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ABSTRACT. In this work, we define a new integer sequence related to Fi-
bonacci and Pell sequences with four parameters and then derived some
algebraic identities on it including, the sum of first non-zero terms, recur-
rence relations, rank of its terms, powers of companion matrix and the
limit of cross-ratio of four consecutive terms of it.
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1. PRELIMINARIES.

Fibonacci, Lucas and Pell numbers and their generalizations arise in the
examination of various areas of science and art. In fact, these numbers are
special cases of a sequence which is defined as a linear combination as follows:

(1.1) Qnik = C18n4k-1 + C28nik—2 + ** + CkQn,

where ¢, ¢z, - ,cx are real constants. The applications and identities rela-
ted with them can be seen in [1, 3, 4, 6, 7, 8, 12]. Fibonacci numbers form
a sequence defined by the following recurrence relation: Fop = 0,F; = 1
and F, = F,_1 + F,_5 for all n > 2. The first Fibonacci numbers are
0,1,1,2,3,5,8,13,21, 34, 55,89, 144, 233, - - - (sequence A000045 in OEIS). The
characteristic equation of F), is 2 — z — 1 = 0 and hence the roots of it are
a= 1—"@5 and 8 = 1%@ Johannes Kepler pointed out that the ratio of con-
secutive Fibonacci numbers converges to the golden ratio as the limit, that is,
"lergo -F%: = a. Like every sequence defined by linear recurrence, the Fibonacci
numbers F,, have a closed-form solution. It has become known as Binet’s for-
mula F,, = %:—;& for n > 0. Lucas numbers L, [3, 4, 7, 11] are defined by
Lo=2,Li=1and L, =L,_1 4+ L,_5 for n > 2. The first Lucas numbers are
2,1,3,4,7,11,18,29,47,76, - - - (sequence AG00032 in OEIS). There are a lot of
algebraic identities between Fibonacci and Lucas numbers. Some of them can
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be given as follows: L, = Fa_y + Fnt1, Fayn = fnladlaFa 12 _5F2 =
4(=1)", Fpop = N EmlozlnFa) gng B, = F,L,. The Pell numbers are
defined by the recurrence relation Pp =0, A =1 and P, = 2P,_1 + Pn_2
for n > 2. The first few terms of the sequence are 0, 1,2, 5,12, 29, 70, 169, 408,
985,2378 --- (sequence A000129 in OEIS). Some identities for Pell numbers
can be found in [2, 5, 10, 13].

2. RESULTS.

In (11, 12, 13, 14}, the first and second authors derived some nice results on
Lucas, Fibonacci, Pell sequences and balancing and oblong numbers involving
the Pell equation, respectively. In this section, we aim to define a new integer
sequence related to Fibonacci and Pell sequences with four parameters and then
derive some algebraic identities on it. For this reason we set Ty = 0,7} = 0,
T, =-3,T3 =12 and

(2.1) Ty = =5Tn_1 — 5Tn_2 + 2Tn_3 + 2Tn_4

for n > 4. The characteristic equation of (2.1) is z* + 523 + 522 — 2z -2 =10
and hence the roots of it are

(2.2) a=.‘_1';'_‘/§, 5:.:%_‘[:’3, y=-2+v2 and §=-2-2.

Then we can give the following theorems.

Theorem 2.1. The generating function for T, is

—323 — 322
2z4 - 223 + 522 + 5z +1°

T(z)=—

Proof. The generating function T'(z) should be the function whose formal power
series expansion at x = 0 has the form

oo
T(z) =Y Taz" =To+Tiz+Tpa? + -+ Tpa" + - .

