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Abstract

We say that G is nearly claw-free if for every v € A, the set of
centers of claws of G, there exist two vertices z,y € Ng(v) such
that 2,y ¢ A and Ne(v) € No(r) U Ne(y) U {z,y}. A graph G
is triangularly connected if for every pair of edges ey, ez € E(G), G
has a sequence of 3-cycles Cy,Ca, -+, C; such that e; € Cy,e2 € C;
and E(C;) N E(Ciy1) # 0 for 1 <% < | —1. In this paper, we will
show that (i) every triangularly connected K 4-free nearly claw-free
graph on at least three vertices is fully cycle extendable if the clique
number of the subgraph induced by the set of centers of claws of G is
at most 2, and (ii) every 4-connected line graph of a nearly claw-free
graph is hamiltonian connected.

Keywords: nearly claw-free graphs, triangularly connected graphs,
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1 Introduction

For terms not defined in this paper, we will use the notation and definitions
of [1]. In addition, we will only consider finite graphs. The neighborhood of
vertex v in G is denoted by N¢(v) and the subgraph induced by A C V(G)
is denoted by (A). Denote dg(v) = |[Ng(v)|. A clique in a graph G is a set
of pairwise adjacent vertices. The clique number w(G) of a graph G is the
order of a largest clique in G. A graph G is locally connected if for each
v € V(G), the subgraph induced by Ng(v) is connected. For an integer
k > 2, a k-cycle Cy is a 2-regular connected graph with k edges.

If F is a graph, then we say that G is F-free if it does not contain an
induced subgraph isomorphic to F. A K, 3 is called a claw, and a K 3-
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free graph is called a claw-free graph. The vertex whose degree is 7 in
K, .(r = 3) is called the center of Kj ,.

Claw-free graphs have been a subject of interest of many authors
in the recent years. It is also interesting to investigate classes of graphs
containing claw-free graphs, and to generalize results on claw-free graphs
to these superclasses. The classes of almost claw-free graphs and nearly
claw-free graphs are two of these superclasses.

Definition 1.1 (Ryjdéek [9]) Let G be a graph and let A be the set of
centers of claws of G. The graph G is called almost claw-free if A is inde-
pendent, and for every vertez v € A, there are two vertices x,y € Ng(v)
such that Ng(v) C Ng(z) U Ng(y) U {=z,y}.

Definition 1.2 Let G be a graph and let A be the set of centers of claws of
G. The graph G is called nearly claw-free if for every vertex v € A, there
are two vertices z,y € Ng(v) such that ,y € A and Ng(v) C Ng(z)U

NG(y) U {23, y}

Such vertices z and y in Definitions 1.1 and 1.2 are called the dom-
inating vertices on Ng(v). Obviously, an almost claw-free graph is nearly
claw-free, and a nearly claw-free graph is almost claw-free if A is inde-
pendent, i.e., the clique number of the subgraph induced by A is 1. Our
main goal in this paper is to extend some of the results for almost claw-
free graphs to nearly claw-free graphs. In section 2, we will consider the
fully cycle extendability of nearly claw-free graphs. The hamiltonicity of 4-
connected line graphs of nearly claw-free graphs will be discussed in Section
3.

2 Fully cycle extendability of nearly claw-free
graphs

The graphs considered are without isolated vertices. A graph G is pancyclic
if for every integer k£ such that 3 < k¥ <| V(G) |, G has a k-cycle. G
is vertex pancyclic if for each vertex v € V(G), and for each integer k&
with 3 < k < |V(G)|, G has a k-cycle C such that v € V(Ci). G is
said to be fully cycle extendable if every vertex of G lies on a triangle
and for every nonhamiltonian cycle C there is a cycle C’ in G such that
V(C) € V(C’) and |V(C’)] = |V(C)| + 1. In [8], Oberly and Summer
proved that every connected, locally connected claw-free graph on at least
three vertices is hamiltonian. Clark [2] proved that, under these conditions,
G is vertex pancyclic. Later, Hendry observed that Clark essentially proved
the following stronger result.
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Theorem 2.1 (Hendry [4]) If G is a connected, locally connected claw-free
graph on at least three vertices, then G is fully cycle extendable.

Theorem 2.2 (Ryjdéek [9]) Every connected, locally connected K, 4-free
almost claw-free graph on at least three vertices is fully cycle extendable.

V2

(4) (B)

Figure 1. Triangularly connected graphs

As a generalization of the concept of locally connected graphs, trian-
gularly connected graphs were introduced in [10]. A graph G is triangularly
connected if for every pair of edges e;,es € E(G), G has a sequence of 3-
cycles Cy,Ca,---,C; such that e; € Cy,e3 € C; and E(C;) N E(Ciy1) # 0
for 1 < i <1-1. Clearly, every connected, locally connected graph is tri-
angularly connected. But not every triangularly connected graph is locally
connected. The graphs in Figure 1 are triangularly connected graphs which
are not locally connected since the subgraphs induced by the neighborhoods
of vy, v, and v3 are not connected.

Theorem 2.3 (Zhan [12]) Every triangularly connected K, 4-free almost
claw-free graph on at least three vertices is fully cycle extendable.

