SELF VERTEX SWITCHINGS OF TREES

C. Jayasekaran

Department of Mathematics, Pioneer Kumaraswamy College Nagercoil – 629 003, India. e-mail: jaya_pkc@yahoo.com

Abstract

A vertex $v \in V(G)$ is said to be a *self vertex switching* of G if G is isomorphic to G^v , where G^v is the graph obtained from G by deleting all edges of G incident to v and adding all edges incident to v which are not in G. The set of all self vertex switchings of G is denoted by $SS_1(G)$ and its cardinality by $ss_1(G)$. In [6], the number $ss_1(G)$ is calculated for the graphs, cycle, path, regular graph, wheel, Euler graph, complete graph and complete bipartite graphs. In this paper for a vertex v of a graph G, the graph G^v is characterized for tree, star and forest with a given number of components. Using this, we characterize trees and forests, each with a self vertex switching.

Key words: Switching, Self vertex switching, $SS_1(G)$, $ss_1(G)$.

1. Introduction

For a finite undirected graph G(V, E) with |V(G)| = p and a set $\sigma \subseteq V$, the switching of G by σ is defined as the graph $G^{\sigma}(V, E')$, which is obtained from G by removing all edges between σ and its complement $V-\sigma$ and adding as edges all non edges between σ and $V-\sigma$. Switching has been defined by Seidel [3, 4] and is also referred to as Seidel switching. When $\sigma = \{v\} \subset V$, we call the corresponding switching $G^{\{v\}}$ as vertex switching and denoted it as G^v . A subset σ of V(G) to be a self switching of G if $G \cong G^\sigma$. The set of all self switchings of G with cardinality k is denoted by $SS_k(G)$ and its cardinality by $ss_k(G)$. If k = 1, then we call the corresponding self switching as self vertex switching [1, 6]. A branch at v in G is a connected subgraph G of G such that G is connected and maximal [5]. Two vertices G and G is G such that G is an automorphism G of G such that G is an automorphism G of G such that G is an automorphism G of G such that G is an automorphism G of G such that G is an automorphism G of G such that G is an automorphism G of G such that G is an automorphism G of G such that G is an automorphism G of G such that G is an automorphism G of G such that G is an automorphism G of G such that G is an automorphism G of G such that G is an automorphism G of G such that G is an automorphism G of G such that G is an automorphism G of G such that G is an automorphism G of G such that G is an automorphism G is an automorphism G of G such that G is an automorphism G is an automorphi

In [6], the number $ss_1(G)$ for the graphs, cycle, path, regular graph, wheel, Euler graph, complete graph and complete bipartite graphs are calculated. In [5], a connected graph G in which any two self vertex switchings are interchange similar is characterized for $ss_1(G) > 1$. In this paper we find the number $ss_1(G)$ for trees and forests.

Now consider the following results, which are required in the subsequent sections. We consider simple graphs only unless otherwise it is mentioned specifically.

Theorem 1.1.[1] If v is a self vertex switching of a graph G of order p, then $d_G(v) = (p-1)/2$.

Lemma 1.2.[1, 6] In any graph G, vertex adjacent to a vertex of minimum degree is not a self vertex switching.

Theorem 1.3.[5] Let B_i be either a branch at v in G or the union of v and a component of G not containing v, i = 1, 2, ..., k(G-v). Then $G = \bigcup_{i=1}^k B_i$ and $G^v = \bigcup_{i=1}^k B_i^v$ where k = k(G-v), k(G) is the number of components of G.

Theorem 1.4.[5] Let v be any vertex of a connected graph G such that G^v is connected. Then B is a branch at v in G if and only if B^v is a branch at v in G^v .

2. Characterizing trees each with a self vertex switching

Let G be a graph and v be any vertex of G. Let G^v be the switching of G by v. In this section, we find the number of G^v is to be connected if G is either cycle, path, star, block, tree, complete bipartite graph or complete graph. We characterize a vertex v of G such that G^v is connected. Using this, we characterize the vertex v such that G^v is a tree and in particular a star. Finally we characterize trees, each with a self vertex switching.

First we give a simple lemma which will be used to prove some theorems.

Lemma 2.1. D is a component of G not containing v if and only if D+v is a branch at v in G^v .

Proof. D is a component of G not containing v if and only if v is non-adjacent to all vertices of D in G if and only if v is adjacent to all vertices of D in G^v if and only if D+v is a branch at v in G^v .

