and Q-polynomial of G if M = A(G) and Q(G), respectively. Since A
and Q are real symmetric matrices, their eigenvalues 1,(G), 22(G), ..., 4,(G) and
01(G), q2(G), ..., 4.(G), respectively, are real numbers. The M-spectrum, denot-
ed by S pecm(G), is a multiset consisting of the M-eigenvalues and S pecy(G) is
called A- and Q-spectrum if M = A(G) and Q(G), respectively. The nullity of G,
denoted by n(G), is normally called the algebraic multiplicity of eigenvalue 0. A
Kekulé structure K of a graph G corresponds to a perfect matching (1-factor) of
G.
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The energy E(G) of graph G, introduced by Gutman in [3], is defined as
n
EG)= El |4 (G)I.

It is related to the m-electron energy in a molecule represented by a (molecular)
graph. For the chemical applications and the mathematical properties of the ener-
gy of a graph, we refer to the review [4] and the recent book [5].
The Estrada index EE(G) of graph G, put forward by Estrada in [6], is defined
as n
EEG) = Azl e,

Although the Estrada index is a more newly graph-spectrum-based invariant, it
has already found a remarkable variety of applications. Initially, it was used to
quantify the degree of folding of long-chain molecules, especially proteins ( refer
to [6]). Another, fully unrelated application of Estrada index was proposed by
Estrada and Rodrtguez-Vel¢zquez in [7]. They showed that Estrada index pro-
vides a measure of the centrality of complex (communication, social, metabolic,
etc.) networks. Other applications of Estrada index were also reported in [8,9].

It is well-known that the theory of graph spectra is related to Chemistry through
the HMO (Hiickel Molecular Orbital) Theory (see |2] for an extensive review on
the topic), in which there are some problems to attract many mathematicians and
chemists attentions, especially the the nullity, the number of Kekulé structures and
the spectrum of hexagonal system (benzenoid hydrocarbon). The spectrum of the
linear, cyclic and Mobius cyclic chains are found in {10,11]. Zhang and Zhou give
the explicit expressions of characteristic polynomials of an homologous series of
benzenoid systems in [12]. Recently, Lou and Huang obtain the characteristic
polynomial and spectrum of hexagonal systems H in [13]. As our knowledge,
there are few of hexagonal systems whose spectra are explicitly presented except
for the linear, cyclic and Mobius cyclic chains and HY, and energy and Estrada
index of hexagonal systems are not explicitly given so far.

In the present work, we focus on giving the characteristic polynomials and
spectrum for the hexagonal system E2 shown in Fig.2(a). Furthermore, the nul-
lity, energy, Estrada index and the number of Kekulé structures of E2 are also
determined.

2 Elementary
In this section, we give some lemmas for the later use.

Let C, be a cycle with n vertices. In this paper, we denote the signless Lapla-
cian matrix of C, by Q, ,and B, the incidence matrix. It is clear that

h ('
BnBI=[ L ][
ERERTAY "
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= D(Cy) + A(Cp) = Q.




Lemma 2.1 ([15]). Let C, be the cycle on n vertices. Then the Q-polynomial of
Cnis
d 2nj
Qo(Cr,q) = [-[l(q -2-2cos 7).
Jj=

It immediately follows the result from Lemma 2.1.

Corollary 2.1. The eigenvalues of Q, are qj = 2 + 2cos 2—:1, f=1L2,...,n

The following result is well known.

B

Lemma 22. Let A and B be n X n matrices. Then 'g A

’: |A + BJIA - B|.

For given bipartite graph G with the bipartite partition V(G) = V; U V; such
that V; (i = 1,2) is independent, Heibronner in [14] introduced two H-graphs of
G, denoted by Hy,(G) and Hy, (G) respectively. Here we prefer to redefine Hy,(G)
(i = 1,2) by graph terminology. Hy,(G) (i = 1,2) is the graph obtained from G
with the vertex set V; and two vertices u, v € V; are joining with ¢ edges if and
only if « and v have t common neighbors in G, additionally, each vertex u € V; is
added d,, loops.

