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1. Introduction

Row-cyclic array codes equipped with m-metric [12] have already been
introduced by the author in [8]. These codes are suitable for parallel channel
communication systems. The author also gave the decoding methods for
the correction/detection of random array errors (8] and usual burst array
errors [10] in row-cyclic array codes. There are yet another kind of burst
array errors that occur during parallel channel communication known as
the CT-burst array errors [6]. In fact, the CT-burst array errors are the
generalized version of usual burst array errors. In this paper, we study the
CT-burst array error detection and correction in row-cyclic array codes.

2. Definitions and Notations

Let F, be a finite field of g elements. Let Mat,,,xs(Fy) denote the linear
space of all m x s matrices with entries from F,. An m-metric array code
is a subset of Mat.,xs(F;,) and a linear m-metric array code is an Fy-linear
subspace of Mat,xs(Fy). Note that the space Mat,,xs(Fy) is identifiable
with the space Fy"*. Every matrix in Matmxs(Fy) can be represented as
a 1 x ms vector by writing the first row of matrix followed by second row
and so on. Similarly, every vector in Fq"" can be represented as an m x s
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mat_rix in Matxs(F;) by separating the co-ordinates of the vector into m
groups of s-coordinates. The m-metric on Maty, x,(Fy) is defined as follows
[12):

Definition 2.1. Let Y € Matixs(Fy) with Y = (y1,y2,* -+, ¥s). Define row
weight (or p-weight) of Y as

max { ¢ | yi # 0} ifY#0
wt,(Y) =
0 if Y=0.

Extending the definitions of wt, to the class of m x s matrices as
m
wto(A) = Y wty(R:)
i=1

R,
Ry

Rm
wt, satisfies 0 < wt,(A) < n(=ms) V A € Maty,xs(F;) and determines a

metric on Mat,xs(F,) known as m-metric (or p-metric).

where A = € Mat,,xs(Fy) and R; denotes the ith row of A. Then

Now we define CT-burst errors in linear array codes [6]:

Definition 2.2. A CT burst of order pror pxr)(1<p<m,1<r <s)in
the space Matmxs(Fy) is an m x s matrix in which all the nonzero entries
are confined to some p X r submatrix which has non-zero first row and first
column.

Note. For p = 1, Drfinition 2.1 reduces to the Definition of classical CT-
bursts [3].

The following theorem gives a bound on the number of parity check
digits for the correction of CT-burst array errors in linear m-metric array
codes [6].

Definition 2.3. A CT-burst of order prorless (1 <p <m,1 <r <)
in the space Matmtimess(Fy) is a CT-burst of order cd(or ¢ x d) where
1<c<p<mand1<d<r<s.

Theorem 2.1. An (n,k) linear m-metric array code V. C Matpyx(F,)
where n = ms that corrects all CT bursts of orderpr(l < p<m,1 <r <s)
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must satisfy
q""k > 1+TPXS(F)

where TP (F,) is the number of CT bursts of order pr(l < P < <m,1<
T < 8) in Matyy(Fy) and is given by

’

ms(q—1) ifp=1, r=1,
ms—r+1)(g-1)¢' ifp=1r2>2,

(m—p+1)s(g-1)gP~!  ifp>2,r=1

TR (F) = 4 (1)

(m=p+1)(s—7+1)g"PVx

X [(q" —1)— (g™t - l)ql"”] if p>2, r>2.

Now, we define row-cyclic array codes [8].

Definition 2.4. An [m x s, k] linear array codes C' C Mat, xs(Fy) is said
to be row-cyclic if

a;p a2 - Q1
G2y Q22 - Oy
eC
Gml Q@m2 *'*° Omg
a1s a1 @12 **-Q1s-1
Q2s az Q22 crr Q2,51
= . . . . eC
Ams Gml OGm2 ' 'Qmg—1

i.e. the array obtained by shifting the columns of a code array cyclically

by one position of the right and the last column occupying the first place

is also a code array. In fact, a row-cyclic array code C of order m X s turns
m

out to be C = (PC; where each C; is a classical cyclic code of length s.