Our goal here is to extend Theorems 2.1, 2.2, and 2.3 to triangularly
connected nearly claw-free graphs.

Theorem 2.4 Let G be a triangularly connected, K, 4-free nearly claw-
free graph on at least three vertices. If the cliqgue number of the subgraph
induced by the set of centers of claws of G is at most 2, then G is fully
cycle extendable.

Proof of Theorem 2.4. Since every vertex of G lies on a triangle, it is
sufficient to prove that for every cycle C of length 3 < 7 < |V(G)| —1 there
is a cycle C’ of length r + 1 such that V(C) C V(C’). We will prove the
theorem by contradiction. For every cycle C C G, one of its orientations is
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chosen. For every v € V(C), we denote by u~ and u* the predecessor and
successor of u on C, respectively. Denote ut+ = (u*)* and v=~ = (uv™)".

For u,v € V(C), Cu,v] and Cv,u] denote the path between u and v
with the same or opposite orientation as the designated orientation of C.
If u = v, then C[u,v] and ﬁ[v, u] are denoted to be a single vertex. When
vertices of a claw or K 4 are listed, the center is always listed as the first
vertex. Recall that A is the set of all centers of claws in G.

Let C = vjvy---v,v1, where 3 < r < |[V(G)| — 1, and B(C) =

{B|B is a 3-cycle, and E(B) N E(C) # 0}. Then E(C) € U E(B).
BeB(C)

If there is some B C B(C) such that |[V(B) N V(C)| = 2, it is clear that
the subgraph of G induced by the edge set E(C)U E(B) — (E(C) N E(B))
extends C. So we assume that for each B € B(C), V(B) C V(C).

Let e € E(G) such that e is incident with exactly one vertex in V(C)
and C, be a 3-cycle with e € C,. Clearly, C. € B(C). As G is triangularly
connected, there is a sequence of 3-cycles Zy, Zy,- - -, Zi such that Zy = C,
and Z; € B(C). Let C, e, and C. be chosen in such a way that,

(1) among all cycles with vertex set V(C), the number, k, of 3-cycles in
this sequence is smallest.

Therefore, k > 1 is the consequence of the definition of the edge e. Also,
|V (Zo)NV(C)| =2and V(Z;) C V(C) for i > 1. Assume that Zy = Auv;v;
and Z) = Av;v;vp, where v, € C['UJ'." ,v; | (see Figure 2). By Condition (1),
viv; € E(Zz) if k > 2. We choose C, ¢, and C, so that

(2) subject to Condition (1), |{v;,v;} N A is as small as possible.

(3) subject to Conditions (1) and (2), ]{v vy v} N E(G)| is as large
as possible.
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(1.1) (i) If &k > 2, then v} o}, vy v, & E(G).

(ii) If k > 2 and v}v] € E(G), then vivf,vivy & E(G). Therefore, if
k > 2 and {vpvf,vv; } N E(G) # 0, then vfv, € E(G).

(iii) Assume k > 2. If vp & A, then vpvy yunvi & E(G).

Proof. (i) If v} € E(G), let C' = v;Clvn, v}] Clojt,vi); if vy vy €
E(G), let C’ = v,Clvn, v; ](C'-[vh ,vi]. Then v; and v, are adjacent in C’, and
so the number % is one since Av;v;vn, € B(C’). This contradicts Condmon
(1.

(ii) If vov, € E(G), let C' = v;Clvn, v] |Cv}, vy lu; if vt € E(G), let
C' = v;Clv},v]] Clvf,vn|v;. Then v; and vy, are adjacent in C’, and so
the number k is one since Av;v;vp € B(C’). This contradicts Condition
(1) again.

(iii) Assume that v,v; € E(G). The proof for vpv] ¢ E(G) is similar. By
(1.1)(i), vy vy, & E(G). Since k > 2, vy v; € E(G). As (vn,v,,v;,v:) #
K13, we have vivy, € E(G). Thus uv, ¢ E(G) (otherwise, let Zp =
Auvvy, and Zy = Avsvg vs. Then k = 1). By (1.1)(ii), vJv; & E(G). By
(1.1)(i), vy v; € E(G). Since (vi, v}, v, u,v;) # K4, we have vy v} €
E(G). Thus the cycle C' = vuCly;, v;|C[vf,v;|C[vs, vi] extends C, a
contradiction. I

(1.2) Let v; € A. If d € Ng(v;) dominates 'vJ'-" , then the following state-
ments hold.

(i) de V(C).

(ii) du ¢ E(G).

(iii) dvj € E(G). Therefore, d # vs.

(iv) If k > 2, then dv, € E(G).

Proof. (i) Obviously, d € V(C).

(i) Assume du € E(G). Since d € A and ud*,ud~ ¢ E(G), we have
d*td~ € E(G). Then the cycle C can be extended by v;udClv],d"]
Cld*,v;], a contradiction.

(iii) If dvj ¢ E(G), then v; and u would be dominated by d'. If &’ ¢ V(C),

then C would be extended by v;d’ ‘5[ ;»vj]. If d’ € V(C), then the same
contradiction as (ii) occurs. Thus dv} G E(G).