For example, we show the linear hexagonal chain Ls with bipartite partition
V(Ls) = Vi U V, where V) is colored with black and V, with white, its H-graphs
are isomorphic and shown in Fig.1(a) and (b), in which there is number labeled at
each vertex that stands for the number of loops at it.

2 2 2 2 2
2 3 3 3 3 2

@ Ls ®)  Hy,(Ls) = Hy(Ls)

Figure 1: The linear hexagonal chain Ls and its H-graph Hy,(Ls) (Hy,(Ls))

The adjacency matrices A(G) of bipartite graph G can be presented by

0 B)

A(G)=(BT 0 M

In the following, we give the useful Lemma.

Lemma 23. Let G be a bipartite graph on n = n| + ny vertices with bipartite
partition V(G) = ViU Vy,and |Vi| = n; (i = 1,2). Then

DA(G, x) = X Dp(Hy, ) = X2 Qu(Hy, 1),
where Hy = Hy,(G) and H, = Hy,(G) are the H-graphs of G.
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Proof. Let A(G) be the adjacency matrix of G shown in (1). By the definition
of H-graphs, it is easy to see that H, is exactly the graph with adjacency matrix
A(H,) = BBT and H, with adjacency matrix A(H,) = BTB. Thus, we have

Qa(Hy, X) = |xln, = A(HY)| = |xIn, — BB| )
Additionally, in accordance with (1), we also have
Ou(G, ) = |l - AG)| = | T3t . | = e mistiy, - BBT) 3

Hence, from the (13) and (3), we immediately obtain
D4(G, x) = X Oa(H), ).

Similarly, we have
¢A(Gs x) = xnl_”z(bA(HZ’ x2)~

It completes this proof. m]

3 The characteristic polynomial and the spectrum
of E2

In this section, we focus on determining the characteristic polynomial of E2. Sub-
sequently, we also give the spectral radius, the multiplicity eigenvalues +1, the
nullity and the number of Kekulé structures of E2,

Let E2 be the hexagonal system consisting of 3n (n > 2) hexagons which is
shown in Fig.2(a), where two v, ’s are identified as one vertex and the same as u;’s
and uy’s. Since E2 is bipartite graph with bipartite partition V(E2) = V| U V,, we
color the independent set V, with black and V, with white. Clearly, |V)| = |V2|,
and the two H-graphs of E2 are isomorphic, i.e., Hy,(E2) = Hy,(E?) (shorted for
H, = H,)), which are shown in Fig.2(b) where two w s are identified as one
vertex and the same as wy, ’s.

(@) E2 b) Hy= H;

Figure 2: The plane representation of £z and its H-graphs H, = Ha

Now we partition the vertices of H into five parts: V(H)) = W UW,U- - -UWs,
where W; = {wy, wia, ..., win} (i = 1,2, ...,5). Clearly, |[V(H,)] = 5n. Let A(H)) be
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the adjacency matrix of H, and A(W;, W) = (aw)na (1 £i, j< 5) denote the block
matrix of A(H)) corresponding W; (the row-set) and W; (the column-set), where
ay = | if wi € W; is adjacent with w; € W; in Hy, and ar = 0 otherwise, It is easy
to see that A(W;, W)T = A(W;, ;). For instance,

W21 W22 ... W2n-1 W
wi | 1
w2 P o1 -
AW, W2) = )5 - = B.
: 1
Win |

nxn

Thus, according to the partition of vertices in Fig.2 (b), we have

AW, W)) = A(Ws, Ws) = 21,

AW, Wa) = A(W3, W3) = A(Wy, Wa) = 31,
AW, Wy) = A(W3, Wy) = B],

AW, W3) = A(W,y, Ws) = B,

AW, W3) = A(W2, Wy) = A(W3, Ws) = [,

and the other block matrix A(W;, W) equals 0. Hence, we can represent the ad-
jacency matrix of H, as in the form of block-matrix in terms of the ordering of
Wi, Wy, ..., Ws as follows:
2, B I 0 0
B, 3, B, I, O©
AH)=|4W By 35, By L ()]
0 I, By, 3, B8,
o o i B 2,
In the following, we give an uscful lemma to prove our main result.