i=1

Also, every matrix/array in Matmxs(Fy) can be identified with an m-tuple
in A{™ where A{™ is the direct product of algebra A, taken m times and
A, is the algebra of all polynomials over F; modulo the polynomial z° — 1
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and this identification is given by

0 : Mat,xs(Fy) — A™

'Ry
B o' Ry

G(A) =0 = = (G’Rlv glRZ) v 101R17t) (2)
Rm glR'n

where R;(i = 1 to m) denotes the it" row of A and ¢’ : Fq’ —s A, is given
by

0'(a0,a1,++,85-1) = @0+ 01T + - + as12° L.

An equivalent definition of row-cyclic array code is given by [8]:

Definition 2.5. An m x s linear array codes C C Mat,xs(F,) is said to
be row-cyclic if

-
i=1

where each C; is an [s, k;, d;] classical cyclic code equipped with m-metric.
m

m
The parameters of row-cyclic array code C are given by [mxs, Zk,, mm di].

If gi(z) is the generator polynomial of classical cyclic code C’,, then the m-
tuple (g1(z) -, gm(z)) is called the generator m-tuple of row cyclic code
C.

3. Detection of CT-Burst Errors in Row-Cyclic Array
Codes

In this section, we first obtain an upper bound on the order of CT-
bursts that can be detected by a row-cyclic array code and then obtain
the ratio of CT-bursts (of order exceeding the upper bound) to the total
number of CT-bursts.

Theorem 3.1 Let C = @C’, be an [m x s, Zk,,mm d;) row-cyclic array

=1
code. Then no code army is a CT-burst of order m X r or less where
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m
m m
r = M{I{S — ki}. Therefore, every [m x s, E k,-,l’;'li{l d;] row-cyclic array
= =

i=1

m
code detects every CT-burst of order m x 1;11_1{1{3 —ki} or less.

Proof. Let
b
b, O
A = (0 B 0= .
bm
by(z)
_ 0 sz:L‘) 0 c Ag’")
bm(z)

denote a CT-burst of order m X 7 or less (r = 1}5{1{3 — k;}) where B is
a m X r submatrix of A such that B has a submatrix D with first row
and first column of D to be nonzero. Let (g1(z), g2(z),- - -, gm(z)) be the
generator m-tuple of row-cyclic array code C. Then deg(g;(z)) = s — k; for
alli=1,2,.--,m. Choose b;(z) such that b;(z) # 0. Then such a b;(z) is a
classical burst of order 7 or less. Let the first nonzero component of the vec-
tor corresponding to b;(z) be the coefficient of z7 under the correspondence
0 ie.

(a0, @1, ,a5-1) «— ag + 1T+ -+ + ag_yz° L.

Then, the polynomial b;(z) can be written as
bi(z) = aja:j + aj.,.le“ +--- 4 a_,-.,.,._.]:cj"'"l
= D@+ gzt a1
= z'p(z)
where deg p(z) <r—1= I';l'i'il{s—k,'}—l <s—ki—1<s—k; =deggiz).
1=

Now g;(z) does not divide 27 and also g;(z) does not divide p(z) as deg (p(z)) <
deg g:(z).
Therefore, g;(z) does not divide b;(z).

This implies that b;(z) is not a code polynomial in classical code C; which
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bi(z)
0 by(z) O
further implies that A = ) is not an array of code poly-

bon(z)

m
nomials in C = @Ci. Hence, the row-cyclic array code C detects every
i=1

CT-burst of order m x mf_’x}{l{s — k;i} or less. O

Another upper bound on the order of CT-bursts that can be detected by a
row-cyclic array code is obtained in the following theorem:

Theorem 3.2. Let C = @C be an [m x s, Zk,,nnn d;] row-cyclic array
code. Then no code array zs a CT-burst of order mxt wheret < s— k1

Therefore, every [m x s, zk,,mm d;] row-cyclic array code C = @C’

i=1

detects every CT-burst of order mxt(t<s—k).

