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Abstract

The resistance distance between two vertices of a connected graph
G is defined as the effective resistance between them in the corre-
sponding electrical network constructed from G by replacing each
edge of G with a unit resistor. The Kirchhoff index of K f(G) is
the sum of resistance distances between all pairs of vertices of the
graph G. In this paper, we'll determine the tricyclic graphs with the
smallest and the second smallest Kirchhoff indices.

1 Introduction

All graphs considered here are both connected and simple if not stated
in particular. For any v € V(G), we use Ng(v) to denote the set of the
neighbors of v, and let Ng[v] = vU Ng(v), let d(v) be the number of edges
incident with v. For a graph G with v € V(G), G — v denotes the graph
resulting from G by deleting v (and its incident edges). For an edge uv of the
graph G (the complement of G, respectively), G —uv (G + uv, respectively)
denotes the graph resulting from G by deleting (adding, respectively) uv.
The distance between vertices v; and vj, denoted by dg(v;,v;) or d(v;,v;)
for short, is the length of a shortest path between them. In 1947, American
Chemist H. Wiener in [1] defined the famous Wiener index as

W@ = Y dw,v) (1)

{vi,v;}CV(G)

and in 1993 Klein and Randi¢ [2] introduced a new distance function named
resistance distance on the basis of electrical network theory. They viewed
a graph G as an electrical network N such that each edge of G is assumed
to be a unit resistor. Then, the resistance distance between the vertices
v; and vj, are denoted by r(v;,v;), is defined to be the effective resistance
between nodes v;, v; € N. Analogous to the definition of the Wiener index,
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the Kirchhoff index K f(G) of a graph G is defined as[2, 3]
KfG@= Y rlunw) (2)

{viv;}EV(G)

If G is a tree, then r(u,v) = d(u,v) for any two vertices u and v.
Consequently, the Kirchhoff and Wiener indices of trees coincide.

The Kirchhoff index is an important molecular structure descriptor{4],
it has been well studied in both mathematical and chemical literatures.
To compute the Kirchhoff index is a hard problem, the existed results were
mainly concentrate on the specific classes of graphs. For a general graph G,
I. Lukovits et al. [5] showed that K f(G) > n — 1 with equality if and only
if G is complete graph K,, and P,, has maximal Kirchhoff index. Palacios
(6] showed that K f(G) < E(n3 — n) with equality if and only if G is a
path. In [7], Yang et al., studied the Kirchhoff index of unicyclic graphs
with given girth and determined the extremal graphs. In [8], Deng et
al., obtained the second maximal and minimal Kirchhoff index of unicyclic
graphs. Q. Guo at al. [9] studied the Kirchhoff index of full loaded unicyclic
graphs, and in [10], Deng investigated Kirchhoff index graphs with given
number of cut edges. Zhou [11] obtained the extremal graphs with given
matching number, connectivity and minimal Kirchhoff index. Wang et
al. [12] obtained the first three minimal Kirchhoff indices among cacti.
In [13], the authors studied the Kirchhoff index of bicyclic graphs with
exactly two cycles. In [14], the authors studied the Kirchhoff index of
linear hexagonal chains. H. Zhang et at.[15] investigated the Kirchhoff
index of composite graphs. A. Nikseresht et al.[16] computed the Kirchhoff
index of the T-repetition of G in terms of parameters of T' and G. M.
Bianchi et al.[17] studied bounds for the Kirchhoff index via majorization
techniques. In [18] the authors gave the graphs with the nine largest and
nine smallest Kirchhoff indices among all possible graphs. In [19] the author
gave the three largest and three smallest Kirchhoff indices among graphs
with diameter 2. Also, in (19] it is found that the Kirchhoff index of the

so-called propeller graph S, (k) is K f(Sn(k)) = (n — 1)%2 — 2kn.

The cyclomatic number of a connected graph G is defined as ¢(G) =
m—n+1. A graph G with ¢(G) = k is called a k—cyclic graph, for ¢(G) = 3,
we named G as a tricyclic graph. Let J, be the set of all tricyclic graphs
with n vertices. By [20-26], a tricyclic graph G contains at least 3 cycles
and at most 7 cycles, furthermore, there do not exist 5 cycles in G. Let
In = F2U G2 I8\ FT, where J;} denotes the set of tricyclic graph
on n vertices with exact ¢ cycles for i = 3,4,6,7. Note that the induced
subgraph of vertices on the cycles of G € Z(i = 3,4,6,7) are depicted in
Figure 1.
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Figure 1. The arrangement of cycles of a tricyclic graph in (i = 3,4,6,7)

1

For any graph G € 9,, G can be obtained from some graphs showed in
Figure 1 by attaching trees to some vertices.

