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Abstract

The basis number of a graph G is defined to be the least non
negative integer d such that there is a basis BB of the cycle space of
G such that each edge of G is contained in at most d members of B.
In this paper, we determine the basis number of the wreath product
of different ladders.
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1 Introduction.

The graphs considered in this paper are finite, undirected, simple and con-
nected. Most of the notations that follow can be found in [9]. For a given
graph G, we denote the vertex set of G by V(G) and the edge set by
E(G). The set £ of all subsets of E(G) forms an |E(G)|-dimensional vector
space over Z; with vector addition X @Y = (X\Y) U (Y\X) and scalar
multiplication 1 - X = X and 0- X = & for all X,Y € £. The cycle
space, C(G), of a graph G is the vector subspace of (£,,-) spanned by
the cycles of G (see [10], [11]). Note that the non-zero elements of C(G)
are cycles and edge disjoint union of cycles. It is known that the dimen-
sion of the cycle space is the cyclomatic number or the first Betti number
dim C(G) = |E(G)| - |V{(G)| + r where r is the number of components of
G

A basis B for C(G) is called a cycle basis of G. A cycle basis B of G
is called a d-fold if each edge of G occurs in at most d of the cycles in
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B. The basis number, b(G), of G is the least non-negative integer d such
that C(G) has a d-fold basis. The required cycle basis is a cycle basis with
b(G)-fold. Let G and H be two graphs, ¢ : G — H be an isomorphism
and B be a (required) basis of C(G). Then B = {ip(c)|c € B} is called
the corresponding (required) basis of B in H. The first important result
concerning the basis number is the following lemma of MacLane [22]

Theorem 1.1.(MacLane). The graph G is planar if and only if b(G) < 2.

We say that two vertices u and v of the graph G are isomorphic if and
only if there is a € Aut(G) such that a(u) =v. B ¢ V(G) is said to be an
isomorphism class if and only if B is the maximal set in which each pair of
vertices are isomorphic.

Let G and H be two graphs. (1) The Cartesian product GOH has
the vertex set V(GOH) = V(G) x V(H) and the edge set E(GOH) =
{(uy,v1)(u2, v2)|ur1u2 € E(G) and v; = vq, or vjve € E(H) and u; = up}.
(2) The direct product G x H is the graph with the vertex set V(G x
H) =V(G) x V(H) and the edge set E(G x H) = {(u1,u2)(v1,v2)|luav1 €
E(G) and ugvp € E(H)}. (3) The wreath product G x H has the vertex set
V(Gx H) = V(G)x V(H) and the edge set E(Gx H) = {(u1,v1)(uz,v2)|wy
= up and v1v; € H, or wyus € G and there is @ €Aut(H) such that
a(v) = v} (See [1], [11] and [13]).

Many authors have studied the basis number and the required cycle
bases of graph products. The Cartesian product of any two graphs was stud-
ied by Ali and Marougi [4] and Alsardary and Wojciechowski [7]. Schmeichel
[23], Ali [2], [3] and Jaradat [14], [19] and [20] gave upper bounds for the
basis number of the semi-strong and the direct products of some special
graphs. An upper bound of the basis number of the strong product of
graphs was obtained by Jaradat [16]. The lexicographic product was stud-
ied by Ali and Marougi (5], Jaradat and Alzoubi [15], Jaradat [21] and
Jaradat et al. [17] how provided upper bounds of the basis number of the
lexicographic product of two graphs and determined the basis numbers of
some classes of the same product.

The problem of constructing a required cycle basis and determining
the basis number for the wreath product is difficult. This is primarily so
because the structure of the graph obtained by the wreath product depends
on the automorphism groups of the second factor. Even the problem of
finding a required cycle bases and determining the basis numbers of the
wreath products of special classes of graphs is surprisingly nontrivial and
specialized see Jaradat (18], Al-Qeyyam and Jaradat [6] and Bataineh and
et al. [8].

In this paper, we continue investigating the basis numbers of the wreath
product of some graphs. In fact, we determine the basis number of the
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wreath product of different ladders. Our method in this paper does not
only allow the systematic treatment of the basis number of the wreath
product of some special classes of graphs, but also has found applications
on the minimum cycle bases of the wreath product of some classes of graphs.
Moreover, it gives a way to treat more general cases which will appear in
the forthcoming papers.

In the rest of this paper, fg(e) stand for the number of elements of
B C C(G) containing the edge e and E(B) = UcepE(C). Moreover, ab
stand for an edge.

2 A certain basis for C(Ky4).

In this section, we present a basis for the complete bipartite graph Ky 4
which will play a major role in our work. Let {z, z3, 3,24} and {y1,¥2,¥3,
¥a} be the independent partition sets of vertices of Ky 4. Let

S= {53 = Ty Tip1Yi+1%i]1 < 4,5 < 3}-

Then, by Theorem 2.4 of Schemiechel, S is a basis for C(K4,4). Now define
the following cycles:

S = myizayes,
S8 = zeyszaysza,
8" = myazaya.

Lemma 2.1. §* = SU {8, 5{" s{3} _ (51, 52,58} is o basis for
C(Ka4)-

Proof. Since S is a basis for C(K4,4) and |S| = [S*|, it suffices to show
that span(S*) = C(Kj,4) that is each cycle of {S}, 52,53} can be written
as a linear combination of cycles of S*. Now,

S:g,"a) ©S; = T1Y2T3Y1T1 O T2Y1T3Y2T2
T1Y1%2Y2%)
Si

and

S5EP 983 = z4ysTayaTs © TaysTIYaT:
T3Y3Z4Y4T3
= S
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Set
=82S oS3 andlp = S © 5% @ S}.