(iv) By contradiction, assume dv, ¢ E(G). Then d ¢ {vh ,vh} since v}
and v, are neighbors of vp. As k > 2, v,-v;',vi vjv yo;] € E(G).

Thus d € {v},vi,v7}. Since du ¢ E(G), there exists d; € Ng(v;) that
dominates u and v,. We consider two cases.

Case 1. dy ¢ V(C)
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Clearly, v} dz,v_;." da ¢ E(G). Also, dov; ¢ E(G) ( otherwise, let Zj =

{ Avjdavn,  if vjun € E(Z2)
Avidauy, fvu, € E(Zz)
have one fewer triangles, a contradiction). Thus we have dv; € F(G). Since
(d, v;, vj+, v;) # K13, we have v;-"v,'-' € E(G). Consider the following cases:

. Then the new chain Zy, Z, - - -, Z would

Case Cycle C’

d*d- € E(G) v;dCuf, d-|Cld*, v;)
d*v; € E(G) v; C[d, v} 1Ty, d*]v;
d_’Uj € E(G) 'UjC[d, v;]C[’U;-,d—]’Uj

In each case, v;d is an edge of the cycle C’. So we can replace the original
chain with the new chain Zj and Z1, where Zj = Zp, Z] = Av;v;d. Thus
the number of triangles corresponding to C’ is one, a contradiction. So
d*d=,d%v;,d"v; ¢ E(G), and (d,d*,d™,v;) = K, 3, a contradiction.
Case 2. d; € V(C)

Since dp ¢ A, then df d; € E(G).
Claim 1. dp = v;.

By contradiction, we assume that d2 # v;. If dov; € E(G), then v; ¢

. Audyv; Dvidavn,  if vivy € E(Z)
7t __ 1 1 ?

A(otherwise, let ZyZ; = { Audyv, Avdgus i vyun € E(Z3) Then
the chain of Zy, Z],Z; - -, Zy have same number of triangles, but dy ¢ A.
This contradicts Condition (2)). By considering (v;, v}, u,vs), we can see
that v}v, € E(G). This means k = 2. Consider the new chain with
2y = Audyvi, Z] = Adavpvi, 2 = Avpv;v}. This new chain still has three
triangles but d,v; ¢ A, contrary to Condition (2). This implies dpv; ¢
E(G). Therefore, dv; € E(G). As (d,v;,v},v]) # K, 3 and v}, vy &
E(G), we have v;-'" vy € E(G). Consider the following cases:

Case Cycle C’

dtd~ € E(G) v;dC[v},d~]Cld+, v;]
d*v; € E(G) v; Cd, v}1C 5, d*]v;
d~v; € E(G) v;C[d, vj']C[vf,d‘]v,-

In each case, v;d is an edge of the cycle C’. So we can replace the original
chain with the new chain Zj and Z1{, where Zj = Zp, Z] = Av;v;d. Thus
the number of triangles corresponding to C’ is one, a contradiction. So
d*d-,d%v;,d"v; ¢ E(G), and (d,d*,d™,v;) = K;3. This contradiction
implies that ds = v;.

By Claim 1, dy = v; and by the definition of a nearly claw-free graph,
v; € A. Thus v} v],vpv], v € E(G). By (1.1)(iii), vx € A. By (1.1)(ii),

344



we have the following claim.

Claim 2. vfv,,vv;,vivf & E(G).

Claim 3. (i) vjv},v;vp & E(G).

(ii) v}v, € E(G),v; v € E(G).

(iii) vhv_;",vhv; & E(G). Therefore, v;-" v; € E(G).

(i). We use contradiction to prove v;v;, & E(G). The discussion for v;u; &
E(G) would be similar. Assume v;v;, € E(G). By (1.1)(ii), vj v; ¢ E(G).
Thus, d ¢ {v_;", v; }. Since d and v; are the dominating vertices in Ng(v;)
and vv, ¢ E(G), dvy € E(G). If d € Clvf,v;]], then consider the
following cases:

Case Cycle C’

d*d- € E(G) v;ul [vs, va]Clu, d- ]C[d+ gb‘[u;,u,]
d+vy € E(G) v,uﬁ[v,,v,.]C[v Ty, df 3 [vi,,v;)
d-v; € E(G) v;ul [vi, va|Clv}, d ]‘E[vh, ¥1Cld,v;]
If d € C[v}t,v]], then consider the following cases:
Case Cycle C’
d*d- € E(G) v,-u‘é[v,-,dﬂ‘é[d ,vn)Clof, 7 1dC vy, v)
d*v, € E(G) vjuv;Clvn, d|Clvf , v; 1C[d*, v]|Clvf, vj]
d~v, € E(G) vjuv;Clup, d] [vh 0 |Cld, v7 IC v}, v5]
If d € C[v;f,v;), then consider the following cases:
Case Cycle C’
d*d- € E(G) vjul i, valClof, vy 1dC vy, 4+ Tld, vy
d*v; € E(G) v;ul [vi, va]Cv} v;]C[d+,v;]ﬁ[d, v;]
d-v; € E(G) v;uClvs, va]Clv?, v;1C1d, v} 1Cld, vy lv;

For these nine cases, C’ extends C, a contradiction. Thus d € A, a contra-
diction. So Claim 3(i) holds.