Proof. Let
by
0 b O
A = (0 B 0)= .
b
bi(z)
_ 0 bg(.’l‘) 0 c AS"")
bm.(x)

denote a CT-burst of order mxt where t < s—k; and B is an mxt submatrix

of A with first row and first column of B nonzero. Let (g1(z), g2(z), - -, gm(z))

be the generator m-tuple of the row-cyclic array code C. Then deg(g;(z)) =

s—kiforalli=1,2, --,m. Clearly b)(z) # 0. As in Theorem 3.1, we have
bi(z) = ajzf +ajp19t 4 a2t

2 (a; + aj41Z + - + a1zt

=/ p(z)

I

where
degp(z) <t —1<s—k; —1<s—k =degg(z).
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Now g;1(z) does not divide z7 and also gi(z) does not divide p(z) as
deg (p(z)) < deg g1()-

Therefore, g1(z) does not divide b;(z).

This implies that b;(z) is not a code polynomial in classical code C}.

bi(z)
0 be(z) O
This implies that A = . is not an array of code poly-

bm(z)
nomials in C = @Ci. Hence, the row-cyclic array code C detects every

i=]
CT-burst of order m x t where t < s — k;. )

Remark 3.1. Clearly the bound obtamed in Theorem 3.2 is better than
the one obtained in Theorem 3.1 as mm{s — k;i} € s — k; with the only
limitation that order of nonzero submatnx B in CT-burst A is m x t and
not m x t or less where (t < s — k1). We may also take the order as m x t
or less in Theorem 3.2 but with the constraint that b;(z) # 0 i.e. first row
of CT-burst A is nonzero.

Now, we obtain the ratio of CT-bursts of order m xr where r > (s—~k;)
that go undetected in row-cyclic array codes. We spilt the problem into tow
parts viz. when r = s — k; + 1 and when 7 > s — k; + 1 and obtain the
desired ratio in the following two theorems. In the subsequent theorems,
|J| denote the cardinality of a set J.

Theorem 3.3. Let C = @Ci be a row-cyclic array code over F, where

each C; is a (s, ki, di classitc:z; cyclic code equipped with m-metric and having
generator polynomial g;(xz). Then the ratio of CT-bursts of order m x r
(where T = s — ky 4+ 1) that go undetected in a row-cyclic array code C is
given by

sltr=a)+ Y _ ks
6-r+1(a S x(g-1)x gthin)
Toxs (F)

3)

where Jy and Jp are subsets of N = {1,2,---,m} such thati € Jy & r—1=
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s—kiandi€ Jp & r—1>s—k; and T, (F,) is given by (1).

Proof. Let J3 = N/(J; UJ2). Then Jy,J,J3 are pairwise disjoint and
N = UL UJ; (i.e. |J1] + |J2] + |J3| = m). Clearly, 1 € J;. Consider a
CT-burst A of order m x (s — k; + 1). We can write A as

by
by O
A= (0 B 0)= .
bm
bi(z)
0 b2 (:L') 0
= . (under the identification 8).
bm(z)
b1(z)
ba(z) | .
where B = . is an m x 7 submatrix of A such that first row and
bm ()

first column of B is nonzero.

Now, the CT-burst A will go undetected if
gi(z) divides b;(z) Vi € N.

Without any loss of generality, we may assume that deg b;(z) < r —
lfor alli € N. Let i € N. We find possible number of ways of choosing

bi(x).
There are three mutually exclusive cases to consider:
Case 1. When i € J3.

In this case, r — 1 < s — k; and ¢ cannot be 1. Since deg b;(z) < r —1
and deg gi(z) = (s — k;) and r — 1 < s — k;, therefore gi(z) divides b;(z) iff
bi(z) = 0.

Thus there is only one way of choosing b;(z).

Hence, possible number of ways of choosing b;(z)for all i € J;

= (1)l =1. (4)
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Case 2. When i € J;.
In this case r — 1 = s — k; and i can be 1. Now g;(z) divides b;i(z) iff
bi(z) = gi(z)qi(z) for some g¢;(z).

Since deg gi(z) = s — ki and deg bi(z) < r — 1, therefore deg gi(z) <

(r=1)—(s—ki)=0.