Then
li = zy2z2y3T) © T1Y223Y1 21 D T1Y3T2Y4T1
T1Y4T2Y2T3Y121,
and
la = =zy3T2ysT4 © T3Y2T4Y3T3 O T3Y1T4Y2T3
= T2Y3T3Y1T4Y4T2.
Thus,
holbe® Si"l) = ZT1Y4Z2Y2Z3Y121 © T2Y3T3Y1T4YaT2 D T1Y124Y4%1
= TeY2T3Y3T2
S2.
[ ]

Remark 2.2. Let e € E(Ky4). (1) If e = z3ys or z2uy1, then fs-(e) =1.
(2) If e = zy5,¢ = 1,2,3,4 or :1y;,7 = 2,3,4 or z4y;5,5 = 1,2,3, then
fs-(e) =2. (8) If e = z3y1 or Tay, then fs-(e) =3. (4) If e =z3ys or
T2y, then fs-(e) =4.

3 A certain structure of L,.

In this section, we present a certain structure of L, which will serve us in
attacking our main result. The following result will be useful in the coming
results.

Theorem 3.1. (Jaradat [13]) Let G and H be any two graphs, then G x
H = (GOH) U (G x H*) = (GONy) U (NGCH) U (G x H*) where Ny
and Ng are the null graphs with vertex sets V(H) and V(G), respectively,
and H* is a verter disjoint union of complete graphs, say H* = U Kp;
such that V(H) = Ul_,V(Ky,) and V(Ky,) is en isomorphism class of the
vertices of H for each i. B

For two paths Py = ujua...u, and P, = zy, the ladder L, = P,0OP,.
Thus,
Aut(Ln) = {(e2, Ln)v (t2, an)a (a2, "n)a (a2, Ot,,)}
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where the components are appropriate automorphism of the factors (i.e.,
t2, Ly are the identity automorphism, az(z) = y and a2(y) = z and a,(uw;) =
n—1i+1 for each i = 1,2,...,7). Therefore, From the Aut(L,), one can
partition the vertices of L, into isomorphism classes as follows:

Case 1. 7 =2m + 1. Then V(L) = (UZ,85;)U Trm41 where

S = {(:B, ui)a (:L’, un—i+l)t (ya ur)—i+1)a (y) ui)}v
Tm+1 = {(2,um+1), (¥ Vm41) }
oo e ‘
y ¥ s
wy! wl w wy? wy? 2wy
(upy)  (uy) (uay) (ugy) (ugy) (uy) (uzy)
o ‘
.“‘ ‘-‘\ -‘4 'h "'.' “': "’.‘ "..
A . B . .
(X)) (upx)  (uzx)  (ugx) (usx)  (ugx) (uzX)
w,' w,? w3 wit wy? w,? w,!
SRS S A A 4

. o

........
.........
Seae R

..........

Figure 1: The relabeling of the vertices of Ly.

For simplifying the construction of the basis in the main result, we
relabel the vertices of Lyym+1 as follows (see Figure 1): S; = {wl,wz, wi, wi}
where w] = (=, ’Uz)"wz = (=, un—l+1)!w3 = (y’uv]—t+1) and wi = (y,u:)
for each i = 1,2,...,m. Also, Tmy1 = {w]**!, w]*t!} where w**! =
(%, Um41) and w’""”1 (¥, m+1)- Therefore, the edge set of Ly,41 consists
of the following seven sets of edges:
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E, = {w{;wg:i=1,2,...,m},

Ey, = {wiwi:i=12,...,m},

B3 = {wiwi*':i=1,2,...,m},

E, = {wiwit':i=1,2,...,m-1},

Es = {wiwit':i=1,2,...,m -1},

By = {wiwt':i=12,...,m-1},

E; = = {w"‘+1 e+ wg‘w;"“ wPwPt wiwP ).

The following remarks are easy to see.

Remark 3.2. E; UEy U E3U Eyq U {wi T wi ! wltw]*!} forms an edge
set of a tree.

Remark 3.3. EjUEUEsUEgU{wl wl ! wlwl !, wiwl !} forms
an edge set of a tree.

By Theorem 3.1, and the structure of Ly +1, one can see that L3,, ., =
(U, K UK. Thus, abx Lopmy is decomposable into UTZ, (ab x K3)U
(abx KF+t)u (U], (abDE,)) where K} is the complete graph with vertex
set §; = {wl,wz, w3,w4}, and K7**! is the complete graph with vertex set

Tm41 = {wi"+, wpt},
Case 2. 7 = 2m. Then V(L) = (UZ,5;) where S; is as defined above for
eachi=1,2,...,m. Therefore, the edge set of Ly consists of the following

edge sets: Ay = E1, Ay = Ey, Ay = E4, A5 = E5, Ag = Eg and

A3 = {w'iw‘i+1:i=1,2,...,m—1},
Ay = {wlw, wiw]}.
where E;, F», E4,E‘5 and FEg are as in Case 1. As in Case 1, one can see

that L3, = UR, K. Thus, abx Loy, is decomposable into U, (ab x K3)U
(UL, (abDA:)).