(ii)° By (1'1)(i)’ g E(G) Since (vh’vh.avh’v.?’ i ) # K s ’U vh €
E(G). Similarly, v vh ¢ E(G) and v; v} € E(G). So Claim 3(ii) holds
(iii). If vav} € E(G), then the cycle C’ = v,-uﬁ[v.-,vh]C[v;',v;]C[v;",vj]
extends C a contradiction. So vhv ¢ E(G). Similarly, vy € E(G). As
(v v, 7, u,vn) # Kia, vf 0] € E(G’) So Claim 3(iii) holds
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Since v, € A, there is a vertex d3 € Ng(vn) dominating two of
v, v, vy
Claim 4. d; does not dominate the vertices v} and v}, .

By contradiction. Assume ds dominates the vertices v and v, . Then
d3 € V(C). By Claims 2,3, and (1.1)(i), ds & {vi, v, v],v;, v, 97, v, v ).
If d3 € Clv}, v]], the cycle

vuClv;, v; |C[v}, vy 1C[d] , v |Clvyf , davny; if v; d € E(G)

vqu’['ui,vJ-‘]C[v;-",v,:]d;;C[v,’f,d;]C’[d;",vi']vhvj, if d¥d; € E(G)
C'=
vqu[vi,v;]C[v;',v,:]t’-[d;,v,‘f]C[da,vi’]vhvj, if v, d3 € E(G)

would extend C. So (ds,d3,d;,v;) = Ki3, a contradiction. If ds €
C [v;' , V1, |, the cycle

vuClv;, vy |C[v}, d3 |C[dF , vy |daCluf, v] Junvs,  if dfdy € E(G)
C' ={ viullu,vfICldF, viIClw} v |Clv}  dajonw;  if vidi € E(G)
NClvr, dslony;,  if uirdy € E(G)

vull, v 18ds, v;]ﬁ[vj‘ ]

would extend C. So (d3,di,d;,v) = Ki3, a contradiction. If d3 €
Clvf,v; ], the cycle
v;uClv;, d3|CldF , v7 IClf , v |dsCloft , v vy,  if df dy € E(G)
C' = vju‘cr[vi,v,‘f]t;[dg,v;"]‘@[v;,v;"](@[v;,d;‘]vhv,- if vds € E(G)
v,-uﬁ[v,-,v,‘:']C[ds,v;]C[v;",v;]C[v;",d;]vhvj, if vndy € E(G)

would extend C. Thus (d3,df,d5,vs) = K} 3, a contradiction.

Claim 5. dj does not dominate the vertices v; and v}

Assume that d3 dominates the vertices v; and v}. Then d3 € V(C).
By Claims 2,3, ds ¢ {v;,v;,v], vj, v}, vy }. Since k > 2, ds & {vff,v7}. If
ds € Clujf,v;), then the cycle

C = v;uClu;, v; |Cvf, v Elds, v} |C vy, dflv;,  ifv;df € E(G)
vjut;[vh,v;."]g[v;,v;"] [o7,d¥|Clvf, dalv;, if vfdf € E(G)

would extend C. Thus (d3,v,':',vj,d5" } = K3, a contradiction. If d3 €
C[v;' , Uy, |, then the cycle

o — | vuClon & IC7 v IOk 7 ICI} dalus,  if wfd] € E(G)
= vl vf1Clds, v 1€ vy, v} 1T lon, di vy, if v;d3 € E(G)
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would extend C. Thus (ds,v;,v;,dd) = K3, a contradiction. If d3 €
Clvf,v; ], then the cycle

o - vjuﬁ[v.-,v,‘:']C[dg’,vj']C[v;',vh]C[v,?",dg]vj, if vid} € E(G)
~ | vuCli,vf1Cds, v} 1Clvn, v} 1Ty, dilv;,  if v;di € B(G)

would extend C. Thus (d3, v}, v;, d¥) = K, 3, a contradiction.

By Claims 4 and 5, d3 dominates the vertices v; and v, . Then d3 €
V(C). By Claims 2,3, d3 ¢ {v,'f,v;,v,-,vj,v;',v;}. Since £k > 2, d3 €
{vi,v7}. If ds € Clvf,v;], then the cycle

C = vjuﬁ[vi,ds](é[v;,v;']ﬁ v7, v |Clun, d3 Juj, if v;d3 € E(G)
=\ vuiClon, 3518 vy, vf1C [y, v 1O w7, dalv;,  if v d3 € E(G)

would extend C. Thus (d3, v, ,v;,d3) = K13, a contradiction. If d3 €
Clv}, vy, then the cycle

o - vullvi, w]|Clvf, v |Clv}, d5 1T vy, dalv;,  if vy d3 € E(G)
=\ vuClvi, o]Clds, v;|ClF v IC}  d5lu;,  if v;d; € E(G)

would extend C. Thus (ds, v, ,v;,d3) = K3, a contradiction. If d3 €
Clvf,v7), then the cycle

C' = vju(C'-[v;,vh]C[vi*’,d;]‘é[v;,v}']b[vj',dg]vj, if v, d5 € E(G)
- vjuﬁ[vi,vh]C[d;;,vj']C[v;-",v;]C[vf", d3lvi, ifv;dy € E(G)

t

would extend C. Thus (ds, v, ,v;,d3) = K13, a contradiction. This fin-
ishes the proof of (1.2).