Lemma 3.1. Let H, be a H-graph of the hexagonal system E? that contains 3n
(n 2 2) hexagons shown in Fig.2(a). Then the characteristic polynomial of H, is
given by

OaCH 1) = (x = 1) [TOP - 8x + 16 = 3¢ )(® —4x + 4 - g)
Jj=1

where q; =2 + 2 cos Z:j. Jj=L1L2,.,n

Proof. According to (4), the characteristic polynomial of H; can be presented as

Da(H), x) = det(xls, ~ A(H})) (5)
where
(x = 2), -8} -l 0 0
-B, (x=3), -B, -1, 0
xlsp— A(H) =] -h -B} (x =3I, -B} ~ly
0 =i B, (x = 3), -8,
0 0 ~In -BY x=-2i,
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Denote by N, and N, respectively the elementary block matrices below,

I, 0 0 0 O I, 0 0 0 0

& I, 00 0 0 I, 2 0 0
M=|= o0 1, 0 =] ~N=[0 0 1, 0 0]

x-2 XB—Z B

0 00 I, 0 0 & 5, 0

0 0 0 0 I 0 0 0 0 I

First, left multiplying x/s, — A(H,) by the elementary block matrix N, we obtain

Ny - (xlsp — A(HY)) = A 6)
where
14

0 (x=-3),-2%& -xlp, ~I, 0

A= 0 Ceip? wcfBey _elpr 0

T

0 -1, *-‘ £lg,  (x-3),- 25 0
0 0 =, -BT (x =2,

Similarly, left multiplying A; by the elementary block matrix N,, we obtain

Ny-A = A @)
where
*2)l, -BT -, 0 0
0 (3 “_,XM) 28 _p gl bt BB, O
Ay=| o =L 5] Loty -8} 0
0 -l,.-(,—_ghm‘.'{ 0 (i BB O
0 0 =l -8} (x=2)/,

Recall that B,B} = Q,, the signless Laplacian matrix of C,. Now we expand the
determinant of A, according to its I1th-, 5th- and 3th-columns and get

det(Az) = (x —2)"(x = 1)"(x — 4)" det(A3) 8)

where
As = ((x 3n— (x—2)(x—4) Qn ~In - (x-z) -‘? Qn )
I~ gm0 (-3 GE5550n

By Lemma 2.2, we have

(3‘3"""_71;(};,5.—4') Qn == (-l_-ﬁb; Qu

Iy~ u—.i‘h Qn (x‘3)ln‘ﬁ%:j$ Qn
BV~ Q= tn— ity CrlXIC3M 3y Ot + it O
| = 5 Gt (x=) X1~ 5 Qu+(x-2 | .

det(As)
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Note that det(N;) = 1 and det(N;) = 1. From Egs. (5)-(8), we have
D4(H\, x) = del(A2)=(x~2)"(x—1)"(x-4)" det(43)
= (x=2)"(x=1)"(x=4)" | = 24 Qo+ (- DaIxI- 15 Qut(x-2)1, | 9
= (x=1)" | (2-8x+16),-3QuIx|(2-4x+4)1,-Q, |
From Corollary 2.1, we know that g; = 2 + 2¢os 3—:-[ are the eigenvalues of Q,.
Finally, from Eq.(9) we have
Oa(H1, x) = (x= 1" [T(2 - 8x+16=3g) (2 —dx +d—gq)) -
=l
It completes this proof. a
In the following, according to the Lemma 3.1, we give our main result,
Theorem 3.1, Let E? be the hexagonal system with 3n (n > 2) hexagons shown
in Fig.2(a). Then the characteristic polynomial of E? is represented by
n
Oa(EZL )= (2 - 1)"[](x*-82+16-3g)(x*-4x2 +4~-q)) (10
J=1
where q; =2 +2¢os %’f—l is the Q-eigenvalue of C.