But the degree of a polynomial cannot be negative, thus, deg g:(z) = 0.
. fg-1 if i=1

Thus, total number of ways of choosing g;(z) = { g if ieJi/{1}.

Therefore, total number of ways of choosing g;(z) and hence b;(z) Vi € J;

= (g - 1)gI-L. (5)

Case 3. When i € J5.

In this case, r — 1 > s — k; and ¢ can not be 1. Also, 0 < deg ¢;(z) <
(r—1)— (s — k;). Denote (r — 1) — (s — k;) by P.

Now, number of possibilities for g;(z)

= number of polynomials of dgree upto P
g+(g-Dg+(g-1+--+(g-1)¢"

P+1 = qT—s—k".

= 4q
Therefore, total number of possible ways of choosing ¢;(z) and hence b;(z) Vi €
Jo
= o™
i€de
ngl(r—s)-l-E k;
= q i€z (6)

Combining the three cases, i.e. multiplying (4), (5) and (6) and using
the fact that the CT-burst A or order m X r can have first (s — r + 1)
positions as the starting positions, we get total number of CT-bursts of
order m x (s — kj + 1) that go undetected in the row-cyclic array code C

(Ialr-)+ D _ ki

(s -—r+1)(1 x (g—1) x ¢M1I=D x ¢ i€J )

and is given by
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(alr=)+ 3 ks

= Gorenfs EE x@enxgWi) @

Also, total number of CT-bursts of order m x r (where r = s — k; + 1)

viz. Thxs (Fg) is given by (1). Therefore, the required ratio is obtained on

dividing (7) by (1).

Example 3.1. Let C be the binary [2 x 2,1 + 1] row-cyclic array code of
order 2 x 2 generated by (g1(z), g2(z)) = (1 +z,1+2). Then C =C, & C;
where C; and C; are classical cyclic codes of length 2 each generated by
14z

Here ky =k =1and s =1.
Therefore, s —ky =s—ky=1. Let r=2. Then2=r=s5—k; + 1.
Here N = (1,2}, J1 = {1,2}, Jo = ¢, |J1}| = 2,|J2| = 0.

The ratio computed in (3) for this example turns out to be 2/10. The
ratio is justified by the fact that there are 10 CT-bursts of order 2 x 2 in
Matax2(F2) (since Taxz(F,) = 10) given by

(6 2) (o) (T e)
(61)(13)(s0)(oo)(is)

1

1
and out of these 10 CT-bursts, 2 CT-bursts viz. ( ) and ( (1) (1) )
are undetected by the row-cyclic array code C.
Example 3.2. Let C = C, & C; be a row-cyclic array code of order gener-
ated by (91(z), g2(z)) = (1,1 + z). It is clear that Cy and C; are classical
cyclic codes of length 2 generated by 1 and 1 + z respectively.
Here ky = 2,k2 =1 and s = 2.
Therefore, s — k; =0 and s — ky = 1.
Letr=1 Thenl=r=s~-k;+landr—-1<s—ks.
Here N = {1,2}, J; = {1}, Jo = ¢. (Note that J3 = {2}).
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The ratio computed in (3) for this example turns out to be 2/4 and is
justified by the fact that there are 4 CT-bursts of order 2 x 1 in Matgx2(F3)

R NEE NG IS

and out of these 4 CT-bursts, 2 CT-burst viz. ( (1) g ) and ( g (1) )
go undetected in the row-cyclic array code C.
Now, we obtain the ratio of the undetected CT-burst array errrors of

order m x r where r > s — k; + 1.

m
Theorem 3.4. Let C = @Ci be a row-cyclic array code over Fy where

i=1
each C; is a s, ks, d;] classical cyclic code equipped with m-metric and having
generator polynomial g;(z). Then the ratio of the CT-bursts of order m x v
(where r > s — ky + 1) that go undetected in a row-cyclic array code C 1is

given by
(s—r+1)(D-E) ()
Toxs (Fg) 7
where
a=1i(r—s)+ Y kil
[a=1ltr=s-1)+ D _ ki
@ E=(q g -y,