Theorem 2.2. Let $v \in V(G)$ and $|V(G)| \ge 2$. Then G^v is connected if and only if $d_G(v) = 0$ or $d_B(v) < |V(B)| - 1$ for every branch B at v in G.

Proof. If $d_G(v) = 0$, then obviously G^v is connected. Let us assume that $d_B(v) < |V(B)| - 1$ for every branch B at v in G. Suppose G^v is

disconnected. Then let D be a component of G^v not containing v. Using Lemma 2.1, B = D + v is a branch at v in $(G^v)^v = G$. This implies that $d_B(v) = |V(B)| - 1$. This is a contradiction to our assumption that $d_B(v) < |V(B)| - 1$ and hence G^v is connected.

Conversely, let G^v be connected. If $d_G(v) = 0$, then the proof is over. Now let $d_G(v) \neq 0$. Suppose $d_B(v) = |V(B)| - 1$ for at least one branch, say B, at v in G. Then B-v is a component of G^v not containing v and hence G^v is disconnected, which is a contradiction. This implies that $d_B(v) < |V(B)| - 1$ for every branch B at v in G.

Corollary 2.3. Let G be a connected graph of order $p \ge 2$ and $v \in V(G)$. Then G^v is connected if and only if $d_B(v) < |V(B)| - 1$ for every branch B at v in G.

Note 2.4. It is interesting to note that corresponding to each $v \in V(G)$, we get G^v , the switching of G by v. In this section, we consider the following notations.

$$[G]_1 = \{G^v \mid v \in V(G)\} \text{ and } [G]_{1c} = \{G^v \mid G^v \text{ is connected}\}.$$

From the above notations, the following properties are obvious.

- 1. $|[\overline{K}_p]_{1c}| = p \text{ for } p \ge 2.$
- 2. $| [C_p]_{1c} | = p \text{ for } p \ge 4.$
- 3. $|[K_p]_{1c}| = 0 \text{ for } p \ge 2.$
- 4. $|[K_{1,n}]_{1c}| = n \text{ for } n \ge 2.$
- 5. $|[K_{m,n}]_{1c}| = m + n \text{ for } m, n \ge 2.$

6.
$$|[P_p]_{1c}| = \begin{cases} 0 & \text{if } p = 2\\ 2 & \text{if } p = 3\\ p - 2 & \text{if } p \ge 4 \end{cases}$$

7. If G is a block of order p, then $|G_{1c}| = |\{v \mid d_G(v) < p-1\}|$.

Corollary 2.5. Let G be a nontrivial graph of order p. Then $|G|_{1c}| = p$ if and only if either $d_G(v) = 0$ or $d_B(v) < |V(B)| - 1$ for every branch B at v in G, $v \in V(G)$.

Theorem 2.6. For a tree G of order $p \ge 2$, $|[G]_{1c}| = p-r$ where r is the number of vertices, each of which is adjacent to an end vertex in G.

Proof. Let $v \in V(G)$. Consider the following two cases.

Case 1. v is adjacent to an end vertex.

Let w be an end vertex adjacent to v in G. Then $B = K_2 = vw$ is a

branch at v in G and $d_B(v) = |V(B)| -1$. Using Corollary 2.3, G^v is not connected.

Case 2. v is non-adjacent to any end vertex.

Let B be any branch at v in G. This implies that $p \ge 3$ and $B \ne K_2$. Since G is a tree, there exists a vertex, say x, in B such that x is non-adjacent to v and hence $d_B(v) < |V(B)| - 1$. Using Corollary 2.3, G^v is connected since B is an arbitrary branch at v in G.

Thus from cases (1) and (2), the result follows. \Box

Theorem 2.7. Let v be any vertex of a nontrivial connected graph G. Then G^v is a tree if and only if G-v is acyclic and $d_B(v) = |V(B)| - 2$ for every branch B at v in G.

Proof. Let G^v be a tree. Then G^v is connected and acyclic. Using Corollary 2.3, $d_B(v) \leq |V(B)|-2$ for every branch B at v in G. Suppose $d_{B^*}(v) < |V(B^*)|-2$ for some branch B^* at v in G. Then there exist at least two vertices, say u and w, in B^* such that they are non-adjacent to v in G. Since B^*-v is connected, there exists a u-w path in B^*-v and hence in G^v also. In this case, the u-w path and the edges wv and vu form a cycle in G^v . This is a contradiction to G^v is acyclic. This implies that $d_B(v) = |V(B)| - 2$ for every branch B at v in G.