Proof. Note that the bipartite graph E2 has vertex partition V = V| U V, such
that V| = |V;|, where the vertices of V; are colored with black and of V, with
white (see in Fig.2(a)), and H, is its H-graph (see in Fig.2(b)). By Lemma 2.3
and Lemma 3.1, we obtain

OA(EZ, ) = Da(Hy, 12

= (2 = 1) [T - 822 + 16 - 3g))(x* — 422 + 4 - g)).
It completes this proof.  *~' o

As an application of Theorem 3.1, we give an example to find the characteris-
tic polynomial and spectrum of E2.

Example 1. For n = 3, E? has 9 hexagons and 30 vertices. By Theorem 3.1,
q1=1,q92=1and g3 = 4, and thus

A =x-8x2+13, Hx)=x*-82+13, fi(x)=x*-8x2+4;
g1 =x* -4 +3, g =x-42+3, g3(x) =x*-4x2

By simple calculation, we obtain the characteristic polynomial of E? from Eq.(10):

3
Qu(E2, x) = (22~ 1) I:ll fi(x)g (x)

j_.
= x50 — 39x28 4 675420 — 6865x% + 45798x22 — 211878x%° + 70074618
—1682910x'6 + 2949777x'% — 37572792 + 3426627 x'° - 21721778
+905800x5 — 2226124 + 2433642,

The spectrum of E} is given in Table 1.
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Table 1 The spectrum of £3
polynomial eigenvalues
JSi(x) 23942 1.5060 -23942  -1.5060
fx) 2.3942 1.5060 -2.3942 -1.5060
Ax) 2.7321 0.7321 -2.7321 -0.7321

£1(x) 1.7321 1 -1.7321 -1
82(x) 1.7321 | -1.7321 -1
g(x) 0 0 2 -2
SR ' | -1 -1 1 1 [

Lemma 3.2. Let f(x) = l'[(x ~ 832 + 16 - 3q;) where q; = 2 + 2.cos * are the
j_

Q-eigenvalue of C,. Then we have

(1) A= \Ja+ \3qy, 45 == A& \Baj, 43,= |- \3g; and 45 == \J4~ \J3q; are

roots of f(x) where j=1,2,..,n.

(2) each root of f(x) has multiplicity 2 except for the simple roots + \/4 +2V3
and + J4 -243.

Proof. Let fi(x) = x* — 8x% + 16 - 3g;. Then f(x) = ﬁ fi(x). Note that
jl

fil0) =2 = 4+ 3 )" - (4= f3g))
= (1= Ja+ y3g)(x+ 4+ \Ba))x= A= 3q )+ \J4- yB))
It follows (1).

(2) Clearly, ,l“ > A7 /l" > Ay and /l" /sz if and only if A} .= 2=24 -
A< A Ay < /l jand Ay, = 4, lf and only if Ap=-2=4,. it now leaves
todlstmguush {/l"j | j=1, 2 i} AT |/— 1,2,. ,nl I/lzj | j— 1,2,...,n}and
{/12 | j=1,2,..,n} themselves.

Suppose that n is even. By simply observation, we know that /l* = Ay

/l,‘,,_j,/lz. Bopjp j = Ao where/ =12,.,; -1 These are a]ll
roots of multlphcuy 2, in addition, ,l“ =2 = /l;,,, La = -2 = "2.'; are

also two roots of multiplicity 2. Whereas A}, = \/4 +2V3, 4, =~ \/4 +2V3,

4, = \/4 -2v3and A== \/4 — 2 vV/3 are four simple roots.
Suppose that # is odd. Similarly, A7, = A7, ., A7, = A, 4, = 4,5
A=A, ;where j=1,2,.., "> are all roots of multlphcnty 2. Whereas 2], =

\/4+2\/3,,1M =- \/4+ 2V3,45, = \/4-2\/3 and 13, = -\/4- 2 V3 are four
simple roots.
It follows our result. m}
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By the same method as in the proof of Lemma 3.2, one can verify our follow-
ing result.
Lemma 33. Let g(x) = ['[(x“ 4x2 +4 — q;) where q; = 2 + 2cos 2L are the
J=
Q-eigenvalue of C,. Then we have

(1) A3, = L2+ va. ,13-j=-‘/2+ G A= J2- \/q_jand,l;j=—,/2-— Ner

are roots of g(x) where j=1,2,...,.n
(2) each root of g(x) has multiplicity 2 except for the simple roots +2.