(iii) Jy end Jp are subsets of N = {1,2,---,m} such thatie J, &r—1=
s—kiandi€ o &r~1>s—ki and T 7 (F,) is given by (1).
Proof. Let J3 = N/(J1 U J2). Then Ji,J; and J3 are pairwise disjoint,
N = J1UJy U J;3 and |Jy| + |J2| + |J3| = m. Clearly, 1 € J;. Consider a
bi(z)

CT-burst A = of order mxr wherer > s~k;+1. Asin

bm.(:z)
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Theorem 3.3, the CT-burst A will go undetected if g;(z) divides bi(z)V i €
N where deg bi(z) < r—1Vi. Let ¢ € N. We find various ways of choosing

bi(z).

There are three cases to consider:

Case 1. When i € J3.

This case is same as Case 1 of Theorem 3.3. Therefore, the total number

of possible ways of choosing b;(z) V i € J3

= (1)}l =1. 9)

Case 2. When i € J;.

In this case r — 1 = s — k; and ¢ can not be 1. Now g;(x) divides b;(z) iff
bi(z) = gi(z)qi(x) for some q;(x).

Since deg b;(z) < r—1 and deg gi(z) =s—k; = deg qi(z) L (r—-1)—(s—
k:) =0 = deg ¢:(z) = 0.

This gives the number of possible ways of choosing ¢;(z) = g.
Therefore, the total number of possible ways of choosing g;(z) and hence

for b(z) Vie

o (10)

Case 3. When i € Js.

In this case, we have r — 1 > s — k; and i can take value 1. Also, 0 <
deg gi(z) < (r — 1) — (s — ks).

Now, the number of possible ways of choosing g;(z)(i # 1)

= number of polynomials of dgree upto (r — 1) — (s — k;)

qr—s+k,~ .

Also, the number of possibilities for g, (z) = (g"—*t* —1).

(Note that we have subtracted 1 from g"~*+*1 to take care of the fact that
q1(z) is a polynomial of degree 0 and it has to be a nonzero constant).
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Therefore, the total number of possible ways of choosing g:(z) and hence
bi(x)Vie J,

= H qr—s+k,~ X (qr—s+k1 _ 1)

iely
iAl
(al=D)(r=s)+ ) ki
i€Jg
- (s ¥ )x@hon.

Combining the three cases, i.e. multiplying (9), (10) and (11), we get the
total number of ways of choosing b;(z) V N and is given by

(1al=D(r=)+ D ki

1 x q|..71| x (q “5;‘2 ) x (qr—s+k1 _ 1)
(Jal=D)(r=)+ Y ki+lJi]
icJy

- (4 o ) x@-n, (12)
Amongst all these possible ways, we eliminate the number of ways which

bi(z)

N , ba(z) )

give rise to the first column of submatrix B = . as zero. This

bm(z)

will occur when g;(z) = 0 Vi € J; and constant term of g;(z) =0V i € Js.
The number of ways in which b;(z) can be chosen such that ¢;(z) =0V i€
J1 and constant term of ¢;(z) =0V i € J; is given by
(Msl=1)(r=s=1+ ) _ ks
1 x (q Py ) x (gir—D—(s=k1) _1q), (13)
Substracting (13) from (12) and the fact that the CT-burst A of order m xr
can have first (s —r+1) positions as the starting positions, we get the total

number of CT-bursts of order r (where r > s — k; + 1) that go undetected
in the row-cyclic array code C and is given by

(s—7+1)x ((12) - (13)). (14)

Also, the total number of CT-bursts of order m x r viz. Thxa (Fq) is given
by (1). Therefore, the desired ratio is obtained on dividing (14) by (1). O
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Example 3.3. Let C = C; & Cs be a row-cyclic array code generated by
(g1(x), g2(z)) = (1,1 + x). It is clear that C} and Cs are classical cyclic
codes of length 2 generated by 1 and 1 + = respectively.

Here N={1,2} , k1 =2,ka=1and s =2.