4 The basis number of L, x L.

In this section, we investigate the basis number of the wreath product of
two ladders. According to the parity of 7, we split this section into two
parts n = 2m + 1 and 5 = 2m. We start with 7 = 2m + 1. Note that for
each 7, (ab x K}) U(abON;) is isomorphic to K44 and (ab x K3) U(abIM;)
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is isomorphic to K2 where N; and M; are the null graphs with vertex set
S; and T;, respectively. For simplicity, throughout this work, we set

K& = (ab x K}) U (abON;)

and ) )
K& = (abx K3) U (abOM;) .

Therefore, abx Lamy1 is decomposable into (U,_IK (ab, ')) VK™Y
(U-;({a,b}0E;)). Throughout this work, we assume that St is the cor-

responding basis of §* in K g’:’i) for each i where §* is as in Lemma 2.1.
Also, let ) ) ) _ ) '
ab = {(a, w1) (b, wi)(a, w3) (b, w3)(a, w})}-

Note that T?, is a basis for C ( K ')) Fori=1,2,...,m, we set
‘Az.ab,l) = {(a" w‘i)(bi wé)(b,wg)(a, w%)}1
and for j = 2,3, we set

Alas) = {(@,w1)(a,w)(b,w5)(a, w})}-

Moreover,

A@ogy = {(awl)(b,w3* )@, wi ) (e, w*)},

Ay = {(@wf )b, w1 (b, wf ) (e, w]™*) (@, w1},
A@bey = {(a,wl*)(b,wp™*) (b, wi ) (e, w] )},

Aan = {(@wP)(a,uf) o0l (e, wf ).

The following result will be used frequently [17].

Lemma 4.1. (Jaradat, et al.) Let A and B be two linearly independent sets
of cycles and E(A) N E(B) induces a forest in G (we allow the possibility
that E(A)NE(B) = @). Then AU B is linearly independent. B

Lemma 4.2. S35 = UL, (Sab U {A(ab 1y Alba,1)2 Alba,2) Afab, 3)})
Ta(;""' ) UA(ap,4) U A(as,5) s a linearly independent subset of C (abx
Lom41).

Proof. Since S:, is a basis for C (Kiﬁf‘i)), as a result S, is linearly

independent for each 1 < i < m. Aj,, ;) contains the edge (b, w})(b, w3)
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which does not appear in any cycle of S;,. Thus, S;, U {A{,,1)} is linearly
independent. Aj,, ;) contains the edge (a, wh)(a, w}) which does not appear
in any cycle of 83, U {Af,;,)}. Thus, Sz, U {A(,1), Afpa,yy} is linearly
independent. Similarly, A}, ,) contains the edge (b,w})(b,w}) and Alas.3)
contains the edge (a, w})(a,w) and each of these two edges does not appear
in any other cycles of S, U {A‘éab,l), Alba 1) Alsa,2y Alas,3) } Hence, S, U

{‘Aiab,l)"Azba,l)"Az'ba,Z)"Aiab,S)} is linearly independent. Since

{ i i { i ab,i
SiyU {A(ab,l)' Alpa 1y Alsazy Alabsy | S € ((K‘g"* )) U
({o, bYO{wiwg, wyws}))

for each 7 and since

E (K§ie U ({e, b)O{wiw}, wiwi}))

nE (K39 U ({a, b}0{ww], wiui}))

= g

whenever ¢ # j, by Lemma 4.1 we have that UJ%, (S“',b U {A‘('ab'l), Afba’l),

Azba,2)’Aiab,3)}) is linearly independent. Now, The cycle A(ss4) con-
tains the edge (a,w]*!)(a,ws**!) which does not appear in the cycle
TG, So, (T, Aapay} is linearly independent. Similarly, Aep,s)
contains the edge (b, w]**!)(b,w3**?) which does not appear in any cycle
of {Té;n"'l),.A(aM)}. So, {T‘f,',"“),A(ab,‘;),A(ab,s)} is linearly independent.

Since
{TS:H-I)’ Aab ), -A(ab,S)} cc ( ( Kz(:zzb,m+l)) U ( {a, b}Dw{"“w{,"“))
and
B (U, [KE U ({0, 510wl wiui}))])

nE (K™ U ({a, 5} 0w+ up+))
= g,

by Lemma 4.1, S} is linearly independent. B

By using, word by word, the proof of the above lemma after replacing
A(ab,4) and A(ap 5) by A(as) and A(as,7) we get the following result.
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Lemma 4.3. 5% = Uy (8% U { Alus, 1) A, 1> Alpa,2yr Alans) }) U
Ta(,',"“) U A(ab,6) U A(ab,7) 18 linearly independent subset of (Cabx
Lams1). B
Now, fori=1,2,...,m—1land j=1,2,3,4 we set

T(ib,j) = {(a:w;')(b’ w;’)(b’ w_:'+l)(a»w;+l)(a’ w;')}’
and
T,y = {(@,w) (b, wi™) (b, wi** ) (e, wi**)(a, w™)}.
Also, fori=1,2,...,m—1,and j = 1,3, we set
(abg) = {(@:w})(a, W) (6, w;E]) (b, wiy,)(a, wi)}.
Moreover,

Xap = (a,wT")(a, w;n-"l)(b’ wT+l)(ba wy*)(a, w"),

Zap = (a’ ,w:r’n)(a, w;n-l-l )(ba w;n-l-l)(ba wT) (a,, wén)

Let
7220,12) = {T(ib,l):'f(';b,z)}, T(fzb,az:) = {T(';zb,a)’T(ib,:;)}a
Kt(:,?.) = (U:=1 and i is oddnéab,l)) U (U{=1 and i is eucn’czba,l)) )
and

Kgrb.*') = ( i=1 and i is oddlcg,)(s)) U (Uf=1 and i is eoenfcﬁl)(a)) -

Lemma 4.4.
« _ | BapU{Xap} ifmisodd
ab ™ | BapU{Xsa} if miseven

is a linearly independent subset of C(abx Lopmy1) where Byy = Sip U

m— i —1,x
(Ui=117&b,12)) UT% 1 ule,’b" ). .