Taking the symbols in Lemma 3.2 and 3.3, the formula of Theorem 3.1 can be
represented by

Qu(EL ) =2-1) n(x -8x2+16-3g)(x*-4x> +4-gq))
= (- l)"f(x)g(x)

Summarizing Lemma 3.2 and 3.3, we can roughly determine the mulitiplicity of
eigenvalues of E2.

Theorem 32. Let E2 be the hexagonal system with 3n (n > 2) hexagons shown
in Fig.2(a),and let qj = 2 + 2 cos 2:,” be the Q-eigenvalue of C,. Then we have
(1)S peca(E%) = AUBUC, where A = {/l,j, i |i=1,2; j= l,2,...,n]and/l;’j,/l§p
/t“,/l 2j are defined in Lemma 3.2; B = {A}; /l‘l |i=3,4j=12,..nland
A;j. A3 /13!, /14/ are defined in Lemma 3.3; C ={I1", -1"}.

(2) each eigenvalue in A has multiplicity 2 except for the simple roots \/4 +2V3

and + \/4 -2V3.
(3) each eigenvalue in B has multiplicity 2 except for the simple roots +2.

It is worth to mention that the joint of A and B is not necessarily empty (it
seems difficult to determine A N B). For instance, we can verify that +1 € An B.
In fact, 1 = /1; " and +1 = 4 « (see Corollary 3.2).

Corollary 3.1. For any positive integers n > 2, E? has spectral radius p(E?) =

\/4+2\/3.

Proof. By the Theorem 3.2, we know that S pec4(E?) = {/l,‘;, A;1i=1,2,3,4,j=

1,2,..., n}. Itis easy to see that the largest eigenvalues of E7 lies in {4} = \/4-0- V3q;

j=12,..n). Since ;=2 +2cos™ (1< j< n),q, = 4and g; < 4if
j=1,2,...,n— 1. Hence, p(E?)= \/4+2\/3. o
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Denote by m(A) the multiplicity of eigenvalue A of G. Although AN B can not
be exactly determined, we can determine m(1) and m(—1) for 1 € AN B.

Corollary 32. Let E2 be hexagonal system with 3n (n 2 2) hexagons. Then
m(1) = m(-1), and

n+2 ifn=3(mod6),

n+4 ifn=0(mod6),
m(l) =
n Otherwise.

Proof. From the Theorem 3.2, we know that m(1) = n and m(-1) 2 n. In addi-
tion, A}, 22,47, < -2, 43, 2 V2 and A5~ V2. Thus, we need only to consider
if A% =l and 47, = ~1 for some i € (2,4} and j € (1,2, ..,n}.

It is clear that 43, = 1 (or 43, = =1) if and only if 3 - g; = 0 (that is,

q; = 2-1-2cosﬁnZ = 3)ifand only if j = £ € {1,2,...,n}. Similarly, =1

(or 4; = —-1)if and only if 1 —g; = O (thatis, ¢; = 2 + 2cosz—:1 = 1) if
andonly if j = § € {l1,2,...,n}. By the above arguments and Theorem 3.2, if
n = 0(mod6) then /l;.,, = ;.,3, = 1 contribute 4 to m(1); if n = 3(mod6) then

/lj;..;. = | contribute 2 u§ m(1), otherwise contribute 0.
"It is the same if we consider m(—1). The result follows. (]

The following result gives the nullity of E2,
Corollary 3.3. n(E2) = 2.
Proof. We see from Theorem 3.2 that 4, # O and 4;; # 0 except for 43, = 4;, =
0. It follows p(E2) = 2. u]

4 The energy and the Estrada index of E>

In this section, we determine the energy and the Estrada index of EZ, respectively.
By Theorem 3.2, we can obtain the accurate value and the estimated value of
energy of E2.

