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Abstract

In this paper, some lattices generated by the orbits of the sub-
spaces under finite classical groups are considered. the characteristic
polynomials of these lattices are obtained by using the effective ap-
proach by Aigner in [2] , and their expressions are also determined.

1 Introduction

Mobius functions and the characteristic polynomial of poset and lattices
have been discussed detailedly in (1, 2]. Some functions of lattice listing in
(3] of which Mébius function were proved afterwards. In [2], some Mébius
functions were listed by two methods, that is to say, their M6bius functions
are derived by using the property of lattice and definition of Mobius func-
tions, or levels of the characteristic polynomial. This paper mainly gives
that lattices generated by the orbits of the subspaces under finite classi-
cal groups (see [3-5]), and their Mobius functions are given by the second
mention above.
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This paper follows the terms of [2, 3], and quotes the works showing in
2, 4).

Definition 1.1(1=3! Let P be a poset with 0 and Ng be a nonnegative
integer set. Consequently, the following functions

r:P—Ny
a+— r(a)

are called the rank function of P if in the following (i) and (ii) exist.

(@) (0) =0,

(ii) For a,b € P, plus a <-b, then r(b) =r(a) + 1.

In the poset P with 0 if {(P) = n, then n is called rank of P and is
written that »(P) := [(P).

Suppose that L is a lattice, if all elements a, b, ¢ of L meet the conditions
ofec<a=an(bVc) = (aAb) Ve, then L will be defined as modular lattice.
From theorem 2.27 in [2], L is a modular lattice if and only if L possesses
rank function r, as well as there exist modular equation for all z,y € L

r(z Ay) +r(z Vy) =r(z) +7(y). (1)

Suppose that L is a geometry lattice (see [5, 6]), as well as a € L. If all
z € L, there exists that r(a A z) + r(a V z) = r(a) + r(z), then a can be
defined as the modular element of L, we denoted it as aM. If the geometry
lattice L is a modular lattice, then L is called the modular geometry lattice.

Suppose F, is a field with g elements, n is an integer > 1, and F?
is the n-dimensional vector space over Fy, as well as L(F7) is the fam-
ily that consists of all subspaces of F7. If U,T € L(F7), U C T, can
be defined as U < T, then L(F7) is a modular geometry lattice, and
X € L(F7),r(X) = dim X, r(L(F3)) = n.

Definition 1.2(1=31  Suppose that P is a finite poset containing 0
and 1 as well as rank function r and Mébius function u, the following
polynomial can be defined as characteristic polynomial of P.

x(P, z) = Z ©(0, @)z Mm@,
a€P

The coefficient wx = Y (0, a) of z7(1=* is called the k-th level number
r(a)=k

of first kind, the cardinality of the k-th level Wi = >~ 1 the k-th level
r(a)=k

number of the second.

262



2 Main Results

Using a method in [2] and levels of the characteristic polynomial, we give
the following Theorem.
Theorem 2.1 The characteristic polynomial of L(F7) is as follow:

n-1

X(L(ED), z) = [[ (= - ¢V, @

=0

and there exists the following equations in L(F7)

we = (~D@ ], W= [, @ED) = (0D,
u(0,a) = (~1)*¢(3), a € L(FT), dim a = k.

Proof Form (3, p2l], we can get that L(F}) is a geometry lat-
tice and the modular equality holds. Let a; be i-dimensional subspace
of L(F7), (1 £ 4 < n). Clearly, 0 <-a; <-a3 <:--- <-a, = Fy is the
maximal chain in L(F7), and 7(a;) = dim a;. Therefore, a;; is a modular
element in [0, a;]. Because the 1-dimensional subspace of F is one of points
in L(F7) and the number of points which are in [0, a;] but not in [0,a;_,]
is [i]q — [*7'] = ¢=*. On the basis of Stanley Theorem in (2], (2) holds.
From g-binomial theorem, there exists:

n—1 n
[[@-d)= Z(—l)kq(:) [:] qz""‘.

i=0 k=0
Since Wi = [7] , we = (—1)*¢{3) [7]_, (0, 0) = wi,/Wi, we have (3).