To our best knowledge, the Kirchhoff index for tricyclic graphs has not
been considered so far, and the most similar result about it gave in [19]. In
this paper, we'll investigate the Kirchhoff indices of tricyclic graphs, and
determine the tricyclic graphs with the smallest and the second smallest
Kirchhoff indices.

2 Preliminary Results

Let G1, G2 be two disjoint connected graphs, and let v; € V(G)), vz €
V(G2). We obtain a graph G from (G —v1) | J(G2—v2) by adding a new ver-
tex u and together with edges joining u to the vertices of Ng, (v1) U Ng, (v2)-
The graph G is called a coalescence of G; and G, at vertices v, v3, denoted
by G1uG;.

For a vertex u € V(G), let Kfu(G) = Y. r(v,u). C, be the cycle

veV(Q)

on n > 3 vertices, for any two vertices v;,v; € V(C,) with ¢ < j, by Ohm’s
(G -dn+i-j)

n , and for a vertex u € V(C,),

law, we have r¢, (vs,v;) =

one has K f,(C,) = - 1.

Lemma 2.1([2]). Let z be a cut vertex of a connected graph and a and
b be vertices occurring in different components which arise upon deletion
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of z. Then
re(a,b) = rgla, z) + re(z, b). (3)
Lemma 2.2([7]). Let G; and G; be two connected graphs with exactly
one common vertex z, and G = G12G3. Then

Kf(G) = Kf(G1)+K f(Go)+(IV(C1)|-1)K f2(G2)+([V (G2)|-1) K fo(Gh)-

(4)
Lemma 2.3. Let G1,Ga,- - ,G; be connected graphs with exactly one
common vertex z, and |[V(G)| =ni(i =1,2,:-- ,t). Then
Kf(G)y= Y KfG)+ >, Y. mi-1Kf(G;). (5
1<iLt 1Ki<t 1<5<t,j#E
Proof. Let H, = G1zGaz - - - Gy, by Lemma 2.2, one has
K f(H:)

= Kf(He-1) + Kf(Ge) + ([V(He-1)| = DK f2(Ge) + (ne — 1)K fz(He-1)

=Y Kf(G)+ Y Y (n-1DKf(G))

lsist 1<ist1<j<e, j#i

For convenience, we provide some grafting transformations, which will
decrease the Kirchhoff index of graphs as follows.

Let v be a vertex of degree p+1 in a graph G, such that vv;, vvs, -+ ,vvp
are pendant edges incident with v, and « is the neighbor of v distinct from
v1,v2, -+ ,Vp, and G’ = a(G,v) by removing the edges vv;,vve,--- ,vvp
and adding new edges uv;,uvs,- - - , uvy, see Figure 2.

" v}
v, 5”2 (-] v
vp vp
G el

Figure 2. Transformation a.

Lemma 2.4. Let G’ = a(G, v) be a graph transformed from the graph
G, described above. Then Kf(G) > K f(G'), with equality holds if and
only if G is a star with v as its center.
Proof. Let |V(Go)| = no, by the definition of Kirchhoff index and
Lemma 2.2, one has
Kf(G) = Kf(Go) + K f(Sp+2) + (no — 1)K fu(Sp+2) + (p + 1) K fu(Go)
= Kf(Go) + (p+1)* + (no —1)(2p + 1) + (p + 1)K fu(Go)
Kf(G') = Kf(Go) + (p+1)* + (no —1)(p + 1) + (p + 1)K fu(Go)
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Thus, K f(G) — K f(G') = p(ng — 1) > 0.

This proves the result.

Remark 1. Repeating Transformation «, any tree can be changed into
a star, any cyclic graph can be changed into a cyclic graph such that all
the edges not on the cycles are pendant edges.

Transformations §. Let u,v be two vertices in G. uj,ug, - ,us are
the leaves adjacent to u, vy, va, - - - ,v; are the leaves adjacent tov. G' = G—
{vvr, w02, - Jou} + {uvy, uve, - -+ ,une}, G = G — {uuy, uug, -+ ,uus} +
{vuy,vug,- -+ ,vu,}, depicted in Figure 3.

S
o

Gl
Figure 3. Transformation (.

ﬁ/'
T~

Lemma 2.5. Let G’ and G” be the graphs depicted in transformation
B, then either K f(G) > Kf(G’) or K f(G) > K f(G").