n=0
Hence we get

(1+45z+ 522 — 22° — 2z4)T(z) = To+ (T +5T0)z + (T2 + 5T + 5To)x?
+(T3 + 512 + 5T — 2T0).’L’3
+(Tq + 5T3 + 5T — 2Ty — 2Tp)z?
+(Ts + 5T4 + 5T — 2T — 2T)z® + - -
+(Tn + 5Tn-1 + 5Tn—2 — 2Ty, -3 — 2Tr—4)z"
FRR
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Since Tp = 0,71 =0,T, = -3,T3 =12 and T,, = =5T,_1 — 552 + 2Th_3 +
2T, _4, we deduce that (—2z* — 223 + 522 + 5z + 1)T(z) = —3z° — 3z? and
hence the result is obvious. O

Theorem 2.2. Let T, denote the n—th number. Then the Binet-like formula

for T, is
_ 7"—6" B a — g
r=(5=5) - (%=5)

for n >0, where a, B,y and & are defined in (2.2).

Proof. In above theorem, we find that the generating function for T, is
—3z3 — 322
224 — 223 + 522 + 5z + 1°
Since —22% — 223 + 522 + 5z + 1 = (272 + 4z + 1)(—z% + = + 1), we can rewrite
T(z) as

(2.3) T(z) =

T(z) = —

z x
22 +dz+1 —zl+z+1

It is known in [9) that the generating function for the sequence U,, = PU,_, —
QU,_2 with parameters P and Q, defined as Uy =0,U; =1 is

U(z)(P,Q) = T—P:—W

Hence for P = —4,Q =2 and for P = —-1,Q = —1, we get
(2.4) U(z)(-4,2) = and U(z)(-1,-1)=

z z
212 + 4z +1 —z24z4+1
(2.3) and (2.4) yield that T(z) = U(z)(~4,2) — U(z)(~1, -1). So

B A" - & B a” - gn
= (%5F) (a~ﬂ)

as we wanted. O

Theorem 2.3. Let T, denote the n—th number. Then the sum of first non-zero
terms of T, is

z":T. 6T+ Tnoy —4Tp2 —2T,_3— 6

(2.9) 7 .

i=1

Proof. Notice that T, = —=5T,_; — 5Th 2 +2T_3 + 2Th_4. So

(2.6) 5Tn—1+5T—2 =2Tno3 + 2T g — Th.
Applying (2.6), we deduce that
5T3+5T2 = 2N +2T0—-Ty
5Ty +5T3 = 2T5+2T7 - Ts
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5T5 + 5Ty = 2I3+ 2T, -Tg
(2.7)
STa2+5Th-3 = 2T 4+ 2Th—5—Th
5Tn1 +5Tp-2 = 2T,-3+2T5_4—T,.
If we sum of both sides of (2.7), then we obtain 575 +5T,_1 +10(T3+ T4+ -+
Tno2) = —(Tu+Ts+ - +Tn1 + ) +4(T1+ T2+ -+ Ts+Tn—4)+2T, _3+2T0
and hence
N+T+ T3+ Ty+ - +Tho1+Tn = 2T,_3+2T5— 5T — 5T,
+Th+L+G+T1+T2+ T3
+Ty+ -+ Tos + Tn-g
—10(T3 + Ty + - -+ + Ta-a)
—10(Th—3 + Tn-2).
Adding -T,,.; + T5 — 6T, to both sides of above equation, we conclude that

6T, +Tp-1—4Th2—-2T,_3-6

T+T+--+Th= 7 .

This completes the proof. O

From the above theorem, we can give the following two theorems which
can be proved similarly.

Theorem 2.4. Let T,, denote the n—th number.

(1) If n is even, then
n—-2

ET —4T, = 17Ta_y — 2T 0 +6Tp_3— 3
2i =

1=0 7

L} —39T, — 17Ty + 12T g + 6T_3 — 3
ZTQ.‘-H = 7 .
1=0

(2) If n is odd, then

n;l
ZT =32 = VTTh 1 + 12T 2+ 6153 — 3
2% =

=0 7

n-3

< —4Ty — 17Ty = 2T g +6T,_3 -3
> Toigr = =

i=0

forn>3.
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Theorem 2.5. Let T,, denote the n—th number.