(1.3) k£ > 2. Therefore, viv;',viv;',vjv;",vjv;' € E(G).

Proof. By contradiction, assume that & = 1. Then we have v, €
{vf,v7,vf,v;}. Without loss of generality, let’s assume that viv] €
E(G). Then v v ¢ E(G) because otherwise, the cycle vuv;C[v],v]]
Clvf,v;) would extend C, a contradiction. Thus, we have (v;, u, vi]) =
Ki3, and v; € A. Let d € Ng(v;) dominate v;". Then, by (1.2), d; €
V(C),d1v} € E(G), and dyu ¢ E(G). Furthermore, we have d; # {v},v;}
because v} v ¢ E(G).

Suppose d; = v;. Then v;u},v;v; € E(G). Since v; ¢ A, v}v; €
E(G). Then the cycle 'uju(é[v,-, vj‘]g[v; ,v{Ju; extends C, a contradiction.
So d; # vj. Also, we have v} 'vf ¢ E(G) otherwise cycle vju‘a[v.-,v;’]
Clv;,v;) extends C. Similarly, v; v; € E(G). So d; ¢ {v],v]}.
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We consider the following two cases.

Case 1. d; dominates v}

If di € Clv},v;], then consider the following cases:

Case Cycle C'
dfv} € E(G) vjuClvi, di)C o7, vF1Cldf , v5]
div} € E(G) v;ullvi, v} Cldy, vF]CldT , 5]

If d) € C[v},v]], then consider the following cases:

Case Cycle C'
dfv} € E(G) v;uC [v;, dF|Cf, di]Clv;t , v5)
div} € E(G) vuv;Clvf, di] [v7,df]Clvf, vj)

In each of four cases, C’ extends C. Thus, dfv},div} ¢ E(G). Since
vtvf ¢ E(G), we have (d1,v],vf ,d7) = K1 3, a contradiction.

Case 2. d; does not dominate v} .

Then there exists a dy € Ng(v;) that dominates vf and u. We con-
sider two subcases.
Case 2.1. d; g V(C).

Obviously, v;ds ¢ E(G), so we have v;d, € E(G). If d; € C[v}™,v]],
then consider the following cases:

Case Cycle C'
dtv} € E(G) vjuviClv}, vy Cldr, v}|Cld}, vj]
dtv; € E(G) Clo;,df 1T ;v 1daClvs, div;

In each of case, C’ extends C. Thus dfv},dfv; ¢ E(G). Since it was
previously proven that v}v] ¢ E(G), we have {(dy,d{,v},v]) = K13, a
contradiction.

If d; € Clv;™,v] 7], then consider the following cases:

Case Cycle C’

dtd; € E(G) v;d1 C o7, df 18 1d7 , v})doClvi, vj)
v;dj € E(G) Tlvj, v 1Cldy, vildaClv}, dy v
v;d} € E(G) Olvj, vildsClof, 1) T o7, df u;
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In all cases, the cycles C’ extend C, so dfdy,v;dy,vjdf ¢ E(G) and
(d1,df,d7,v;) = K1 3, a contradiction.
Case 2.2. ds € V(C).

If dg # vj, thendfd; € E(G). Thus the cycle vjudzc[v;-',d;]C[d;' 5]
extends C, a contradiction. So, d; = v; and vjv; € E'(G) Consider
(v, u, vf,v,f* ,v; ). Obviously, uv],uv} yuvf ¢ E(G’) Since v} v, v} v;-" ¢
E(G), we have v v} € E(G).

If d; € C[v}*,v] "), then we consider the following cases.

Case Cycle C'

dfd; € E(G) vjuv;Clv},dy]Cldf ,vi |di Clvf, vy
vid; € E(G) v,u'u,ﬁ[dl »U; ]ﬁ[v ,d]Clvt, ;)
vdi € E(G) vuv;Cldf, v |Clof dl]C‘[v;",'v,-]

In each case, the cycle C’ extends C. So dfdy,vid{,vid] & E(G). Thus
(dl,d1 ,d7,v;) = Ki3, a contradiction. So d; € C[v++,vj__]. If vivj €
E(G), then 'v;"vj_ € E(G) and dfd7,vid},vid] ¢ E(G) using the argu-
ments above. Thus (dy,d],d7,v;) = K13, a contradiction. So vivy ¢
E(G). Consider the following cases:

Case Cycle C’
dtdy € E(G) vjuniClo}, vy | Clof, dT|CldT , v5)
d;v; € E(G) v;uniClo} 7| C(dr, v ]Clds, v;]

In each of the two cases above, the cycle C’ extends C, a contradiction,
so dfdT,d7v] ¢ E(G). Consider (dy,d},d,v;). Since d; ¢ A, we have
d}v; e E(G).