Proof. Let |V(Go)| = no, by the definition of Kirchhoff index and
Lemma 2.2, one has,

Kf(G) = Kf(Go) — sK fu(Go) + tK fu(Go) + (no — 1)(s + t) + (s + t)?
+ str(u,v),
Kf(G") = Kf(Go) + (s + t)K fu(Go) + (no — 1)(s + ) + (s + t)?,

Kf(G") = Kf(Go) + (s + t)K fu(Go) + (no — 1)(s + 1) + (s + t)%.

Thus, A; = Kf(G) — Kf(G') = t(K f+(Go) — K fu(Go) + sr(u, v)),

Az = Kf(G) — Kf(G") = s(K fu(Go) — K fu(Go) + tr(u, v)).

Hence, if K f(G) — Kf(G') > 0 and K f(G) — K f(G") > 0 hold, then
the result follows.

If at least one difference is negative, say A; < 0, then K f,(Go) —
K fu(Go) + sr(u,v) <0, i.e., K fu(Go) — K fu(Go) > sr(u,v), and therefore
Ay > s(s+ t)r(u,v) > 0.

This completes the proof.

Remark 2. Repeating Transformation 8, any cyclic graph can be
changed into a cyclic graph such that all the pendant edges are attached
to the same vertex.
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Suppose that G is obtained from a connected graph Go % P,(jV(Go)| >
9) and a cycle Cp, = vy - - - Up—1v0(p > 4 for p is even; otherwise p > 5)
by identifying vo with a vertex v of the graph Gy (see Figure 4), i.e.,G =
GovCp. Let G' = G —vp_1Vp_2+VVp_3, i.e., G' = GovCp_1vK;. We name
above operation as grafting transformation +.

Figure 4. Transformation +y

Lemma 2.6. Let G and G’ be the graphs depicted in Figure 4, then
Kf(G") < Kf(G).

Proof. Let |V(Go)| = no. By the definition of Kirchhoff index and
Lemma 2.2, one has,

2 _ 3 _
K f(G) = Kf(Go) + (p — 1)K fu(Go) + (no — 1)2_6_1 4+ P = P
2 _
Kf(G') = K f(Go) + (p— 1)K f.(Go) + (no — 1) 2 zp +6
p° —p?+10p— 12
* 12 '
p?—11p+12

>0.
12 20

Thus, K£(G) -~ Kf(G) = (o~ 1) 22T 4
The proof is completed.

3 The smallest Kirchhoff indices of J'

In this section we shall determine the graphs that achieve the smallest
Kirchhoff indices in Z}(i = 3,4, 6, 7), respectively.

3.1 The smallest Kirchhoff index of 73

Let H be a graph formed by attaching three cycles C,, Cy, C.: to a common
vertex u; see Figure 1.(c), and let Gﬁ,b' . be the graph on n vertices obtained
from H by attaching k pendant edges to the vertex u, where a+b+c+k =
n+2(n > 13). We also set § = {G € J, : G is a graph obtained from H
by attaching k pendant vertices to the vertex v of H except u}, 5{.‘,,,,6 is

one of the resulted graph, see Figure 5.
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Glc

a,b,c

Flgure 5. The graphs G%, _ and Gk, b

~

Theorem 3.1.1. Let G5, , G%, . be the two graphs depicted above,
then Kf(Ga,b,c) < Kf(Ga,b,c) -
Proof. Let H = C,uCyuC, in G5, . and G¥, , then

Kf(Gipe) = Kf(H) + Kf(Skar) + (V(H)| = DK fu(Sks1) + kK fu(H),
Kf(GE,o) = Kf(H) + Kf(Ses1) + (V(H)| = DK fo(Sk41) + kK f.(H).

and K fu(Sk+1) = K fo(Sk+1), Kfu(Sks1) < K fu(Sk+1)-

Thus, Kf(G%, ) < Kf(G’a be):

Further, one has,

Theorem 3.1.2. Let G be a n vertex tricyclic graph with exactly three
cycles Ca, Cy and C., then Kf(G) 2 K f(G¢, ) with the equality if and
only if G &2 Gﬁ'b,c

Theorem 3.1.8. For any given positive integers a, b, c and k, one has

() Kf(Ghpe) > KF(GRXlpc) ifa24,be23;

(ii) Kf(G be) > Kf(G'f",;l_1 Difa,c>3,b,c24;