(1) If n is even, then

n-2

2 =
ZT21'+1 - ZTzi =—4T, + 2T, _»
i=0 i=0
(2) If n is odd, then
> Toigr - sz‘ =4T, - 2T, _»
i=0 i=0
forn 2> 3.

Theorem 2.6. Let T,, denote the n—th number. Then the recurrence relations
on the terms of T, are

Ton = 15T5p_0 — 41254 + 24Ton 6 — 4T2n 38
and
Tont1 = 16Ton-1 — 41Ton-3 + 24055 — 4100 -7

forn > 4.

Proof. Notice that Ty, = —5T%,—1 — 5Ton—-2 + 2T5,_3 + 2T, _4. So

Ton = —5T9n_1 —5Ton—9 +2Ton_3+ 2154

= —5(—5Ton-2 — 5Topn—3 + 2Ton—4 + 2T2p_s)
~5(=5T2n-3 — 5Ton-4 + 2Ton-5 + 2Ton—¢)
+2(—5T2n—4 — 5T2n-5 + 2T2n—6 + 2T2n-7) + 2T2n—4

= 25T5,_2 +25T0n_3 — 10Ton_g — 10755 + 25T, 3 + 25Ty
—10T3n—5 — 10T25—6 — 8T2n—4 — 10T2n -5 + 4Ton_6 + 4Ton_7

= 25Tpn_3 ~ 10(=5T2n-3 — 5T2n-4 + 2Ton—5 + 2Ton—g) — 10T2n_s
—43T9n—4 + 14T0p_g + 4T2n—7 — 10T2p -6 + 101206 — 4T2n-s

= 15Ton-2 — 41T2n—4 + 24T2n-6 — 4T2n-s.

The other assertion can be proved similarly. O

Theorem 2.7. Let T, denote the n—th number. Then

(1) o™ + B" = (=1)"(2F, + Fa_3) for n > 3.
(2) @™ = B = (=1)*+1F,\/5 for n > 0.
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(3)
."_12 . .
7n+6n={ 277 (P, + Pao1) ifnis even

—2LPP,. if n is odd
and
n  sn —2*#p, if n is even
7_6={~4¥H&+P_Q if n is odd
forn> 1.

Proof. (1) Recall that the roots of Fibonacci sequence are a = 1_-%@ and b =
1=¥8 3o the roots of Ty, are

—a=_1;\/5=ﬁ and—b=_l;\/g=
Since F,, = &= '; , we get

_M —_— n _(_ ny ﬂ_2__ n __ n
(28) 2F,= 7 \/-(( A" - (-a)?) = (1)\/5(/6 a”)

and similarly

ot e (24 VB) g 24V5)

Applying (2.8) and (2.9), we get

2Py + Faca = (<1 = (8" = ")+ (-1)" ((-2;5\/5)/3" Nt a")

and hence (—-1)*(2F, + Fy-3) = a" + 8"

(2) Since —a = B and —b = a, we get

n __ bn 1 ( )
Fn=a_=— _ﬁn__an_ ﬁﬂ_
7 7 ((=B)" = (=)™) - ( ")

and hence (—-1)"+1F, /5 = (-1)?*+! (" — a™) = o™ - B".

(3) For the Pell numbers P,, Tekcan proved in [13] that
ant! + pn+l

2 )
where a = 1+ /2, b=1— 2. So P, + P,_y = &%, Let n be even. Then
by binomial series expansion, we get

Pn+Pn+l=

n

“*“_z(%)?

i=0
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Therefore
(2.10) 2" (P, + Pa_y) = f; ( " ) gr¥l-i,
oo\ %
Notice that y = —2 + v/2 and § = —2 — v/2. So we deduce that
Z n .
(2.11) Y 48" = ZO: ( o ) gnti-i,

Applying (2.10) and (2.11), we conclude that 4" + " = 2°#*(P, + P, -1)-
Similarly it can be shown that if n is odd, then 4™ + 6" = -2 P,. The last
assertion can be proved similarly. O

From Theorems 2.5 and 2.7, we can give the following result concerning
the relationship among the sequences Fy,, P, and T;,.

