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Abstract: The Co-PI index have been introduced by Hasani et al. re-
cently. In this paper, we present a new version for the Co-PI index, and
the Cartesian product, Corona product and join of graphs under this new
index are computed.
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1. Introduction

Throughout this paper we consider only finite connected graphs without
loops and multiple edges. Let G = (V, E) be a simple graph, V and F
denote its vertex set and edge set, while |V/| and |E| be its order and size,
respectively. The degree of a vertex u in G is the number of edges that are
incident to it, denoted by degg(u) or deg(u) for short if there is no confuse.
If each vertex in a graph has the same degree, then we call the graph is
regular. The distance between two vertices u and v is the number of
edges in a shortest path connecting them, denoted by distg(u, v) or short
for dist(u, v). The maximum value of such numbers, diam(G), is said to be
the diameter of G.

Let e = uv € E, we denote N, (e) be the set of vertices lying closer to
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u than to v, N (e) be the set of vertices lying closer to v than to u, and
No(e) be that of vertices with the same distance from u to v, respectively.
More formally

Nu(e) = Ny(e: G) = {z € V(G)|diste(z,u) < distg(z,v)},

Ny(e) = Ny(e: G) = {z € V(G)|distg(z,v) < distg(z,u)},

No(e) = No(e : G) = {z € V(G)|diste(z, u) = diste(z,v)}.
The number of such vertices is then n,(e) = ny(e : G) = |Ny(e)|, ny(e) =
ny(e : G) = [N, (e)| and ng(e) = no(e : G) = |[Nog(e)]. Other terminology
and notation needed will be introduced as it naturally occurs in the follow-
ing and we use [1] for those not defined here.

Topological indices are numerical parameters of a graph which are in-
variants under graph isomorphisms. Hundreds of topological indices have
been considered in quantitative structure-activity relationship (QSAR) and
quantitative structure-property relationship (QSPR) researches and various
applications have been found. The Wiener index was the oldest one to be
used in chemistry, which was introduced in 1947 by Wiener as the path
number for the characterization of alkanes, and was defined as the count
of all shortest distances in a graph [2, 3]. Later, Gutman generalized the
Wiener index for cyclic graphs, which is the well-known Szeged index when
applied to cyclic structures [4, 5]. The fact that the Szeged index mainly
takes into account how the vertices are distributed in a graph, so it is natu-
ral to introduce an index that takes into account the distribution of edges.
The PI index is a Szeged-like index that takes into account the distribution
of edges and is an unique topological index related to parallelism of edges,
see [6-9] for details. In literature [10] a vertex version of this graph invari-
ant was introduced, by which it is possible to find an explicit formula for
the PI index of the Cartesian product of graphs. We encourage the interest
readers to consult [11-15] for the mathematical properties of the PI and
vertex PI indices of graphs and [8, 16, 17] for some chemical applications
and computational techniques.

Recently, Hasani et al. introduced a new index similar to the vertex
version of PI index, which was named the Co-PI index of a graph and
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defined as [18]:
Co—PIL(G)= Y Inu(e) —nu(e)l-
e€E(G)

They presented explicit expressions of TUC;Cs(S)-nanotubes for the first
vertex of Co-PI index, and TUC,Cs(R)-nanotubes were discussed for this
new index in literature [19].

This paper is organized as follows. In Section 2 we present an equiva-
lent definition of Co-PI index. In Section 3 we explore explicit formulae of

graphs operations for the Co-PI index under the new definition.
2. An equivalent definition of Co-PI index

The transmission T (u) of a vertex u is the sum of distances from it
to all the other vertices in G :
T(u) = To(u) =: Y diste(u,v),
veV
and G is said to be transmission-regular if all its vertices have the same

transmission.

Easily to see that the complete graph K, is transmission-regular since
each vertex has transmission n — 1. Similarly, the balanced complete bipar-

tite graph K ; and the cycle C, are also transmission-regular ones.
The reader should note that a regular graph may not be transmission-
regular, a transmission-regular graph does not need to be a regular one.

But we still have the following;:

Theorem 2.1. Let G be a connected graph with diameter two. Then G

is transmission-regular if and only if G is regular.