Proof. Note that, for each odd i between 1 and m—1, the cycle Kzab'l) con-
tains an edge of the form (a, wi)(a,wi*!) which does not occur in any other

- m—1 i _n m—1
cycle of Sgp U (Ui=l and i is odd’c(ab,l))’ Hence, 833 U (U] ana ¢ is oad

ICfab’l)) is linearly independent. Similarly, for each even ¢ between 1

and m — 1, the cycle Kj,, ) contains an edge of the form (b, w})(b, wi*')
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which does not occur in any other cycle of Sy U ICS;'_I") . Thus, Sz U
IC("‘ =1 is linearly independent. Now, we use the mathematical induction
on m to show that U 72“ 12) is independent with S} U IC(""] =) If

m = 2, then U1 T, 1) = Tb(12) = {Toay T (ab 2)} Ta,1) contains

al
the edge (b, w})(b, w?) which does not occur in S§j; U KZ("'_1 *), Simi-
larly, 7, ) contains (a,w})(a, w'§’) which does not occur in any cycle of

Sp UKy {741} Thus, S35 U Kim=1m) g {Tas1) Tas,2)} 18 lin-
early 1ndependent Assume that m > 3 a.nd it is true for less than m. Now,

VT Tan) = ( 1 T, 12)) U7 G) UT(’;:-}]) Note that 7?«3,,1) contains
(@, w(1,m-1))(a,w*) and (b, wl ‘1)(b w{*). Moreover, (b, w*~!)(b, w]*) does
—1,» i . .

not occur in any cycle of IC("' ‘u ( e 7?0!;,12)) if m is even
and (a, w(1,m-1y)(a, w) does not occur in any cycle of IC('"_1 "y
(U;';-IJ']?; b’m)) if m is odd. Similarly, (ab 2) contains (a w(2 m-1))(a, ws*)
and (b, w(z,m—1))(b, ws*). Moreover, each cycle of S;; U IC("‘_1 "y (Ui m'2
7?;:6,12)) U {T(Z;'ll)} does not contain the edge (a,w(g_m__l))(a, wit) if mis
even and does not contain the edge (b, w(2,m—1))(b, w§*) if m is odd. Thus,
> U (U:"_] Tis, 12)) U K1) s linearly independent. Finally, T3
contains (a,w}*)(a, w**!) and (b, w*)(b,w**!). Moreover, no cycle of
y U (U,_1 T(ab 12)) UIC("' ~1*) contains (a, w])(a, w**1) if m is even or

(b wi*) (b, wy ™*1) if m is odd. Thus, Bqs is linearly independent. To this
end, since X 6 contains the edge (b, wf*)(b, wT**!) which does not appear
in any cycle of By, if m is odd, and X}, contains the edge (a, w§*)(a, w*+!)
which does not appear in any cycle of B, if m is even, as a result B, is
linearly independent. B

By a similar arguments as in the above lemma we can prove the following
results:

Lemma 4.5.

« _ | AwwU{Zs} ifmisodd
P71 AwU {2} ifmiseven

is linearly independent where Agp, = S3p" U ( =1 T(ab 34)) IC(m_l ) m
Now define the following cycle,
Vab = {(a,w3") (b, w3")(b, w) ) (e, wi ) (e, wih)},
and for j = 3,4
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Reav,g) = {(a,w]") (b, wf) (b, w5 ) (a, w5 )(a, w]™)}-

Lemma 4.6. B}; = B}, U {Vas} is a linearly independent set of C(ab x
Lom41).

Proof. Since V,, contains the edge (a,w§*)(a,w]*!) if m is odd and
(b, w3*) (b, w{"“) if m is even which does not a.ppea.r in any cycle of B};, as
a result B} is linearly independent. B

=" >

Figure 2: The figure represents cycles of B}; — ( ™, (Siu)u Ta(;"“)) for
n=7

Remark 4.7. Using Remark 2.2 and by the help of Figure 2, one can see
the following: Let e € E(B};). Then

(1) if e= (a,wi)(bw}), then fg-:(e) < 3.

(2) if e=(a,wF*")(b,wp*), then fiy;(e) = 2.

(3) If e = (a,w})(b,w}) where 1 < i< m and j = 3,4, then fa::(e) =
2.

(4) If e = (a,wi)(a,wit?) or (b,wi)(bwi™), 1 < i < m—1, then
fB::(€) < 2 if i is odd and < 1 if i is even. Similarly, for e = (a,w})(a,
wit!) or (b,wi)(b,wit!),1<i<m~—1.

(5) If e = (a,w)(a, w}""'l) or (b,wf)(d,wi**!), then fg-:(e) < 2 if
m is odd and < 1 if m is even. Similarly, for e = (b,w])(b, wi**?) or
(a,w3*)(a, w] +1)

(6) If e = (a,w})(a,w}) or (a,w})(a,w}) for 1 <i < m, then fg..(e) =
1. Similarly for e = (b, w})(b, wi) or (b, wi)(bw]) for 1 <i< m.