Theorem 2.8. Let T,, denote the n—th number.

(1) If n is even, then
24 (P, + Po_y) — 2F, — Fag = —3T, + 2Tn_»
(2) Ifn is odd, then
—2"F P, 4 2F, + Fa_a = —3T, + 2Tn_»

forn > 3.

Theorem 2.9. Let T,, denote the n—th number. Then the sum of two conse-
cutive terms of T, is
T +T, s1=-3Th1 + 7Tn—3 - 2Th_s

for n > 5.

Proof. Notice that T, = —5Ty_1 — 5Tn—2 + 2T_3 + 2T _4. Hence
Th = —5Tnho1 —5Tp—o+2Th-3+2T,_4
= 4T 1 ~Thoy —5Tn2+ 2T 3+ 2T 4
= —4Tn_ ) = (—5Tn-2— 5T 3+ 2T_4 + 2T}, _s)
~5Tp_2+ 2Ty 3+ 2Th_4
= AT, 1+ 7T, _3-2Th_5
= T 1 =31 +TTh_3—2T,_s.
SoTp+Tnoy = —8Thy + 713 — 2T, 5. m]
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From the above theorem, we can give the following theorem which we will
use it in later theorem can be proved by induction on n.

Theorem 2.10. Let T,, denote the n—th number. Then the sum of two con-

secutive T,, numbers is always divisible by 3, that is, T"—'*'g’-’-‘-‘—' €Z.

Now we consider the rank of 7, numbers. The rank of T,, is defined to be
(Tn) = p if p is the smallest prime with p|T,
Plin) = oo if T, is prime.
Theorem 2.11. Let T,, denote the n—th number. Then the rank of T, is
_J 2 ifn=0(mod 3)
A(Tn) = { 3 ifn=1,2(mod 3)

forn > 2.

Proof. Let n = 0(mod 3), say n = 3k for some integer £ > 1. Let k= 1. Then
T3 = 12 = 22.3. So p(T3) = 2. Let us assume that the rank of Tax_3 is 2,
that is, p(T3k—3) = 2. In this case T3,_3 = 2% - A for some positive integers
a>1and A > 0. Then T3 = —5T3,-1 — 5Tsx—2 + 2T34-3 + 2T3x—4. Taking
Tsk—1 = —5Tak-2 — 5T3k—3 + 2T3k -4 + 2T3k-5, we deduce that
T3 = —5T3k-1 —5T3k—2 + 2T34-3 + 2T35_4
= 20T3x_g + 27T3x—3 — 8T3k—q — 10T3x_5
2[10T3k—2 +27.271. 4 4T 35 g4 — 5T3k._5].

So p(Tax) = 2.

Now let n = 2(mod 3), say n = 2 + 3k for some integer k£ > 0. Let k =0,
then n = 2 and hence T = -3 = 3- (—1). So p(T3) = 3. Let us assume that
the rank of T, is 3 for n — 1, that is, p(T,—1) = 3. So T,,—; = 3*- B for some
integers b > 1 and B > 0. Then we get

(212) To = =5T,_y —5Tap+2Th3+2Th_y
= —5Tn_y +27Tn_3 + 27Tn_g — 10(Ts_s + T—s).