Proof. (<) Let G be a k-regular graph. Let u be an arbitrary vertex and
z1,Z2, - , Ik be its adjacent vertices, then the transmission Z:;l dist(u, z;)
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of u corresponding to z; is k. Since the diameter of G is two, the contribu-
tion to T(u) from vertices z;, the neighbor of z; # u, is E;—l dist(u, z;) =

20k —1)forl1 <i < kandl < j < k— 1. Hence, we have T(u) =
k + 2k(k — 1) = 2k% — k. This implies that G is transmission-regular.

(=) By contradiction. Assume that there at least exist two vertices

s and t with distinct degrees, without loss of generality, let deg(s) = p,
deg(t) = g and p # q. We distinguish the following cases:
Case 1. If s is adjacent to ¢. It is obvious that Y, dist(s, z;) with re-
spect to zy, T3, -, Zp, the neighbors of s, is equal to p. The rest vertices
have distances two from s, among which there are deg(z;) — 1 vertices
with respect to vertex z;, 1 < ! < p, having distance two from s. Hence
T(s)=p+2 Zf;ll [deg(z1) — 1] + 2[deg(t) — 1]. On the other hand, among
all vertices except for those adjacent to ¢t has distance two from ¢, thus we
have T(t) = ¢+2 -0~ [deg(x:) — 1] +2[deg(s) — 1]. Since G is transmission-
regular, then T(s) = T(t), which implies p = g, a contradiction.
Case 2. If s is non-adjacent to t. The proof follows much in the same way
as in the previous case, and we omit it here.

This completes the proof of Theorem 2.1. O

Theorem 2.2. Let G be a connected graph and e = uv an arbitrary edge.
Then |n,(e) — ny(e)| = [T(u) — T(v)|-

Proof. For sake of simplicity, let Ny(e) = {u1,ua,--- ,up}, Ny(e) =

{v1,v2,- -+ ,vg} and No(e) = {wy,ws,- - ,w,}. Then
T(u) — Z dist(u, s) — Z dist(v, t)
seV teVv

can be written as follows:

lzp: dist{u, u;) + Zq: dist(u,v;) + i dist(u, w,-)]
[i dist(v, v;) + Z dist(v, u;) + Z dist(v, w; ] .
=1 i=1
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Note that dist(u,v;) = 1 + dist(v, ;) and dist(v, u;) = 1 + dist(w, u;) for
1<i<p,1<j<q. Then we obtain

[}i dist(u, u;) + i (1 + dist(v, v;)) + XT: dist(u, w.-)}
1 i=1 i=1

g ) r
- [z dist(v,v;) + > _ (1 + dist(u, u;)) + Z dist(v, wj)} :
=1 =1 j=1

By some elementarily computations, we have
4 q r
[q + (Z dist(u, us) + Y dist(v,v:) + > _ dist(u, w; ))J
i=1 i=1 i=1
g P v
-|p+ Z dist(v,v;) + Z dist(u, u;) + Z dist(v,w;) | | .
i=1 ji=1

j=1

This completes the proof of Theorem 2.2. [J

From Theorem 2.2, we can claim that the Co-PI index is equivalent to

the following definition:

Co—PL(G)= ) |T(w)-T(),
e€E(G)

which is more convenient than the original definition when we counting the

number of vertices lying closer to u than to v.
The following results clearly follows from Theorem 2.1 and 2.2.

Corollary 2.3. Let G be a connected graph. Then Co— PI,(G) > 0, with
equality if and only if G is transmission-regualr.

Corollary 2.4. Let G be a connected graph with diameter two. Then
Co — PI,(G) > 0, with equality if and only if G is regualr.
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Before closing this section, we present the explict formulae of the path
P, for Co-PI index, which can be verified by direct computation.

Theorem 2.5. Co — PI,(P,) = ﬂnz_—21 if n is even, and Co — PI,(P,) =
i"—}l-ﬁ if n is odd.

3. Operation graphs for the Co-PI index

The Wiener index of Cartesian product graphs was studied by Yeh and
Gutman in literature [20] and Graovac and Pisanski in literature [3] inde-
pendently. Khalifeh et al. [10] computed an explicit formula for the PI
index of Cartesian product of graphs, which is an extension of the main
result by Klavzar for bipartite graphs [21].