Now let’s give that M&bius functions and characteristic polynomials of
subspace lattice under the action of finite classical group.

Let G, be one of the classical groups of degree n over Fy, i.e., G, =
GL(F,), Spau(F,) (where n = 2v is even), U,(F,2), O2p45(Fg) (n = 2v +
8,6 =1,2), or Psp(F,) (where g is even) (see [4]). Define G, acts on Fy as
follows:

F7 x Gp — Fy
((zlv T2,y ***, In)’:r') — (mlv T2, o, x'n)T-

(In case Gy, = Uy (F,2), Fy should be replaced by F7,). This action induces
an action of G, on the set of subspaces of Fg, i.e., i? P is an m-dimensional
subspace of Fg (1 < m < n), and usually use the same letter P to denote a
matrix representation of the m-dimensional subspace P, then it is carried
by T € F7 into the m-dimensional subspace PT. The set of subspaces of
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FZ are partitioned into orbit sets under G,.. Clearly, {0} and {F3} are two
orbit, but they are less interesting. In the following orbits of subspaces
under G,, distinct from these two are our main concern. Let M be any
orbit of subspaces under G,. Denote by £(M) the set of subspaces which
are intersection of subspaces of M. We make the convention that the
intersection of an empty set of subspace is Fg. Then F7 € L(M). Partially
order £(M) by reverse inclusion, i.e., for P,Q € £L(M), we define P < Q
if P > Q, so that £(M) has F7 as its minimum element and M as its set
of atoms. The poset £L(M) is a finite lattice, is called the lattice generated
by M.
For any X € L(M),

_J m+1-dim X, if X #Fg,
"(X)‘{ 0, if X =Fp.

Then r is the rank function of L(M), r(L(M) =m + 1.

In this paper, we just listed the calculation in the G, = GLy(F,),
Spay(Fg), and Upn(Fg2). The rest can be found in other references as well.
With regards to the characteristic polynomial of £L(M), the calculation of
which is wrong in [5,7]. At present, we recalculate it as below.

(1) The case of G, = GLn(F,)

Let M = (m,n) be a set that consists of all m-dimensional subspaces
of Fg, when 1 < m < n, M = M(m,n) is an orbit under the action
of GL,(F,). Denoted by L(m, n) the lattice of subspaces generated by
M(m, n) (see [6,7]). By Theorem 2.13 in [3], when 0 < m < n, L(m, n)
consists of IF, and all subspaces of dimension < m.

Theorem 2.2 Suppose that 0 <m < n, then

m

XL, . ) = amaa(a) + (3 [ 1],, - i:j B]q)g"(‘”)‘ @

=0

where go = 1, gn(z) = (z = 1)(z —¢) -+ (z = ¢""!) (h = m + 1, ) is Gauss
polynomial.
Proof For any X € £(m,n),

[ m+1-dimX, ifX £F7,
r(X) “{ 0, ifX # F7. 5)

We can get that 7 : £L(m, n) — Np is the rank function of L(m, n).

Suppose that V; is the m + 1-dimensional subspace of Fg, i =1,2,---,
A; is a set consisting of m-dimensional subspace of V;, and L(A;) is a lattice
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generated by A;, the partially by reverse inclusion, as well as IF”““ is a
lattice generated by the subspaces of IF:;““ by reverse inclusion. We write
Vo =Fy, Lo = £(m,n), and L; = L(A;) as above. For P € Lo and P € L;,
we deﬁne

L§ ={Q € Lo|Q c P} = {Q € Lo|Q > P}

and

P ={QeLiQc P} ={Qe LiQ > P},

respectively. Clearly, C(‘,/° = Lo, LY = £;. For P € Lo\{Vb}, then P € L;,
where j is a fixed number among 1,2,:--,j. According to Theorem 2.13
in [3], there exists £L§ = L. For any P € L£;\{V;i}, by Proposition 2.4
of [3], there exists x(LF, :1;) = gdim P(2), Where g4im p(z) = (z — 1)(z —
g)++ (z — ¢¥™ P-1) is Gauss polynomial. Since V; ~ FT**?, there exists
L(A;) ~ L(FP*!). In consideration of isomorphism latnce possess the
same rank functlon and characteristic polynomial, therefore, both L£(.A;)
and L(F;*+!) possess the same rank function .