Conversely, let G-v be acyclic and $d_B(v) = |V(B)| - 2$ for every branch B at v in G. Then using Corollary 2.3, G^v is connected. Suppose there exists a cycle, say C, in G^v . Then the cycle C in G^v must contain the vertex v since G-v is acyclic. Let B_1 be the branch at v in G^v , which contains C. Using Theorem 1.4, $B = B_1^v$ is a branch at v in G since G and G^v are connected. Let x and y be adjacent to v in G^v . Clearly G^v are non-adjacent to G^v in G^v and hence G^v are contradiction to our assumption that G^v is acyclic and hence is a tree.

Theorem 2.8. Let v be any vertex of a disconnected graph G. Then G^v is a tree if and only if G is either \overline{K}_p or $D \cup (p-|V(D)|)K_1$ where D is a component of G of order at least 3 containing v such that D-v is acyclic and $d_B(v) = |V(B)| - 2$ for every branch B at v in D.

Proof. Let G^v be a tree. Then G^v is connected and acyclic. Using Theorem 2.2, $d_G(v) = 0$ or $d_B(v) \le |V(B)| - 2$ for every branch B at v in G. If $d_G(v) = 0$, then $G = \overline{K}_p$. Suppose $d_B(v) \le |V(B)| - 2$ for every branch B at v in G. This implies that $G \ne \overline{K}_p$ and hence G has at least one nontrivial component. Let v be in a nontrivial component, say D, of G. If G has a nontrivial component, say E, which is different from D, then G^v is

not a tree. Thus G has exactly one nontrivial component D and hence $G = D \cup (p-|V(D)|) K_1$. Clearly the branches at v in G are nothing but the branches at v in D and hence $d_B(v) \leq |V(B)| -2$ for every branch B at v in D. If $d_{B^*}(v) < |V(B^*)| -2$ for at least one branch, say B^* , at v in D, then D^v has a cycle and hence G^v also has a cycle since $G^v = D^v \cup (p-|V(D)|)(K_1+v)$. This is a contradiction to our assumption that G^v is acyclic. This implies that $d_B(v) = |V(B)| -2$ for every branch B at v in D. Since G^v is acyclic, D-v is also acyclic.

Conversely, if $G = \overline{K}_p$, then for any vertex v of G, $G^v = K_{1, p-1}$ and hence G^v is a tree. Suppose $G = D \cup (p-|V(D)|) K_1$ where D satisfies the conditions given in the theorem. Then using Theorem 2.2, G^v is connected and using Theorem 2.7, D^v is a tree. This implies that G^v is a tree since $G^v = D^v \cup (p-|V(D)|)(K_1+v)$.

Theorem 2.9. Let v be any vertex of a graph G of order $p \geq 3$. Then G^v is a star if and only if G is either \overline{K}_p or $K_{2,p-2}$ with $d_G(v) = p-2$.

Proof. Let $V(G^v)=\{u_1,u_2,...,u_p\mid d_{G^v}(u_1)=p-1 and\, d_{G^v}(u_i)=1 for\, i=2,3,...,p\}$. If $v=u_1$, then $G=\overline{K}_p$ and if $v=u_i$, $2\leq i\leq p$, then G is a graph in which u_i and v are non-adjacent but both are adjacent to all other p-2 vertices and thereby $G=K_{2,p-2}$.

Conversely, if $G = \overline{K}_p$, then $G^v = K_{1, p-1}$ and if $G = K_{2, p-2}$ with $d_G(v) = p-2$, then $G^v = K_{1, p-1}$. Thus, in both cases, G^v is a star. \square

Note 2.10. Let v be a cutvertex of a connected graph G. Let B_1, B_2, \ldots, B_k be the branches with n_1, n_2, \ldots, n_k number of copies at v in G, respectively. In this case, we denote the graph G by $G(v; n_1B_1, n_2B_2, \ldots, n_kB_k)$.

As an example, consider the graph G given in figure 2.1. There are four distinct branches B_1 , B_2 , B_3 and B_4 at v in G and they are given in figure 2.2. Thus $G = G(v; 2B_1, B_2, B_3, B_4)$. The graph given in figure 2.3. is $G(v; 6P_3)$.

Fig. 2.1. $G = G(v; 2B_1, B_2, B_3, B_4)$

Fig. 2. 2.

Fig. 2.3.

Theorem 2.11. Let v be a self vertex switching of a connected graph G and B be a branch at v in G. Then $|V(B)| \ge 3$.