Here we continue this progress to compute the Co-PI index of three

composite graphs, each of them will be treated in a separate subsection.
3.1. Cartesian product

The Cartesian product G,00G; of graphs G; and G is a graph with
vertex set Vi x Va, and two vertices (uy,u2) and (v1,v2) adjoint by an edge
Uy =n and Ug ~ V2 in Gz,

(u1,u2) ~ (v1,v2) & ¢ or

ug = vo and u; ~ v; in G;.
The following is an auxiliary result. We encourage the interest reader
to consult the book of Imrich and Klavzar [22] for details.
Lemma 3.1. Let G; and G2 be two graphs. Then the following hold:
o |V(G10Gy)| = [Vi] - |V2] and |E(G10G2)| = |Ex] - V2| + [V2| - | E2].
e (G,0G, is connected if and only if G; and G, are all connected.

o distg,0c,((u1,uz2), (v1,v2)) = distg, (u1,v1) + distg, (u2,v2) for two

vertices (uy,uz) and (v1,vs).

284



e The Cartesian product is associative and commutative.

The main results of this section say that:

Theorem 3.2. Let G = G10G; be the Cartesian product of two connected
graphs G; and Gs. Then

Co — PI,(G100G2) = |Vi|*Co — PI,(G3) + |Va|*Co — PIL,(Gh).

Proof. Note that there are only two types of edges in G—corresponding
to copies of G; and that of G, respectively. Then the Co-PI index of G
can be written as the sum:
Y. Y TN -T(a)l+ > > [T((es)-T(b9)
a€V(C,) ste E(G2) SEV(G2) abe E(G1)
Since T((a, s)) — T((a,t)) equals to

Z diStG((aa S), ((IJ, y)) - Z diStG((ai t)’ (21 w)):,

L(z,¥)EV(G) (z,w)eV(G)

= Z distg, (s, y) + Z dista,(s,y) + Z dista,(s,y)]

| a#z;s7y a=z;s#Y a#T;8=y
- Z distg, (¢, w) + Z diste, (t, w) + Z distg, (t, w)
-ayéz;t#w a=z;t#Fw aFzt=w

+| Y distg,(e,x)+ Y diste,(a,z)+ Y diste,(a,7)

| a#T;s74y a=z;33y a#z;s=y ]
- Z
- Z distg, (a, z) + Z distg, (a,z) + Z distg, (a, z)
_a;éz;tgéw a=z;t#w a#zit=w

[Vl - IT(s) = Vi - T(@®)[] + [|Val - T(a) — V2| - T(a)].
This implies that

IT((a,5)) = T((a, )| = [Vi] - |T(s) — T ().
The same reasoning applies to the edges of the type (a, s)(b, s), i.e.,

IT((a,s)) — T((b, )| = |V2| - [T(a) — T(®)!.
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By simple computations we have
Co —~ PI(G10G3) = [Vi|*Co — PI,(G3) + |Va|*Co — PI,(G1).

This completes the proof of the Theorem 3.2. O

We compare Theorem 3.2 with the following respective formulae.

o ( Graovac et al. [3]) W(G10Gz) = |V1|*W(G2) + |V2|>*W(G1).
o (Klavzar et al. [5]) Sz(G10Gs) = |V1[352(G2) + |V2[3Sz(Gh).

o ( Khalifeh et al. [10]) PI,(G10G2) = [Vi|*PI,(G2) +|Va|2PL,(G)).

Example 1. Let S = P.0JP; be the rectangular-grid. Then

( - —_
8(32 2)1"2 + T(T2 2) s, if r is even, s is even.
—1)2 -
(s 5 1) 2+ 'r(r2 2) s2, if r is even, s is odd.
Co - PI(P.OP;) = |4

(s 21) "2+ (r 21) s2, if r is odd, s is odd.

—_1)2 -
\ (s 21) r? 4+ r(r2 2) s2, if r is odd, s is even.

Example 2. Let R = P.OC; be the Csy-nanotube. Then Co— PI,(R) =
me=2)2 if 1 5 even, and Co — PI,(R) = 52212 if r is odd.

The Cartesian product is one of the most important graph operations,
we use it as a representative of the whole group of graph operations and

present the results in more details.