(iii) Kf(G%, ) > KF(GHL ), ifa,b> 3, b,e > 4.
a,b,c 1

a,b,c—

Proof. By the symmetry of three cycles C,, C; and C, contained in
G, here we only show that (i) holds. We omit the proofs for (ii) and (iii).
Let Go = CoyuC,, H = C,uSk41, by the definition of Kirchhoff index_

and Lemma 2.2, one has,

Kf(GE,.)
= Kf(Go) + Kf(H) + (b+c—2)Kfu(H) + (a + k — 1)K fu(Go),

= K£(Go) + (a-+k — K u(Go) + £(b+c—2)(a? + 6k~ 1)
+ 112 (a® + 2a%k + 12ak + 12k* — a — 14k);
Kf(Getise
= Kf(Go) + (@ +k — 1)K fu(Go) + 5(b+ ¢~ 2)(a® + 6k — 20 +6)

+ 1—12-(a3 + 2a%k — a? + 8ak + 12k* + 10a — 12).
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a—1,b,c

Kf(G,.) - KF(GEHL, ) = 112 (n{4a — 14) — 3a? + 3a + 12)

> 112 ((a +9)(4a — 14) — 30 + 3a + 12)

>0, sincen > 13.

This completes the proof.

Theorem 3.1.4. Let G € 9,3, then K f(G) > n® —4n +1, the equality
holds if and only if G = G335.

Proof. It’s sufficient to see that for any graph G € 7,3, Kf(G) >
Kf(G33%)-

By a simple calculation, one has, K f (Gg,gz,) =n?—4n+1.

3.2 The smallest Kirchhoff index of I}

Let Pay1, Pos1, Pet1 be three vertex disjoint paths with a,b,¢ > 1, and at
most one of them is 1. Identifying the three initial vertices and terminal
vertices of them, resp. The resulting graph, denote as ©—graph ©(a, b, ¢).
Connecting the cycle C4 and ©(a, b,c) by a path Py, where k& > 1, naming
the resulting graph as ©—graph. From [20-26], we know that the are exactly
four types of ©—graph, see Figure 1 h,i,j k. Z4 is the set of graphs each
of which is a é—graph, has some trees attached, if possible. Let Ho =
O(a,b,c)vCy, and H, :}b, ¢,d I8 @ vertex graph formed from Hp by attaching
k(k=mn+5—a—b— c— d) pendant vertices to v, see Figure 6.

Figure 6. The graph HY, _,

Similar to the discussion way of section 3.1, one has,

Theorem 3.2.1. Let G € ! such that G contains the ©(a, b,c) and
the cycle Cy with E(©(a,b,¢))(\ E(C4) = 0. Then Kf(G) > Kf(HE, . 2).

Similarly, one has,

Theorem 3.2.2. For any given positive integers a, b, ¢, d and k, then

(i) Kf(HY, . 0) > Kf(HS, . o) for either a > 4, b,c > 2 and bc > 6,
d>3o0ra=23,b,e,d > 3;

(il) Kf(HE, o 0) > Kf(H:j,’ll'c'd) for either b > 4, a,c¢ > 2 and ac > 6,
d>3o0rb=3,a,c,d > 3;

322



(iii) K f(H*, . ) > Kf(H**L_ ) for either ¢ > 4, a,b > 2 and ab > 6,
d>3 3a.b,cgi 1> 3 abec—1,d
2Z290rc=9,4a,0,a 2 9;
(iv) Kf(HYpcq) > Kf(HES 4_,) for either d > 4, abe > 18.
And

4Tn

1z +1, the equality

Theorem 3.2.3. Let G € J}, then Kf(G) > n?—

holds if and only if G = H33% 5 (or H333 4, H3553).
Proof. It is noted that Hy'33 3 & Hy33 3 & H35 5.
By Theorem 3.2.2, for any graph G € !, Kf(G) > K f(H3333), and

Kf(H;333) =n" - 05 +1.

3.3 The smallest Kirchhoff index of ¢

Let I¥, . 4 be a tricyclic graph with exact 6 cycles on n vertices obtained
from Figure 1(1) by attaching k pendant vertices to v showed in Figure 7(i).

Let J¥, . be a tricyclic graph with exact 6 cycles on n vertices obtained
from Figure 1(m) by attaching k pendant vertices to v showed in Figure
7(ii).

Let K, f'b,c be a tricyclic graph with exact 6 cycles on n vertices obtained
from Figure 1(n) by attaching k pendant vertices to v showed in Figure
7(iii).

k n k k
G) I5, . 4 (ii) Jop.ca (iii) Kgpec

Figure 7. The graphs I¥, . 4, J¥, ., Kk, .