By virtue of Theorem 2.10 that T, + T,,—; = 3K for some K # 0 and hence
Tn-5 + Th-e = 3K. Therefore (2.12) becomes

Tn = —5Tney +27Th 3+ 27T s — 10(Tho5 + T —6)
= —5Tn_y + 27T 3 + 27Ta_g — 10(3K)
(2.13) = 3[-5B-3""! +9T,_3 + 9T»-4 — 10K].
So the rank of T, is hence 3, that is, p(T,,) = 3. a
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From the above theorem one can easily realize that if n = 0(mod 3), say
n = 3k for k > 1. Then T, is positive if k is odd, or negative if k is even. If
n = 1(mod 3), say n = 1 + 3k for k > 1. Then T, is positive if k is even, or
negative if k is odd and if » = 2(mod 3), say n =2+ 3k for k > 0. Then T, is
positive if k is odd, or negative if k is even. Also T,, is always divisible by 3,
that is, %ﬂ € Z. So we set the sequence Qo =0, @, = 0 and

(2.14) 0.=I
3
for every n > 2. Now we set
-5 -5 2 2
1 0 00 . .
= = t
M= M(T,) o 1 0 0 (companion matrix)
0 0 10

A=AT)=[ 45 12 -3 0] and B=B(T,) =

O O O ==

Theorem 2.12. Let T,, denote the n—th number.

(1) If n is odd, then

r n+42 X n+1 nt+l ‘
;2 (1)@ - ( ; (=1)"+1Qs ) -2Qn  —2Qn41 —2i§](-1)'Qi
'_'i‘(—l)i«HQi -5 (f:( 1)? Q.) —2Qn-1 —2Qn _gi (-1)i+1Q;
M” = ‘23' "ﬁz '30-1
Z(—l)iQ" =5 (2 (- )H‘IQ ) 2Qn-2 —2Qn-1 -2 Z (—l)iQ'-
w3 o, N
gz(—l)wlq,- -5 ( Z: (-1 Q.) —2Qn-3 —2Qn_2 -2 %(._I)H‘IQ',

forn 2> 5.
(2) If n is even, then

[ n42 . n4l . n . ]
Fenwe () -0 20w 25-vTa
| B (- Q) =2Qny <20n 23 (-0
DT s "2:2l (0'Q) ~2Qn-2  20n1 -2 (-1Q
= _t_=2 i=

T (T 01e) -2 20na 25 (-0 |
L =2 i=0

2

-
1

forn> 4.
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(2.16) -Q2 = -Q
@ = Qs
-Q4 = 5Q3+5Q2—2Q1 ~2Q0
Qs = -5Qu-5Qs+2Q:+2Q)
-Qs = 5Q5+5Q4 —2Q3 —2Q

"Qn—-l = 5Qn—2 + 5Qn—3 - 2Qn—4 - 2Qn—5
Qn = —sQn—l - 5Qn—2 + 2Qn—3 + 2Qn—4
_Qn+l = 5Qn. + 5Qn—1 - 2Qn—2 = 2Qn—3-

If we sum the left and right side of (2.16), then we obtain

“Q2+ Q33— +Qn—CQnt1 = —2Qn-2+5Qn— Q2+ Q3+5Q;
—2Q0 —2Q1 +2Q1 +2Q2 - 2Q2

+5Qn_2 — 5Qn-2 — 5Qn-1 +5Qn_1
n+l
= Y (-)*Q.

i=2

So applying (2.15), the result is clear. The other cases for M;; can be proved
similarly. 0O

Theorem 2.13. Let T,, denote the n—th number. Then
T, = AIM™)'B

forn > 4.

Proof. It can be proved by induction on n as in Theorem 2.12. O
Example 2.1. Let n = 12. Then T1; = —886896. Since

35824 56723 —14836 -—20954

~10477 -16561 4338 6118
3059 4818 -1266 -1780
-830  -1391 368 514

M8 =

we get A(M8)'B = —886896 = Tj».
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3. CROss-RATIO OF FOUR CONSECUTIVE T,, NUMBERS.