(7) If e= (a,w]"*")(a,wi*"), then foz;(e) =
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(8) If e= (b7 win+l)(ba wgt+1)’ then fB;;(e) =1
, @ =t w1 (6, wi™*Y) or (o, wg )(b, W), then faz;(e) <
(10) If e € E(B2;) which is not as in any of the above forms, then

fe;;(e) <4

By a similar argument as in the above lemma, we have the following
result.

Lemma 4.8. A7} = A}, U {R(ab,3)s R(as,4)} 5 a linearly independent set
Of C(ab X L2m+1). |

Remark 4.9. As in the above remark one can see the following. Let
e € E(As}). Then

(1) If e = (a,w})(b,w}) where 1 <i <m and j = 1,2, then fa::(e) <
2.

(2) If e = (a,w]*)(b,w™"), then fa-:(e) <3.

(3) If (a,W’z”“)(b wé"'”) then faz;(e) <4.

(4) If e = (a,wi)(a,wit?) or (bwi)(b,wit?), 1 < i < m — 1, then
fas:(e) 2 if i ds odd and < 1 if i is even. Similarly for e = (a,w})(a,

l"']) or (b,w§)(bwit!),1<i<m—-1.

(5) If e = (a,w]*)(a, w] ‘H) or (b,w)(b,wy*), then faz;(e) <2 if
m is odd and < 1 if m is even.. Similarly for e = (a,w])(a,w*?!) or
(b, W) (b, wy+T).

(6) If e = (a,w3)(a,w3) or (a,w})(a,w}) for 1 <i < m, then fg::(e) =
1. Similarly for e = (b, wé)(b w}) or (b,w})(b,wi) for 1 <i<m.

(7) If e = (a,w1)(b,w}) or (a,w)(b,w]), then fm:;(e)=2.

(8) If e € E(BX;) and not of the above forms, then fA-- (e) < 4.

The proof of the following results follows from noting that the elements
of BLan{ and B,, or,..,, are the bounded faces of the planar graphs

LnOw! and a3.0Lopmy1.

Lemma 4.10. B Ow! = {(ai, wi)(azn—it+1, wi)(@2n—i, w})(@ig1, w])(as,
w})li =1,2,n — 1} is a basis for C(L,Ow}). M

Lemm? 4.11. Bﬂz..DL'zm+| = {(a2mw?:l)(a2m'w;:+l)(a2mw;+1)(a2mw;)
(azn,wi)li = 1,2,...,m— 1} U {(a2mw2)(a2mw+1)(a2mw5+1)(‘12mw5)

(azn,w{,)li =12,...,m- I}U{(a2mw1 )(a12mwl )(a2mwg'+1)(a2mw;n)
(agn,w{"), (a'2n1w2 )(a’2ﬂ1wl )(a‘2n’w2 )(aZT"wS )(a2naw£n)} is a basis
for an0Lgm 4. B
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Throughout the rest of this work the ladder L,, will be considered as
a cycle Can = a1a3...a2,0; in addition to the edge set {ajagn—_j41: 75 =
2,3,...,n—1}. Let

P= (Ul—ll Ukn-l T(akak+l.34)) U (Uk—l (R(akak+1.3) u R(ak0k+1-4)))

Lemma 4.12. ’PU(Uz"‘lB;:akH) UBZ:. 0, YUBL,0w UB;, oLy, 6 lin-

early independent subset of C(Lp X Lam+1) where Ba, OLamsr = Bay.OLams1
U{(a2m 7))@, wit ) (e, wm+ ) (azmvlh ")(azn, wT*) (a2m, wi)(az2n,
+ )} - {(amel )(a2mw1 )(a2mw;n+ )(azn, wi*)(a2n, wi*)}

Proof. Uz"_lB"

akak-{»l

noting that for k<3,

(B;:nk.“ ) n E(B;;a‘,+1)

C {a;}0(E1U By U Es U Eg U {w] 1w+ wlwH1})

is linearly independent follows from Lemma 4.1 and

which is an edge set of a tree, Remark 4.2. Since P, = ajay...as, is
a path of L,, any linear combination of cycles of B g, contains an

edge of E((L, — P2n)Ow]) which is not in any cycle of Uz“ 1B

Ak Qr41*
Therefore, (Ui’i‘lB;:ak +,) U B, gw! is linearly independent. Note that

(U2n-—lB" ) U BL,.E]w{) N E(Bu

o ah s aana;) 18 & subset of

({azn, al} O (El UE,UE3UE U {wi""'lwg‘“,wg‘w{"“}))
U {(a1,w})(azn, w})}

which is an edge set of a tree, Remark 4.4. Therefore, by Lemma 4.1,
(U:Z'IB;:% +1) UB;;.a, YU BL,ow is linearly independent. To this end,

it is easy to see that B; Lams is a linearly independent and any lin-

ear combination of this set must contain an edge of {azn}D(Esu E; U
{wiwy+!, wiwy*!}) which does not occur in any cycle of U2 B2
2n-—l B**

ak0k+1
- -
Baz"al U BLan§. Hence, ( =1 akak-H) UBag,.al U BL,.Dw‘ U Ba2nDL2rn+l

is linearly independent. It is clear that P is the basis of the planar graph
a0z . .. agyTwiwdwd . .. wiwy  wlwP w2, wiw]

obtained by pasting all the 4-cycles at the common edges of the successive
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cycles. Thus, P is a linearly independent set. Note that
E(P)N E (U7 Bita,,,) U B(Br,ow)) U B(B3}, 0, )

E(B;m.Cl Lam+1 ))
C E(aaz...a2,0V(Lom+1))V

1,.2,,3 m, m+l, m, m—1m—2 2,,1
E(aanw3w3w3 .o Wq Wo Wy QU4 w4 .. .‘UJ4'U)4)

which is an edge set of a tree. Thus, by Lemma 4.1, PU (U?I‘__'{IB;:ak +|) U
By, 0wUB:; o, UBS, op,..., is @ linearly independent set. B

a2nc1

Lemma 4.13. dimC(Ly, X Lam41) = 52mn—32m+10n—7 and dimC(L, x
Lom) = 52mn - 32m —4n + 1.