_ [ m+1-dim X, ifXecL)\{Vi},
0={7 if X =V,

and the characteristic polynomial x(£;,z) = x(.C(]F;"“), z), and Lo pos-
sesses maximum element 0 and minimum element Vj, and £, possesses
maximum element 0 and minimum element V3, resulting in the characteris-
tic polynomial of £ and £y, are (LY, z) = 3 pe cvo #(Vo, P)z" "(0)-r'(P)and
x(LP, 1) =3 pech #(V1, P)x"(o)""(P ) respectively. As regards above
two equations, we p:erform Mobius inversion, to get

g™t = Y x(cfiw) = ) x(£f, o)

pez‘;’o Pely
and
g™t = Z X([’f’ r) = Z X(L:f: ).
PecLy PeL,
Hence

X(£(m, n), z) = x(£g°, z) == — " x(L§, @)

PeLo\{Vo}
= Z X(['f’ ) — Z X(Eg, z).
PeL, Pelo\{Vo}

265



Because x(CY‘, z) = gm+1(z), and there exists £’ = L& when P ¢
Lo\{Vo}. Therefore,

X(L(m, 1), ) = X(L3°, z) = gmar(@)+ D x(£f 2)- Do x(£f, @)

Peli\{V1} PeLo\{Vo}

Because £y and 7 possess the same j-dimensional subspaces, where 0 <
Jj £ m < n, and the number of j-dimensional subspaces in Ly and Ly, is
[’J?]q and [’";’I]q, respectively. Therefore, (4) holds.

Remarks: The dual of poset L(Fy,<) is denoted by the poset
L*(F7,<*). Since L(n — 1,n) = L*(Fy), and L*(F3) ~ L(F7), we have
xX(£(n —1,n), z) = x(L(Fy), z) = gn(z).

Corollary 2.3 Suppose that 0 < m < n. Then in £(m,n), w;(0 <
i < m) and w4y are

= (< 1)@ 1) _ 3 (TN gkt rek Y (1)) o
w4 ( l)q [ i ] JZ( kgl q + [ ])(( 1)q [,]q)
Wmtl = (—l)mﬂq(m“)
(6)
u(L(m, ) = (=)™ q{"H). (7)
Proof According to recurrence formula (see [8], p127) [";1]‘1 = [;]q.;.

n—m-—1 e
qn+l—m [mr:l]q’ we Obtajn[?]q - [m;-l]‘l - kz=:1 qn—k+l—J [?"f]q There-

respectively, and

fore

m n-m-1
KEmm), 2 = gmne) =30 D 07 o)
=0 k=1

On the basis of Gauss polynomial

Im1(z) = mff( 1)'q (=[ . ]qzi,gj(x)=§(_1yq(;>[§]qzt

i=0

there exists

X(£(m,n), 2) = sz g " ] =
_jio(n_szlqn-kﬂ.., [n k] )(g( 1)1q()[] )
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Let a € £(m,n), dim a = i, in case of a # F?, z7 (-7 = z'; in case of
a =2, z7(0-7(®) = gm+1 In addition, the coefficient of z* is

"1 -2 CR e f] ()

and w; is equal to the coefficient of ' (0 < i < m), W41 is equal to the
coefficient of ™!, hence (6) holds. Since u(L£(m,n)) = Wm+1, (7) holds.