The cross-ratio is also an important quantity in complex analysis and also
in the theory of discrete groups. Given any four different complex numbers
21, 22, 23 and z4, the cross-ratio defined as

(21 = 2z2)(23 — 24)
(22 — z3)(24 — 21)

(3.1) (21, 22; 23, 24] =

is invariant under arbitrary Mobius (i.e., linear fractional) transformations.
This definition can be extended to the entire Riemann sphere (i.e. CU {o0})
by continuity. More generally, the cross-ratio can be defined on any projective
line (The Riemann Sphere is just the complex projective line). It is given by
the above expression in any affine coordinate chart. Cross-ratios are invariant
of projective geometry in the sense that they are preserved by projective trans-
formations. The cross-ratio of four complex numbers is real if and only if the
four numbers are either collinear or noncyclic.

Now we want the determine the limit of cross-ratio of four consecutive
T, numbers T, Tpy1, Tny2 and Tnys. Let [T, Tnta1; Tnta, Tnta] denote the
cross-ratio of four consecutive T,, numbers. Then we can give the following
theorem.

Theorem 3.1. Let T, Ty 41, Tny2 and Ty 3 be four consecutive T,, numbers.

Then

6+46
11m [T,.,Tn+1, n+2, Tn4s) = =

Proof. Let T,,, Tp41, Tnye and T,43 be four consecutive T;, numbers. Then by
(3.1), we get

(T = Tag1)(Tns2 — Tass)
(Tn+l - Tn+2)(Tn+3 - Tn) '

Note that T, = =5T1 — 5Th 2 + 2T 3+ 2T_4. So

(3'2) [Tn ) Tn+l; Tn+2) Tn+3] =

,7n o a® — ﬁn ,7n+1 - 6"+1 an+l _ ﬁ"'“
Tp—Top1 = - - _ ‘
n T At v-—46 a-f y—46 a-f
Therefore
’Y"+2 - 5n+2 an+2 ﬁ“+2 ,rn+3 5'n+3 a'n+3 - Bn+3
Tnt2 = Tnys = [ P ][ R ]
.’n-{-l _ 6n+l a""'l ﬁn-{-l n+2 5"+2 0,ﬂ-&-2 - ﬂ"+2
T =Tosz = [ v7-46 ] [ a-8 ]
n+3 _ 6n+3 a“+3 ﬂ“+3 ’Y — 6" a® — [3"’
S |-[z=r-2=2)
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Hence (3.2) becomes

[Tn: Tat1; Toyo, Tn+3] =
7 =8 o:"—ﬂ") (,yn-&l_&n-f-l °n+l_pn+l

=3 a—f Y-8 T T a-8
7n+2_6n+2 a"+2—ﬁ“+2 ln+3_5n+3 an+3_Bn+3
=8 T T a=f ) B =6 T T a=p
_Yn+l__6n+l an+l_gn+l ]n+2_6n+2 on+1_pn+2
( =8 T a8 - =8 T a-B ) X
ﬂ-’-!’_an-&& _ an+3_ﬁn+3 _ 7n_‘sn _ an_ﬂn
y—90 a—f -0 a-f

Notice that o = '—L?@,ﬁ = ;1—'23@,')’ = —2-+/2 and § = —2—+/2. Combining
these and taking the limit of both side of above equation, we conclude that

. - _2+V2 6434
nlLITgo[Tn, Tat1; Tat2, Tats) = m =

as we wanted. 0O

From the above theorem we can give the following result.

Corollary 3.2. Let T, T4y, Tri2 and Trys be four consecutive numbers.
Then

|~

nli—)n;o[Tn yTni1; Tngs, Tﬂ+2] =

(=]
+
On

nlL]Tgo[Tﬂan+2;Tn+3yTn+1] = —6-1

|
l -

,}i{fgo[Tm Tn42iTns1, Tnysl =

)
| &
o+

—

nli;ngo[T"’ Tn+3; Tn+2a Tn+1] =

nll)n;o[Tn, Tn+3; Tn+1 ) Tn+2] =

[\
)
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