We claim that v;vf* ¢ E(G). By contradiction, assume that v} * €
E(G). Then either d; or v;(= d2) dominates v} *. For each of the following
cases,

Case Cycle C’
vjvft € E(G) v;uClv;, v; ]v"‘ﬁ[v +lo;
dyv}* € E(G) v,uC[v,,dl]C’[v"'*,v‘]C[d ;18 f 5]

C’ extends C in each case, a contradiction, so we have v,v}""’ ¢ E(G). We
also have v; v}* ¢ E(G), otherwise the cycle v;uC[v;, v; ]C[v}*, v v} v,
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would extend C. Since v;v]*+,v; v} ¥, vvj ¢ E(G), we have (v],v]*, 07,
v;) = Ky 3. Thus vJ'-" € A. By the hypothesis that the clique number of the
subgraph induced by the set of centers of claws of G is at most 2, v;” ¢ A.

We claim that v;v;~ ¢ E(G). By contradiction. Suppose v;v; -~ €
E(G). Then either d; or vj(= d2) would dominate v; ~. Consider the
following cases:

Case Cycle C’
vjv; ~ € E(G) v;uClvi, dyJv; Cldf, v} |C[v}, vi " v;
div;~ € E(G) 5[0,-,di*]vi_C[v;',v;_]ﬁ[dl,vi]uvj

In both cases, the cycles C’ extend C, a contradiction. Thus v;v; = ¢ E(G).
We also have df v~ ¢ E(G) otherwise the cycle v;uClv;, div; Clv], v ")
Cldf,v;j] would extend C, a contradiction. Thus by considering (v; , v,
vy 7, df), we see that v;d] € E(G).

Consider (v;, v ,u,df,v;'). It is obvious that uv} ,'u,v;’ ¢ E(G) and
it was previously proven that v v} ¢ E(G). Consider the following cases:

Case Cycle C'

dfu e E(G) df uClui, d)]Clus, d}]

dfv} € B(G) vjuClvs, di)C o, v}1Cld}, vj]
dfv} € E(G) vjuviClv}, vy | Cldr, v}|Cld} , v)]

In each case, C’ extends C, a contradiction. Thus, we have dfu,dfv],
dfv} ¢ E(G) and so (v, v/, 4, d'l",v;') = K 4, a contradiction. |

(1.4) k=2.

Proof. By contradiction, assume k& > 3. Then, UpY; ,v;.v}",vhvi‘ ,vhv;F ¢
E(G). Thus, we have (v;,v],u,vn) = Ky3 and (v;,v],u,va) = Ky,
which means v;, v; € A. Without loss of generality, in the chain of 3-cycles,
Zo,21, 22 - - Zx, we assume vav; € E(Z;). Let d € Ng(v;) dominate v} .
By (1.2), d € V(C), and dv} ,dv, € E(G). Since vav],vav; ¢ E(G) and
d ¢ A, we have v;'vj' € E(G). Consider the following cases:

Case Cycle C’

d+d- e E(G) v;dCvf,d-]Cld*, v;]
v;d~ € E(G) v;Cld, v;|C[v},d v,
v;d+ € E(G) v; C(d, v} 1T v}, d*]v;
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In each case, v;d is an edge of the cycle C'. Then, we can replace the
original chain with the new chain Zy, Z;, Z; where Z2 = Awvjupd. Thus
k = 2, contrary to Condition (1). So, we have d*d~,v;d~ v,d ¢ E(G).

Resultantly, (d,d*,d~,v;) = K 3, a contradiction. I

(1.5) If vjv; ¢ E(G), and d dominates v }, then the following statements

hold.
(i) d"‘d",vfd'*‘,v;d" & E(G). Therefore, v;-'d"‘,v;'d" € E(G).

(i) d # v o7

(iii) dvt,dvy € E(G).

Proof. If v}v; ¢ E(G), then v; € A. By (1.2), we have d € V(C) and
dv; ,dvn € E(G).

(i) Consider the following cases:

Case Cycle C’

d+d- € E(G) vij[vJ'.",d"]C[d*,vj]
vfd* € E(G) v; O[d, v}]Cld*, v;]
v;d~ € E(G) v;Cld, v; 2161d- v,

In all of the cases, v;d is an edge of the cycle C’. So in all of the three
cycles above, we can replace the original chain by Zg, Z;, Z} where Z; =
Avjvpd, so Conditions (1) and (2) are not violated, but in C’, either d

and v;." are adjacent or d and v are adjacent, contrary to Condition

(3). Thus d*d‘,v}d*,vj'd" ¢ E(G). As (d,d",d*,v}) # Ki3 and
(d,d~,d*,v]) # K\ 3, we have v d*,v]d~ € E(G).

(ii) It follows by (1.1)(i).

(iii) By contradiction. If dv}" € E(G), then consider the following cases:

Case Cycle C;
d € Clvj,va) v;C [on, d*|Cv; v H1T1d, v;]
d € Clun, v;) (a[vh, v; ](6[(1— ¥ 1Cld, v))

If dv,, € E(G), then consider the following cases:

Case Cycle C;
d € Clvj,vs) 2;Cn, V] ]C’[d+ vh]‘a[d ]
d € Clup,vj] 'ij['vh,d ICWf, v 1Cld, v5)

For all four cases, v; and v, are adjacent, so we can shorten the original
chain by Zo, Z1, contrary to Condition (1). Thus we have dv}}, dv; & E(G)
|
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(1.6) Either vjv; € E(G) or v}v] € E(G).