Theorem 4.1. Let E(E?) be the energy of E%. Then
n . . . .
E(E)=2n+2 ng (VLH-Z V3cos ™ + \/4—2 V3cos "/ +2cos 3/ +2sin 7)) (1)

Proof. Note that /g, = \/2+2cos 7’”'1 =2|cos ’;jl where j = 1,2,..,n. We have

Vaj=2c0s 7/ if j € (1,2, 15" s yaj=-2c0s 7] if je (173" 1,175 12, o).
Hence, by Theorem 3.2, we have

A= J4+2V3cos”j, A= \/4—2\/3cos’;j, /l;j=2005’2',’;, A;j=2sin"2nj

n
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where j € (1,2,.., 1%}, and

,/4 2V3cos X, A= Ja+2V3cos L, /131-?.sm2n, 2 =2cos 3

where j € (|5 ]+1, 1% ]+2, ..., n}. Thus, we immediately obtain

10n
E(E}) = ) IA(EDI
_’:

=2n+2})§] (\h+2 Vicos L+ \/'-1—2 V3cos X +2cos & +25sin ;—,{)

It follows our result. a

Corollary 4.1. Let E(E?) be the energy of E>. Then

lim 55 =2 4 4 7 \/4+2\/3cosxdx+ 16 ~14.6117.

n—oo

Proof. By the deﬁnmon of definite integral, we have

lim ! Z‘, \/4+2\/3cos J -ﬁ, \/4+2\/3cos:rtdt—‘f0 \/4+2\/3cosxdx

'I—VW

hm Z’, 2cos 5 L 2cos ¥ dt = ;L 2cos § dg = f,j‘; cosxdx =4

n—oo j 1

In addition, note that cos ”j =—cos ™" ”" , we have

lim ! 2 Z\Bcos’”—hm ZVLHZ\BCOS(" = ’f"\/-’l+2\/3cosxdx

I]—DOO

llm Z2sm—i L 2sm’"dt—_{, 2cos(} - ¥)dr = “L cosxdx =4

n—)oo j 1

Since the original function of /(x) = \/4 +2 V3 cos x was not be found, with the

help of Matlab, we easily compute the approximate value: j;' \/4 +2V3cosxdx ~

5.9052.
It follows our result by the above arguments and Theorem 4.1. o

The formula (11) is the accurate value of energy of E2. By Corollary 4.1, we
know that E’(E2)=14.6117n is the estimated value of energy of E2. We compare
the accurate value and the estimated value of E(E2) fromn = 2 to n = 8 in Table
2. It shows that they are very closer.

Table 2 The E(E2) and E'(E>) of E2 fromn=2ton=8
E B B 5 B B B B
E(E2) 285851 434570 58.1767 72.8465 874948 102.1320 116. 7625
E'(E2) 292234 43.8351 584468 73.0585 87.6702 1022819 116.8936
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Figure 3: The accurate value E(E?) and the estimated value E/(E2) of energy of E;

We further give a mathematical experiment with the help of Matlab to compare
the accurate value and the estimated value in Fig.3, it indicates that they are more

closer as n is larger.
By the same method of Theorem 4.1 and Corollary 4.1, from Theorem 3.2 we
can obtain the following Theorem 4.2 and Corollary 4.2.