Theorem 3.3.1. Let G € J2, then

(i) Kf(G) 2 Kf (I;b,c,d) if the six cycles in G are arranged the same
way as the graphs depicted in Figure 1(1);

(ii) Kf(G) > Kf (Jff,b,c) if the six cycles in G are arranged the same
way as the graphs depicted in Figure 1(m);

(iii) Kf(G) 2 Kf (K,’f,b,c) if the six cycles in G are arranged the same
as with the graphs depicted in Figure 1(n).

Similarly, one has,

Theorem 3.3.2. Let G € I8,
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(i) If the arrangement of the six cycles is the same as Fig 1(1), then
Kf(G) > Kf(I3352), the equality holds if and only if G 2 I335 ,;

(ii) If the arrangement of the six cycles is the same as Fig l(m), then
Kf(G) 2 Kf(J;";,g), the equality holds if and only if G =2 Jg;g;

(iii) If the arrangement of the six cycles is the same as Fig 1(n), then
Kf(G)>2 Kf(K ;‘5’53 , the equality holds if and only if G = K, ,;";g.

Moreover, It is ease to compute out that

n— 19n - 80n 181 n—
Kf(I5352) =n*= o +1, Kf(J538) =n—" "+ 0 KF(KG5)) =
. 22ln 907
70. 0 .
Combining the above results, one arrives at, "

Theorem 3.3.3. Let G € F8, then K f(G) > n?— n+1, the equality

holding if and only if G = Ig,;f,,,z.

5

3.4 The smallest Kirchhoff index of ]

Let RE, . ;. ¢ be a tricyclic graph with exact seven cycles on n vertices
obtained from Figure 1(o) by attaching k pendant vertices to v, shown in
Figure 8, wherea+b+c+d+e+ f+k=n+8.

Applying the similar methods above, we can obtain the following results,
and we omit the proof here.
Theorem 3.4.1. Let G € 97, then Kf(G) > Kf(R33%,,5,), the
equality holds if and only if G 2 R33%,,,.
n

It’s noted that K f (Rg';;;‘z,z,z) =n? ~ 0 +1.

4 Extremal Kirchhoff indices of 7,

In this section, we’ll determine the graphs in J, with the smallest and the
second smallest Kirchhoff indices.
By combining the theorems 3.1.4, 3.2.3, 3.3.3 with 3.4.1, one arrives at,
Theorem 4.1. Let G € Z,(n > 12), then K f(G) > n? — 4dn + 1, the
equality holds if and only if G = G335.
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The derived result coincides with the Kirchhoff index of S,(3) charac-
terized in [19], and G337 has the diameter 2.

In the following, we'll determine the graph in &, with second smallest
Kirchhoff index.

In the first place, we determine the graph in 7,3 with the second smallest
Kirchhoff index.

Now suppose first that G has the second smallest Kirchhoff index among
all elements of 3. Evidently, G can be changed into Gg;;, by using exactly
one step of transformation o, B or <, for otherwise, one can employ one
step of transformation a, 8 or v on G, and obtain a new graph G’, which

is still in J;2 but not isomorphic to G333, which gives
Kf(G) < Kf(G") < Kf(G333),

contradicting to the choice of G.
By the above arguments, one can conclude that G must be one of the

graphs H;, H, and Hj3, depicted in Figure 9.

H1 H2
Figure 9. The graphs H,, H; and Hj in 73

Theorem 4.2. Let G € Z;3(n > 8), then Kf(G) > n? - 263n —1, the

equality holds if and only if G = H;.
Proof. By Lemma 2.3, one has,

K f(H,)
= Kf(C4) + 2K f(C3) + K f(Sn-7) + 32K fu(C3) + K fu(Sn-7))}+
4(K fu(Ca) + K fu(C3) + K fu(Sn=7)) + (n — 8)(K fu(C4) + 2K fu(C3))
23
=n’-—"n-1

6

Similarly, K f(Hz) = n? — 13971 - g, Kf(H3) =n?—-3n-2.

It’s easy to check that K f(H3) > K f(H2) > K f(H,).
This completes the proof.
By combining the theorems 3.2.3, 3.3.3, 3.4.1 with 4.2, one arrives at,

Theorem 4.3. Let G € J,,, and G ¥ G;_g_@,
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47

19" 41, the equality holds if and

(i) If n > 24, then Kf(G) > n? -
only if G = H33% 5.

(i) If 9 < n < 24, then Kf(G) > n? — -26311 — 1, the equality holds if
and only if G = H,.

Remark 3. Continuing to explore in this way, we’ll determine graphs
with the third smallest, the fourth smallest, etc., Kirchhoff indices, we omit
the details here.
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