Proof. By contradlctlon, assume v""v v v; ¢ E(G). Then, (vi, v}, v,
u) = Ky 3, (v,-,v vi,u) = Ky,3,and v;,v; e A Letd, € Ng(v;) dommate
vj.'. Since the clique number of the subgraph induced by the set of centers
of claws of G is at most 2, we have v, € A. By (1.1)(iii), Vhv; € E(G). As
(v.»,v;',vj',u, vp) # Ki4, vnv] € E(G). Considering (vs, v}, vy ,d1), by
(1.5)(iii), we have v} v; € E(G). Thus v; and vy, are adjacent in the new
cycle C' = v;upClvf, v, ]C [v,f,vj] contrary to Condition 1.

By (1.6), we assume that v} v; € E(G). By (1.2)(ii), we have v;v}f,
viv, € E(G).
(1.7) v}v] € E(G).

Proof.  Assume that v}v] ¢ E(G). Thus v; € A and there exists a
dy € Ng(v;) that dominates v}. By (1.2), dav;, davy, € E(G).

We claim that dav; ¢ E(G). Suppose that dav; € E(G). By symme-
try, we assume that d; € C[v;,v;]. We consider three cases:

Case Cycle C’

d;df € E(G) v;ul v, v % v; d+JC§[d2,v+]d2v,-
v;dy € E(G) vjuClv;, da] d3v;
v;jd; € E(G) v_.,uﬁ[v,, vj ]i’j[ vy, dz]C'[v, d3)v;

In each case, the cycles C’ extend C. Thus d; dj ,v;df,v;dy ¢ E(G). So,
(d2,dF,d5 ,v;) = K13, a contradiction. This means dyv; ¢ E(G).

As (vn, v v, d2,vj) # K14, by (1.6)(iii), v vy € E(G). By (1.2)(ii),
vavi, vpv; € E(G). Thus (v;,v], v, u,vn) = K) 4, a contradiction.
(1.8) (i). {vivy,vivy,vivf,vu5 } N E(G) =
(ii). {vnvi,vnv], vhvj_,v;,v;} NE(G)#0, vyv, ¢ E(G), and v, € A.
Proof. (i) It follows by (1.6),(1.7), and (1.2)(ii).
(i) By (1.4), {vnvf,vavy, vnvf, vav]} NE(G) # 0. By (1.2)(ii), vfv; ¢
E(G). Thus {vs, v}, v, v;) = K13, and so v, € A. 1
(1.9) Either v; € Aor v; € A.
Proof. Assume that both v; and v; ¢ A. By considering (vj, v}, u,vn),
we have v'."vh € E(G). Similarly, v.‘vh,-uf"vh,v-'vh € E(G).

We claim that v} vi and vy v ¢ E(G) If vyvp € E(G), let C' =
v,u‘é[v.,,vh]C['u 7] 5[vh ,v,], if v;vf € E(G), let C' = v,uﬁ[v,,vh]
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S([g;,v;" ]‘5[v;.,v,~]. Then C’ extends C, a contradiction. So vj v}, v; vy, ¢

By (1.4), viv; ¢ E(G). By (1.8), (vh,v,':',v;,v;,v,-) = K 4, & con-
tradiction. |l
By (1.9), we may assume that v; € A.

(1.10). The following statements hold.

(i) If v} vn € E(G), then , vfv; € E(G).

(ii) If vy va € E(G), then v v} € E(G).

Proof. Assume v}v, € E(G). By (1.1)(i), vfv} ¢ E(G). Consider
(vn, vy v, v, v;). By (1.4), v;vi ¢ E(G). By (1.5), viv; ¢ E(G). By
(1.8), vjvi, v;vy ¢ E(G). Thus v}v; € E(G). So (i) holds. Similarly, (ii)
also holds. I

(1.11) v € A.

Proof. Suppose v; ¢ A. Then v} v, v vr € E(G). By (1.10), v} vy, v v} €
E(G). Since v; € A, there exists a d € Ng(v;) that dominates v; and thus
dominates v; and vy, by (1.2). Consider the following cases.

Case 1. d € Clvf,v;].

By (1.4),d # vf. Also,d # v;, otherwise the cycle v,-ut"[vg,vh]ﬁ[d, v}]
5[0;, v;] extends C, a contradiction. Consider the following subcases:

Case Cycle C’

d~v, € E(G) v,-uﬁ[v.-,vh](a[d", v;"]ﬁ[v,:,v}']C[d, vj]
d*v, € E(G) vjuﬁ[v,-,vh]C'[d‘*,vj']C’ v}, v IClf, dlv;
d-d* € E(G) v;ullv;, vnldC vy, d*]C[d, v} C vy, v;]

C’ extends C in each case. Thus d~vn,d*vs,d~d* ¢ E(G). So, (d,va,d™~,d*)
= K 3, a contradiction.