Proof. By Theorem 3.1,

Lo Lomy1 = (LnOLam41)U (Ln X L)
= (LaDL2m41) U (U?;l (L;c x Kf))) U (Lk % Kémﬂ)) )

Thus,
|E(Ln % Lams1)] = |E (LaOLzmsa) |+ [B(UR, L x K))|
+E(Lx x K™Y
= (2)3(2m+1)-2)+2(2m+1)(3n-2)
m
+2) 6(3n—2) +2(3n—2)
i=1
= 60mn—-32m+ 14n -8
Therefore,
dimC(Lp X Lom+1) = 60mn—32m+14n—-8—4n(2m+1)+1

= 582mn-32m+10n-17.
To proof the second part, we follow the same above argument after taking
into account that L, x L3,, = U, ( Ly x Kéz)). -
Theorem 4.14. B(Ln % L2m+]) =Pu (Uil_l]B;:akH) UB;;nax UBL..Dw% U
U (U;C‘;I_Au ) is a 4-fold cycle basis for C(Lp, X Lopyi)-

-
a2n0Lgm41 AkA2n—k4-1
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Proof. Since {aka2n_k+1}:=___2l is an independent set, E(A37,, ...)N
E(AZ ., . _.,,) = @ whenever k # j. Therefore, UZI’A;:M" vy, I8 lin-
early independent. Since
2n—1
E(PU (Ul Bara,, ) UBL.owiUBS; .,
—1 g=x
E(U:—2 Aagag,._,,.,,l )

- {ak, azn_k_;.l}a_l O (E1 UE;UE;U Egu

uB;

a2n0L2m+1 )

N

{wiwy*!, wpwet, WPt w1} U {arazn—k1 toos Dw).

which is a forest Remark 3.3, as a result, by Lemma 4.1, B((Ln X L2m+1)
is a linearly independent set. Note that

IBZEl = |Bas| +2 = (16m +3),
2m,

| aZnD L2m+l

and
IP| = (2n - 1)(2m)
Thus,
1Pl +1B;,.000msn | + | Uit Batay,s| = (2n—1)(2m) +2m +
(2n-1)
> (16m +3),
k=1
= 4mn+ (2n — 1)(16m + 3).
Also,
|Azs| = |Aas| +3 = (16m + 3),
and
IBr.owil =n—1.
Thus,
IB(Ln % Lams1)l = [Pl 4B}, arome | +1Viey" Biray,, | + 1Br.owi | +

n—2

1’k >k
Baznﬂ: I + Z |Aak02n~k+|

= 2n(2m) + (2n - 1)(16m + 3) + (n — 1) + (16m + 3)
+(n — 2)(16m + 3)
= 52mn—-32m+10n-T7.
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To complete the proof, we count the number of cycles of B in which each
edge of G occurs. Let e € E(L, X Lam+1). Then e belongs to at least
one of the following edge sets: E(Ln,Ow}), E(ags0L2m), E(Bs o,),P and
E(B;:,. . . )and E(A3 ) for some k. We consider the following cases:

Gk Gkl GkA2n—k+1
Case 1. e € E(L,Ow}). Then, by Remarks 4.7 and 4.9, we have the
following:

(1) Ife - (ak:wl)(ak-l-lawl) then fB(LnNL2m+l) akak“"( )+f3b Dw
() <3+1.

(2) If e = (a1, wi)(azn, wi), then fB(L.x Lomsr) = fB2; ., (€) + f’"bncw;
() <3+1.

(3) If e = (ax,w})(azn—k+1,w}) for some k, then fo(r.wLzmy) =
fA;;“2n—k+l (e) + fBLnuw} (e) S 2 + 2.

Case 2. e € E(a,0Ls) — E(L,Ow?!). Then by Remark 4.7 we have the
following:

(1) X e = (agn, w})(azn, wit!) where 1 < i < m, then fa(L,.x Lamsr)(€) =
fs;;n_ (e)+fm=s (e)+fm- (e) < 1+2+1forodd i and < 24+1+1

192n a2n9)

for even 1. )
(2) If e = (agn, wi)(azn, wit!) where1 < i < m—1, then SB(Law Lamyr)(€)

= fg- (€) + fez; ., (& + foz, o0 () £2+1+1 for odd i and

B2n—-192n
<1+4+2+1 for even 1.
(3) Ife= (a'2m 11"1‘*.1)(“21l, w2 )a then fB(L..K L2m+1)(e) B;;n 1a2n (e)
+fB=- (€) + fa- (e) <142+1.

agnal a2n0 Ly,

a2,0 Lom

(4)Ife= (a2n,wl.)(a2mw«;) or (a2mw2;)(a2m ws) where 1 < ¢ < m, then
FB(Lux Lamsr) (€) = B2z (e)+f13;; MO W0 Em (e) S1+1+2.

—162,

(5) Ife = (a'2n’ ws)(a2m w3 ) or (a'?m w4)(a2m w4 1) OI‘ (a2na w2 )(a2m
w3 ) or (a2m w2 )(a2m wy )a then fB(L“x L2m+l)(e) f'P(e) +f8ﬂ YT
(e)<1+1.