Let @7, Gi denote the Cartesian product of n graphs G1,Gz," -+ ,Gn

with order at least two, then we have the following:
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Theorem 3.3. Let G1,Gs,- -+ ,G, be n graphs with order at least two.
Then

n n n

Co - PI, (@ G.-) =Y | Co-PLG)[[ViI*].

i=1 i=1 J#i
Proof. By induction on n. If n = 2, the proof will be obtained directly
from Theorem 3.2. Now we show the theorem holds when n = N + 1. By
Lemma 3.1, the Cartesian product is associative, then Co— PI, ( @1 G;)

can be represented as

N
Co - PI, (GN+1D X G,-)

i=1

N
=|Vn41|*Co - PI, (@ G,-) +

2
Co — PI,(Gn+1)

i=1

(@)

N N N
=[Va41]? (E Co- PI,(G)]] IVjI’) +Co - PL(Gn41) [ Vi

i=1 J#i i=1

N+1 N+1
=Y " | Co-PL(G) [ IVs1*] -
i=1

J#i
This completes the proof Theorem 3.3. O

The Wiener index, Szeged index and vertex-PI index of Cartesian prod-

uct of n graphs are given by
o (Graovacet al. [3]) W (®; Gi) = T,y (W(G) [T Vs 2) -
o (Klavzar et al. [5]) Sz (®F,C:) = X0, (sz(G,-)r[;;,. |V,-|3) .

e (Khalifeh et al. [10]) PL, (@ G1) = X (PL(G:) [T IVi ) -

3.2. Corona product

The Corona product G; o G; of two graphs G; and G is the graph
formed by taking |G| copies of G2 and joining each vertex of the i-th copy
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with vertex v; of G;.
It is obvious that |V(G 0 G3)| = [Vi| + |V4| - [V2] and |E(G1 0 G2)| =
|Ex| + VAl - [Va| + V1] - | Bl

Theorem 3.4. Let G = G; o G be the Corona product of two connected
graphs G; and Gs. If G5 is regular, then

Co — PI,(G) 0 G3) =(|Va| + 1)Co — PI,(G1)

2|E
Vil vl (il + a1 v - 22 - 2).

Proof. The edges of G can be partitioned into three types:

E) = {e € E(01 o G2)|e € El}
E; = {e € E(G, 0 G2)|e € E}, where E} is the edges of i-th copy of G2}.
E; = {e € E(G; 0 G3)|e = uv such that u € V; and v € Va}.

Thus the Co-PI index of G is equal to the sum of the contributions from
the above three partitions:

Z |nu(e :G) —ny(e: G’)|+ Z |nu(e :G) —ny(e: G)|

CGEI CGEQ

+ Z |nu(e 1 G) —nye: G’)l. (*)

e€E;

If e = uv € Ey, then ny(e : G) = [|V2]| + 1|nu(e : G;) and analogous
statements hold for vertex v, i.e., ny(e: G) = [|V2| + lny(e : G1).

If e = uv € Ey, then ny(e : G) = degg,(u) —tg,(e) and ny(e: G) =
degg, (v) —tg,(e), where tg,(e) denotes the number of triangles containing
e in G3. Noticing Gy is regular, then the contribution from the intermediate
term of () is equal to zero.

If e = uv € E3, then ny(e : G)ny(e : G) = |Vi|+|V1||Vo|—[degg, (u) +1]
and ny(e : G) + ny(e : G) = |Vi| + |Vi| - |V2| — degg, (u).

By simple computation, we obtain
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Co — PL,(G) 0 G3) =(|Va| + 1)Co — PL,(G})

2|E
AN (ARAN AR )

This completes the proof of Theorem 3.4. O

Example 3. Let C,0K,, be the thorny cycle. Then Co—PI,(CnoKy) =

m2n? + mn? — 2mn.
3.3. Join (Sum)

The join G; + G5 of graphs G and G2 with disjoint vertex sets V] and
V2 and edge sets E; and E; is the graph union G, U G5 together with all

edges joining V; and V5. The join is sometimes also called a sum.

Theorem 3.5. Let G = G; + G be the join of two regular graphs G; and
G2. Then
Co — PI,(G, + G2) =Co — PI,(G1) + Co — PI,(G,)
2B _ 25|
Wil el |

The proof follows much in the same way as in previous cases, and we omit it.

+Wl - V2| - | V2| — V2] +

Now using Theorem 3.5, we count the following examples.
Example 4. Co — PI,(K,.) = Co — PI,(K, + K;) = st|s — t|.
Example 5. Co — PI,(S,) = Co— PI,(Kpn-1 + K1) =n%2 —3n+ 2.

As an immediate consequence, we have the following

Corollary 3.6. Let G be a connected graph. Then Co—PIL(G+ -+ G) =

N times

NCo - PI,(G).
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