(2) The cases of Spa,(IFy) (n = 2v)
We Suppose that n = 2v, where v is a positive integer. Let K =

I 0
Spay(Fy), consists of all 2v x 2v matrices T such that TK T = K, where
‘T denotes the transpose of T. An m-dimensional subspace is said to be
of type (m, s) if PK 'P is of rank 2s. It is known that the suspaces of type
(m, 8) exist if and only

()
( 0 I ) The symplectic group of degree 2v over F,, denoted by

2s<m<v+s 8)

(see [4]) and that the set of subspaces of the same type form a orbit under
Spay(Fq). Denote the orbit by M = M(m, s;2v) and the lattice generated
by M(m,s;2v) by L£(m,s;2v)18l. According to Theorem 3.6 of [3], when
1 < n = 2v and (m, s) satisfies (8) and m # 2v, then Lg(m, s;2v) consists
of F2¥ and all subspaces type (m, s1) which satisfies (8) and

m—m;>s—s;>0. 9
Theorem 2.4 Suppose that 1 <m < 2v, (m, s) satisfy (8), then
= [m+1 \
X(Lr(m, s, 2v), ) = gm41(z) + ( z [ my ] - ZN(ml, 813 2:/))9,,,1 (z),
my =0 q *
(10)

where (*) represents the condition that satisfy formula (8) and (9), and
N(my, s1; 2v) = |M(my,s1;2v)| is the number of subspaces of type (m1, s;)
in F2¥, and gn(z) (h = m + 1,m,) is Gauss polynomial.

Proof For any X € L(m, s; 2v), we define

_ [ m+1-dimX, ifX#F,
r(X)= { 0, if X = F2v,

Then r : L(m, s; 2v) — Ny is the rank function of lattice £L(m, n; 2v)(see

(3))-
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Suppose that V; is the m + 1-dimensional subspace of ng", where i =
1,2, .-, A; is a set which consists of m-dimensional subspace of V;. More-
over, L(A;) is a set which is a lattices generated by A; according to reverse
inclusion. We write Vo = F2, Lo = L£(m,s;2v), and L; = L(A;) for
convenience.

Same as the deduction of Theorem 2.2, there exists

X(£(m, 8 20), 2) = gmir(@) + D x(£D)2)- D x(L5, 2)

PeLi\ (W1} PeLo\{Vo}

It is asserted that the subspace satisfied (8) and (9) is same in £g =
L(m, s; 2v) and IFg" . In fact, let M(m, s; 2v) be the set of subspaces of
type (my,s;) which satisfied (8), (9), and m; # 2v in FZ. By Theorem
3.5 in [3], the results as follows:

M(my, s1; 2v) C L(my, s1; 2v) C L(m, s; 2v).

We ascertain (my, s1) (m1 # 2v) which satisfy (8) and (9), then we get
the number of subspaces of type (mi,s;) in Lr(m,s;2v) is N(m,, s1; 2v)
according to Theorem 3.18 of [4]. On the basis of the deduction of Theorem
2.2, the number of m-dimensional subspaces in £,\{V1} is [m"'l] hence

(10) holds where (*) represents (m;, s;) that satisfies formula (8) and (9).
Because £(2v — 1, v — 1, 2v) = L*(F,), we have(see [3])

Corollary 2.5 Suppose that 1 < m < 2v, (m, s) satisfies (8). Then
w; (0 <1 < m) and wp 4+ in L(m, s, 2v) are, respectively

w; = (—l)iq(;) ['";“] + (mm ['""'l] - EN(ml, s1; 21/)) (( 1)"](2 [m‘] )
W1 = (=1)"*1g("F)
(11)
u(L(m, s, ) = (=1)"*1¢("F). (12)

Proof From formula (10) and the expression of Gauss polynomial, we
have

and

X(L(m, s, ), z) =) (- 1)iq(2

m+1 [m+1] ;
i=0

+ ( Em: [m j 1]9 _ Z N(my, s1; 21/)) ((—1)fq(=‘) [”;l]q)mi,

my=0

With regards to 0 < i < m, the coefficient of z* is w; and the coefficient
of ™+ is wmy41. Therefore (11) holds. Since u(L(m, s, 2v) = Wm41, (12)
holds.
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