(6) If € = (G2n, w5*)(a2n, w*t?), then fa(L, x Lom,,)(€) = fB2e

R OL
fBs: _ (€)+ fB- (e)$2+1+1foroddmand$1+2-I2-11fc:reven

“2 ay 200 Lam
Case 3. e€ E(B;:ak“) (E(LnOw}) U E(agn0Lam)) for some 1 < k <

2n — 1. Then, by Remarks 4.7 and 4.9, we have the following:

(1) If e = (ax, wi)(@ks1,wh) or (ak, wi)(aks1,wi) such that 1 <i<m
or (ax, wy ) (ak+1, wiT?), then fo(r,uLomi) = foip.,, (€) + fr(e) <
242

(2) If e = (ak, w})(ak+1,w}) for some i,j,t and s which is not as in (1),
then fB(L,x Lomsr) = fB:2,,,,(8) S 4.

(3) Ife= (ak)wl)(ak7wl l) 1 £ i £ m, then fB(L,.KLz.,..H)(e) =

308



(e)

fB;; l°k( )+fB;;“k+1 (e) S 1+2 for odd Z and fB(L,.x L2m+l)(e) = fB‘.'I:-l"k
+f8;;a (e) £2+1 for even i.

(4) Ife= (@k+1, wh)(ar41,w5t1) 1 <4 <m—1, then fa(L xLomsn)(€) =
(e) + fge- () < 2+ 1 for odd ¢ and fg(L,xLomer)(€) =

“k°k+l gt 10k42
°k°k+1( e)+ fB°k+1“k+z (e) <1 + 2. )

(‘ ) If e = (ag+1, wi)(ak+1, wit!) such that 1 < i < m or (ak, w})(ak,
wit!) such that 1 < ¢ < m — 1, then we have cases similar to (3) and (4)

(6) If & = (ax, wi*T)(ak, w§*), then forz xzqmpn)(e) = fB;; l,,k( e) +
fB;;rf“( &)+ faz., _ et (€) <1+2+1. Similarly for (ax41, w ) (ak+1,
)-

(7) If e = (ar, wi)(ak, wi) or (ak, ws)(ak, wi) such that 1 < i < m, then
fBLaxLomin) () = fBz;_ . (€) + for,, () +faz, . ()<1+1+1

L S g “k“h-{-l ak"ﬁ
Similarly for e = (ak+1,w1)(ak+1,w4) or (ak.,.l,wz)(ak.,.l,wg) such that
1<i<m.

(8) If e = (ax, w§")(ar, wi"*"), then far,xLamsr)(€) = foz;_,., (€) +
[Bee (&) <2+ 1if mis odd and £ 1+ 2 if m is even. Similarly for

“k"k-l-l
(ak+1a Wy )(ak-l-la wq
Case 4. ¢ € B(B3},q,)- (B(UET B

+l)
[ TN 2 a;‘ak+1) U E(Lnuw%) U E(a2nD L2m))'

Then, by Remarks 4.7 and 4.9, we have the followmg

(1) Ife= (C"Zna wi""’l)(al, m+1) or (a2n1 )(a'l) +1)7 then f

B(LaxLams1)(€) = fBz; . () +fB ) (e) <34l

2 Ife= (als P a1, Wy gt ), then fB(Ln"Lﬁm-H)(e) fB;; ay
fB;;“z(e)‘*'ana O Lam (e) <1+4+2+1

(3) If e is not as in (1) and (2), then we have cases as in Case 3.
Case 5. e € E(AM,, ...) - (E(u 1B, ) U E(LaOwl) U E(agq0

Lam) U E(B;} o,))- Then, by Remarks 4.7 and 4.9, we have the following:

(e)

(e) +

(1) He= (akaw;)(azﬂ—ki-l,wz(t))» then fB(L.xLamy) = fAze
<4

(2) If e = (ak, wh)(ak, wiT") such that i is odd or (agn—k+1,wi)(@2n—k+1,

wit!) such that i is even , then fa(r, « Lomysy) = (e) + fr(e) <

“k“Qn k+1

“k“?n—k‘!-l
2+2.
(3) If e = (ay, w4)(ak, wit!) such that 7 is even or (azn—i+1, W) (azn—r+1,
H']) such that ¢ is odd, then fg(L.xLomyi) = fA..kn, l(e) + fp(e) <
142
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(4) If e = (ar, w5)(ak, w™™*"), then faL,u Lomen)(€) = fazz,, . (€)+
fr(e) £ 2+2if mis odd and < 1+ 2 if m is even. Similarly for

(a2n—k+1,w5") (@2n—k+1, W5" H)i
(5) If e = (ax, wi*)(ak, w5 ™"), then fo(L xLamsr)(€) = faz;,, . (e)+
fp(e) < 2+ 2if mis even and < 1+ 2 if m is odd. Similarly for

(a2n—-k+1, WT)(@2n—k41, w5 ). » )
Case 6. e € E(P) — E((U2" IB;:%H)U(U;‘_zA;:m ) U EaOuw) U
E(a220Lom) U E(B3; ,)). Then fg(1,x Lsmsr)(€) = fr(e <2 .