Therefore, s — k; =0 and s — ky = 1.

Letr =2 Then2=r>s—-k; +1=1.

Here J; = {2} asr—1=s—koand Jo={1}asr—1>s—k;.

The ratio computed in (8) for this example turns out to be 5/10 and is
justified by the fact that out of the 10 CT-bursts of order 2x2 in Matyx2(F?)

listed in Example 3.1, there are five CT-bursts that go undetected and these
undetected bursts are given by

) (i)(s6)(60)

4. Decoding Algorithm for CT-Burst Error Correction

In this section, we give decoding algorithm for CT-burst error correc-
tion in row-cyclic array codes.

Algorithm.

Let C = GBC be a g-ary [m x s Zkg,mm d;] row-cyclic array code
=1

having generator m-tuple of polynomlals (91(z), 92(x),- - , gm(z)) and cor-
recting all CT-burst errors of order mr or less (1 < r < s). Let w(z) =
(wi(z), w2(z), -, wm(zx)) be a received array with an error pattern e(z) =
(e1(z),ea(z)," - - ,em(z)) such that e(z) is a CT-burst of order mr or less
(1 £ 7 < s). The goal is to determine e(z). This is obtained in the following
four steps:

Step 1. Compute the syndrome m-tuple (.S'J(.l) (z), SJ(-z)(:z:), ey SJ("') (z)) for
§=0,1,2,-.. where for all i = ¢ to m, SJ(-’)(:c) is given by

(3) — j
5" (z) = syndrome of z’w;(z).

Step 2. Find the m-tuple of nonnegative integers (I1,l2,---,l;n) such that
syndrome for z%w;(z)(1 < i < m) is a classical CT-burst of length 7.
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Step 3. Compute the remainder m-tuple e(z) = (e1(z),- -, em(z)) where
for all i =i to m, e;(z) is given by

ei(z) = 24 8P (z)(mod (z° - 1)).

Step 4. Decode (w1(z), -+, wm(z)) to (wi(z) —e1(z), - - -, Wm(T) — em(z))-

Proof of Algorithm. First of all, we show the existence of m-tuple of
nonnegative integers (l1,l2,-++,ls) in Step 2. By the assumption, there
exists an error pattern e(z) = (e1(z),--,em(z)) such that e(z) is a CT-
burst of order mr or less which in turn implies that each e;(z)(1 < ¢ < m)
has a cyclic run of zeros of length s—r. (A cyclic run of zeros of length ! of an
s-tuple is a succession of | cyclically consecutive zero components). Thus
there exists an m-tuple (ly,l2,--,lm) such that cyclic array shift of the
error (e1(z),--,em(z)) through (3,02, +,ln) positions (or equivalently,
cyclic shift of error e;(z) through I; positions (1 < 7 < m) in classical
sense) has all its nonzero components confined to first r columns of e (Note
that we are identyfying e(z) « e under the map #). The cyclic shift of
error e;(z) through /; positions (1 < i < m) is in fact the remainder of
zhw;(z)(mod (z° — 1)) divided by g:(z).

Also, foralli=1tom
5z) = (zMwi(z)(mod (z° — 1))(mod gi(z))
= (zlw;(z)(mod g:(z)).

Therefore, each .S',(:) (z)(1 £ i £ m) is a classical CT-burst of length . Now,
for all i = 1 to m, the word

ti(z) = (z*4 5 (z))(mod (z* - 1))

is a cyclic shift of (Sl(:),O) through s — I; positions, where S,(:) is a vector
in an—k.- corresponding to the polynomial S,(:). It is clear that each t;(z) is
a classical CT-burst of order r. Also, for all i = 1 to m, we have

Di(wi(z) — ti(2)) = 2% (wilz) - 24P (x))
= x"wi(:c)—a:’Sl(f)(m)

= SP() - 250 ()
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(1-2*)8(z)
O(mod (gi(x)))- (15)

Since g;(z) and z’ are coprime to each other, therefore from (15), we get
gi(@)|(wi(z) — ti(z)) Vi=1,2,---,m

= wi(z) —ti(x) € C; i=1tom.