Theorem 4.2, Let EE(E?) be the Estrada index of E>. Then

EE(E%) =n(e+%)+i (e\ﬁdﬁcosif+e-\/“2‘ﬁcos¥+evh-2\ﬁcos5j
Jj=1

(12)
e ,FZ Vicos U + ez«:osg +e—2cos§£+825in’z'-f, $e2sin %)

Corollary 4.2. Let EE(E?) be the Estrada index of E?. Then

. ] -4
lim EEEL) % j")”e \/4+2\5cosx+e- V42 \Bcos x dX+;‘-r j(;zeZwsxw—kosxdx_’_e_‘_% ~28.7215.

n—oo N

The formula (12) is the accurate value of Estrada index of E2. By Corollary
4.2, we know that EE’(E§)=28.7215n is the estimated value of Estrada index of
E?. We compare the accurate value and estimated value of EE(E?) from n = 2 to
n = 8 in Table 3. It shows that they are very closer.

Table 3 The EE(E?) and EE'(E?)of £ fromn=2ton=8

-y

g 8 8B B £ £ & £
EE(E;) 574479 86.1646 114.8861 143.6076 1723292 201.0507 2297722
EE' '(E;",) 574430 86.1645 1148860 143.6075 1723290 201.0505 229.7720
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We further give a mathematical experiment with the help of Matlab to compare
the accurate value and the estimated value in Fig 4, it indicates that they are more
closer as n is larger.
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Figure 5: Hexagonal system D,

5 The number of Kekulé structures of £2

In this section, we determine the number of Kekulé structures (or perfect match-
ings) of E2.

Denote by K(G) the number of perfect matchings of G. The following formula
is well known:

KG)=K(G-u-v)+K(G-e) 13)

where e = uv is an edge of G. The following Fig.7 indicates the applications of
formula (13) for some defined graphs that will be used in the proof of theorem
5.1

Lemma 5.1 ([12]). The number of perfect matchings of Dy (n 2 0) is 2-3" where
hexagonal system D, is shown in Fig. 5.
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Figure 6; Hexagonal system E2
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Figure 7: Enumerating the perfect matchings of Ez

Now we consider to enumerate the perfect matchings of E2 (see Fig.6).
Theorem 5.1. The number of perfect matchings of E2 (n 2 2) is2- 3" + 2.

Proof. Let M(e, e;) be the set of the perfect matchings of E? containing e) and
ez, M(é, &) the set containing neither e, nor e, M(€j, e2) the set containing e;
but 1 and M(e), &3) the set containing e; but e;. Clearly, M(e;, e2) U M(€),é2) U
M(éy,e2) U M(ey, é3) is a partition of the perfect matchings of E,",’. Forn > 3, we
consider the following situations.

It is easy to see that M(e|, e2) contains exactly one perfect matching of Eﬁ.

M e M(é), &) if and only if M is a perfect matching of A, shown in Fig.7,
and easily see that K(A,) = 3". Hence |M(¢&,, &)| = 3".

We see that there exists a one-to-one correspondence between M(é;, e;) and
the set of perfect matchings of B,_, shown in Fig.7. Thus |M(&, e3)] = K(B,-2).
Let Cy—2 be shown in Fig.7. By applying formula (13) to B,_, at the edge ¢, we
have

K(Bp-2) = K(Bp_2 = uy — u2) + K(By.2 — €) = K(Bp_3) + K(Cp—2) (149)

Let D, be shown in Fig.7. By applying formula (13) to C,—3 at the edge f, we
similarly have K(Cy-2) = K(Cy-3) + K(Dy-2). By Lemma 5.1,

K(Cp-2) = K(Cp-3) +2-3"2 (15)
Note that co = K(Cyp) = 3. By recursion (15), we obtain

K(Cp2)=2-3"242-3"34...42.34¢=3"",
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which returns to (14), we have K(B,-2) = K(B,_3) +3"'. Note that by = K(Bop) =
5, we recursively obtain

5 n-1 n-2 3"+1
M(éy,e3) = K(By2) =3 +3 +:-+ 34+ by = )
By the symmetry of E2, we know that M(e;,é3) = 33,
Finally we obtain
3"+
K(EH=3"+1+2. 5 ! =2.3"42,

For n = 2, one can directly verify that K(E2) = 2- 32 + 2. It follows our

result. (m]
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