Case 2. d € C[v},v;].
By (1.8)(i), vjvy ¢ E(G), s0 d # vy. Also, d # v. Otherwise, the

cycle C = v;ul [v;,v4]C[d, v; |C[v, vi] extends C. Consider the following
subcases:

Case Cycle C’

d-v, € E(G) vjul (i, v T ld=, v} Cld, w7 |CloF , 5]
d+v, € E(G) v;uC [vi, v Cld*, v ICv7, w5 1T [d, 5]
d-d* € E(G) vjul [vs, va)dClv} , d-]Cld*, v ICIv, vj)
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C’ extends C in each case. Thus d~vp,d*vs,d~d+ ¢ E(G). So, (d,vs,d™,d")
= K 3, a contradiction.

Case 3. d € C[vf, ;).

By (1.4), d # v;. By (1.8)(i), vjv} ¢ E(G), so d # v}. Consider the
following subcases:

Case Cycle C'

d~d* € E(G) v;ul [vi, d*)C|d~, vy v} C i, v;]
d*v; € E(G) v;uClvy, vy |C[v], va] [d v,':'] [v ydt]v;
d~v; € E(G) v;uClv;, v; ]C’['u yvn)Cld, vy IC[vf, d ™ ]v;

C' extends C in each case. Thusd~d*,d%v;,d~v; ¢ E(G). So, (d,d™,d*,v;)
= K} 3, a contradiction. |

By (1.8)(ii) and (1.11), we have v;,v;,vr € A, contrary to the hypoth-
esis that the clique number of the subgraph induced by the set of centers of
claws of G is at most 2. This contradiction concludes our proof of Theorem

2.4. 1

Conjecture 2.5 Every triangularly connected, K 4-free nearly claw-free
graph on at least three vertices is fully cycle extendable.

3 Line graph of a nearly claw-free graph

The line graph of a graph G, denoted by L(G), has E(G) as its vertex set,
where two vertices in L(G) are adjacent if and only if the corresponding
edges in G have at least one vertex in common.

Conjecture 3.1 (Thomassen [11]) Every 4-connected line graph is hamil-
tonian.

A graph G is hamiltonian connected if every two vertices of G are
connected by a hamiltonian path. So far it is known that every 7-connected
line graph is hamiltonian connected [13], and that every 4-connected line
graph of a claw-free graph is hamiltonian connected (5], and that every 4-
connected line graph of an almost claw-free graph is hamiltonian connected
(7]. Thomassen’s conjecture has also been proved to be true for 4-connected
line graphs of planar simple graphs [6]. Here we consider the hamiltonicity
of the line graph of a nearly claw-free graph and have the following.

Theorem 3.2 Every {-connected line graph of a nearly claw-free graph is
hamiltonian connected.
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To prove our finding, we need one more concept. Let G be a graph
such that L(G) is 3 connected and L(G) is not complete. The core of a
graph G, denoted by Gy, is obtained by deleting the vertices of degree 1
and replacing each path zyz in G with dg(y) = 2 by an edge zz. The core
of a graph was first introduced by Dulmage and Mendelsohn (3], but the
definition they have given is different from ours.

Theorem 3.3 ([7]) Let G be a graph in which every 3-edge-cut of Gy has
at least one edge lying in a cycle of length at most 3 in Go. Then the
following are equivalent.

(i) L(G) is hamiltonian connected;

(it) L(G) is 3-connected.

Proof of Theorem 3.2. Let G be a nearly claw-free graph such that
L(G) is 4-connected. Let Gy be the core of G, and let X = {e;, e, €3} be a
3-edge cut in Gy and let H; and H; be components of Go— X. By Theorem
3.3, it suffices to prove that X has at least one edge lying in a cycle of length
at most 3 in Gp. By contradiction, assume that X has no edge lying in a
cycle of length at most 3 in Gy. Since a cycle of length at most 3 is either a
C; or C3, there is no parallel edges in X. Since L(G) is 4-connected, X must
be incident to a common vertex, say v, in Gp (otherwise, X is a vertex cut
in L(G)). Let X = {vu;,vug, vus}, where e; = vu;(i = 1,2, 3), ui,uz,ua
are different vertices. Without loss of generality, we assume that v € V(H;)
and u;,us,u3 € V(H;). Since L(G) is 4-connected, V(H;) = {v}. Thus
Ng,(v) = {u1,u2,uz}. Since X has no edge lying in a cycle of length at
most 3 in Gy, {ulug, 'u,1‘u.3,’u,2'u,3} n E(Go) =0,

Case 1. NG('U) = NG'g('U)-

Then v is the center of a claw in G. Thus there are two vertices
dy,d2 € Ng(v) such that Ng(v) € Ne(dy) U Ng(dz) U {d1,d2}. Thus
dg,(v) > 5. It contradicts the hypothesis that dg(v) = 3.

Case 2. Ng(v) # Ng,(v).

If some e;, say e; = vu;, is not in E(G), then, by the definition of Gy,
we assume that {w;,ws,w3} C Ng(v), where, for i = 1,2,3, vw;, w;u; €
E(G) (possibly wa = ug, w3 = u3) and dg(w;) = 2 (if w; # u;). Thus
{w1u;, vws, vws} is a 3-cut in L(G). This contrary implies that X C E(G).
As NGo(v) 7é NG('U), we have NG(U) = {u17u2;U3,P1,“',Pk}(k 2 1)’
where dg(p;) =1 for i = 1,---,k. Then X is a 3-cut in L(G), contrary to

the hypothesis that L(G) is 4-connected again. |
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