Also w;(z) — ei(z) € C; implies e;(z) — t;(z) € C; which further implies

that e;(z) and ¢;(z) belong to the same coset (mod g;(z)). Since both e;(z)

and ¢;(x) are the classical CT-bursts of length r and each C; is r CT-burst
m

error correcting classical cyclic code (since C = @C,- corrects all bursts of
i=1
order m X r), we get

ei(@) = ti(z) = (=*~4 5 (2))(mod (2° - 1)).
]

Remark 4.1 The above algorithm also holds for the correction of all CT-
bursts of order prorless (1<p<m,1<r <s).

2
Example 4.1. Consider the binary row-cyclic array code C = @Ci where

C, and C; are [7,4,4] classical cyclic codes in Fj equipped wiﬁllm-metric
and generated by g1(z) = 1 + 22 + z°® and gs(x) = 1 + z + z3 respectively.
Then parameters of row cyclic code C are [2 x 7,4 + 4,4]. The row-cyclic
array code C corrects all CT-bursts of order 2 x 1 or less as seen from the
fact that syndrome 2-tuples of all CT-burst array errors of order 2 x 1 or
less are all distance as shown in Table 4.1.
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CT-bursts of order 2 x 2 Syndrome 2-tuple
or less in Matay7(F2)
(?333383) (000, 100)
ngggggg) (000, 010)
(88?3383) (000, 001)
(888‘1’833) (000, 110)
(3888‘1’88) (000, 011)
(33333?3) (000, 111)
(gggggg$> (000, 101)

The syndrome 2-tuple S = (S, Sz) for a CT-burst b = ( Il;; ) of order

2 x 1 or less for the code C have been found by using the relation $ = bHT
where H is the parity check matrix of the code C and is given by

(H 0
H—(o Hg)’

where
1 001110
H={0100111
0 01 1101
and
1 001 011
H=]1010111201}.
001 0111

Now, consider the received array
(w_(1011100
w_<w2)_(l 10110 o)EMatW(FZ)'
Under the identification 8 : Mat,, x5 (F2) «— A{™ 1w can be identified as

(142242342t _ [ w(z)
Y=Ur4z+22+20 )T\ wele) )
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We Compute the syndrome S}i)(m) of T¥w;(z)(1 < i < 2) until SJ(-i) is a
classical CT-burst of length 1 or less.

Table 4.2
il S | S
0|l4+z+22| z+2?
1 1+z 1+z+ 12
2| x4+ 1+ 22
3 1 1

Therefore, Iy =1, =3 ie. (I1,02) = (3,3).
Decode w; (z) = (1011100) = 1 + 22 + 23 + z* to w;(z) — t1(z) where

th(z)=es) = 2718 (z)(mod (z* - 1))
:1:7‘3S§1)(:73)(mod (" - 1))

= I4

Thus w;(z) is decoded to
wi(z) ~t(z)=14+22 +2° +2* — 2% =14 2% + 2% = 1011000

Similarly, decode wa(z) = 1101100 = 1 +z+ 23 + z* to we(x) — t2(x) where

ta(@) = ex(@) = &* 7S (@)(mod (z* - 1))
7353 (z)(mod (z7 — 1))
= $4

Therefore, wy(2) is decoded to

wa(z) —to(z) =1+ z+ 28 + 2% — 2% = 1 4+ = + 2° = 1101000.

_w1_10
Y=1lw /™11
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1101000

Remark 4.2. Since the [2 x 7,4 + 4, 4] row-cyclic array code C of Example
4.1 corrects all CT-bursts of order 2 x 1 or less, therefore the code C must
satisfy the Rieger’s bound for an [m x s, k] m-metric array code correcting
all CT-bursts or order pr (1 < p,m,1 <r < s) obtained in [6] and is given
by

isxdecodedto(1 01100 0).

ms —k 2 2pr

or
m m
ms — Zk‘ >2pr (ask= Zk,- for row-cyclic array codes)
i=1 i=1
which is true as

14-822x2x1

or
624
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