Now, we turn into the case 7 = 2m. Note that as in the case n =

2m + 1, we have that ab x Lj,, is decomposable into ( m K(ab 1))
(U1 ({a,b}0A,)). Let

Fao = U, (Sf;b U {Afab 1) Aiba 1) Az.baﬂ)’ Azab”‘)})
U ( i=1 T(ab 12)) U ’Cc(::—l ")

Mapy = UL, (wa U {Afab,l)a ‘Az.ba 1),Afab,2)aAfab,3)})
U (U?;‘IlT(ib,s«a)) ’C(m- )

Then by using similar arguments as in Lemmas 4.6 and 4.8 and noting that
(a, w]*)(a, wd*) does not appear in any cycle of F,5 and (a, w3*)(a, wj*) does
not appear in any cycle of Mg, we have the following results:

Lemma 4.15. F3, = Fap U {(a, w*)(a, w§*)(b, ws) (b, w*)(a,w™)} is a
linearly independent subset of C(ab x Lzy,). B

Lemma 4.16. M;b = Mg U {(a’w;}n)(aa wzn)(b’wT)(b)w:’in)(a’wg')} is
linearly independent. B

Lemma 4.17. BagnDLzm = {(a2n1w1)(a2n:w1+1)(a2na Ak )(a2nsw4)(a2ny
wi)li=1,2,...,m - 1}U{(02mw2)(02m'w2 )(azn,w3 )(a2n:w3)(a2n)w2)|
=1, 2 ym - 1} U {(a2naw1 )(a2nsw2 ) (azn,W3 )(a2naw4 )(a2na w, )}
s a basis for C(az,0Lsy). N

Let £ = uPytu2n)? (akak“,u). Then by a similar argument as in

Theorem 4.14, we have the following result.
Theorem 4.18. B(L, X Lom) = L U (Ui?_j‘f;‘kaw) UBL0wlUFs, 0, U
(Ba,.01,,.) U (u M;kah_w) is a 4-fold cycle basis for C(Ln X Lam)-
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To this end, we presented the necessary background to prove our main
result.

Theorem 4.19. For each n,n, b(L, x L,) < 4. Moreover, the equality
holds for each integers n,n satisfying the following: (1) Odd n > 3 and
n2>3. (2) Bvenn >4 and n > 4.

Proof. By Theorems 4.14 and 4.18, it suffices to show that C(L, x Ly) has
no 3-fold basis under the stated conditions. Assume that B is a 3-fold basis
for C(Ly x Ly) under the stated condition. Then we consider the following
two cases:
Case 1. 7 =2m + 1. Then we consider the following three subcases:
Subcase 1.1. B consists of s of 3-cycles. Then each cycle must contains
an edge of V(L,)O (E; U By U {w]* ' w}*}). Since the fold of each edge
is at most 3, as a result [B] < 3s, that is,

52mn-32m+10n -7 < 3(2m+1)(2n)
< 12nm + 6n.
Thus,
4n(10m+1) < 32m + 7.
Hence,

2m+7
< —_—<2
"= om+D) S
This is a contradiction.

Subcase 1.2. B consists of 4-cycles. Then 4|8| < 3|E(L, x L,)|. And
S0

4(52mn - 32m +10n—-7) < 3(60mn — 32m + 14n — 8)
208mn — 128m +40n — 28 < 180mn — 96m + 42n — 24.
Hence,
2n(14m —-1)-32m -4 < 0.
So,
n 2m+4
2(14m — 1)
3
< =
- 2

This is a contradiction.
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Subcase 1.3. B consists of ¢ cycles of length at least 4 and s 3-cycle.
Since, 3s + 4t < 3|E(L, % Ly)|, we have that

‘< 3(60mn — 32m + 14n — 8) — 3s
— 4 .
Therefore,

3(60mn — 32m + 14n — 8) —
4

IBl=s+t<s+
Hence,

4|B| < s + 3(60mn — 32m + 14n — 8).
By Subcase 1.1, we have

4(52mn — 32m + 10n — 7) < (12nm + 6n) + 3(60mn — 32m + 14n — 8)
which is equivalent to
8n(2m - 1) <32m +4.

Therefore,

8(2m +1/2)
= 8(2m-1)
< 3

This is a contradiction.

Case 2. 7 = 2m. Then we follow the same arguments as in the above
three subcases taking into account that any 3-cycle must contains an edge
of V(L,)O(A; U Az U A7) to get a similar contradiction. W

Corollary 4.20. Foroddn > 1andn > 3, B(LnXLy) = PU(UIZ B3, . )
UBZ;.a, YBL,owt UBS, o, U (UZ:;A;:M"_&“) is a required basis for the

cycle space C(Ly, x Ly). Furth.er, for evenn >4andn >4, B(L,x L,) =

c u (Uzn—lf;kak-e-l ) u BL,.DW'U]:GznGI (Ba2nDLn) U (Un IM;kazn-k+l) is
a required basis for the cycle space C(L, x L,) B

5 Further results.

The following results will be useful in the coming result.
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Proposition 5.1. ([12]) The Cartesian product of connected graphs has a
vertex transitive automorphism group if and only if every factor has a verter
transitive automorphism group. B

Theorem 5.2. (Jaradat [13]) G x H is isomorphic to G[H]| if and only if
H is a vertex transitive. B

The circular ladder CL,, is defined to be P,[1C;, where P, is a path of
order 2 and C, is a cycle of order 7. Since both of P, and C,, are vertex
transitive. Thus, by the above proposition, CL, is vertex transitive. Thus,
by Theorem 5.2 and Theorem 2.4 of [17] we have the following result:

Theorem 5.3. For any n > 2 and 1 > 3, &(L, x CL,) < 4. Moreover,
the equality holds if n>2andn>4. B
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