Proof. Using Lemma 1.2, v is non-adjacent to a vertex of minimum degree in G. Let B be a branch at v. Then $|V(B)| \ge 2$. If possible, let |V(B)| = 2. Let u be the vertex adjacent to v in B. Then B = vu. This implies that v is adjacent to the vertex u of minimum degree in G which is a contradiction. Hence $|V(B)| \ge 3$.

Theorem 2.12. Let G be a tree of order p = 2n+1, $n \in \mathbb{N}$. Then G has a self vertex switching v if and only if $G = G(v; nP_3)$.

Proof. Let v be a self vertex switching of the tree G. Using Theorem 1.1, $d_G(v) = n$. Since G is a tree, there are n branches at v in G. Using Theorem 2.11, $|V(B)| \ge 3$ for any branch B at v in G. If B^* is a branch at v in G such that $|V(B^*)| > 3$, then $p \ge 3(n-1)+4-(n-1)=2n+2>p$, which is a contradiction. Hence |V(B)| = 3 for every branch B at v in G, which implies that $B = P_3$. Thus $G = G(v; nP_3)$.

Conversely, let $G = G(v; nP_3)$. If n = 1, then $G = P_3$ and v is a self vertex switching of G. For $n \ge 2$, the center v of G is the only self vertex switching of G.

Corollary 2.13. For any nontrivial tree G

$$ss_1(G) = egin{cases} 2 & if \ G = P_3 \ 1 & if \ G = G(v, \ nP_3), \ n \geq 2 \ 0 & otherwise. \end{cases}$$

3. Characterizing forests each with a self vertex switching

In this section we characterize a vertex v of a graph G such that G^v is a forest. We also characterize forests, each with a self vertex switching.

Theorem 3.1. Let v be a vertex of a nontrivial graph G. Then G^v is a disconnected graph with k components if and only if G has at least k-1 branches at v and $d_B(v) = |V(B)| - 1$ only for k-1 branches B's at v in G.

Proof. Let G^v be a disconnected graph with k components and v be in a component, say D, of G^v . Let $D_1, D_2, ..., D_{k-1}$ be the remaining k-1 components of G^v . Let $B_i = D_i + v$ for $1 \le i \le k-1$. Then using Lemma 2.1, B_i is a branch at v in G with $d_{B_i}(v) = |V(B_i)| -1$, $1 \le i \le k-1$.

Also $G = D^v \cup (\bigcup_{i=1}^{k-1} B_i)$. In D^v , the vertex v is either a cutvertex or not. Suppose B is a branch at v in G such that $B \neq B_i$, $1 \leq i \leq k-1$. If $d_B(v) = |V(B)| -1$, then B-v is a component of G^v other than D_i and hence the number of components of G^v is greater than k, $1 \leq i \leq k-1$. This is a contradiction, which implies that G has at least k-1 branches B's at v with $d_B(v) = |V(B)| -1$ only for k-1 branches B's.

Conversely, let $B_1, B_2, ..., B_{k-1}$ be the branches at v in G with $d_{B_i}(v) = |V(B_i)| -1$, $1 \le i \le k-1$. Using Lemma 2.1, $B_1 - v, B_2 - v$, ..., $B_{k-1} - v$ are components of G^v . Here G may be connected or disconnected and correspondingly we consider the following two cases. Case 1. G is connected.

Here we consider the following two subcases with respect to the number of branches at v.

Case 1.a. G has only k-1 branches at v.

In this case, $G^v=K_1\cup (\bigcup_{i=1}^{k-1}(B_i-v))$ where $K_1=v$ and hence G^v has exactly k components.

Case 1.b. G has at least k branches at v.

Let H be the graph obtained from G by deleting the branches B_1, B_2 , ..., B_{k-1} excluding the vertex v. Clearly $G = H \cup (\bigcup_{i=1}^{k-1} B_i)$. By the assumption, we have $d_B(v) < |V(B)| - 1$ for any branch $B \neq B_i$ at v in G, $1 \leq i \leq k-1$. This implies that $d_B(v) < |V(B)| - 1$ for any branch B at v in H and hence H^v is connected using Corollary 2.3. Now $G^v = H^v \cup (\bigcup_{i=1}^{k-1} (B_i - v))$ implies that G^v has k

components.

Case 2. G is disconnected.

Let $D, D_1, D_2, ..., D_r$ be the components of G and v be in D. Then $G^v = D^v \cup (\bigcup_{i=1}^r (D_i + v))$. For $1 \le i \le r$, $D_i + v$ is a branch at v in G^v . Since D is connected, using case-1, D^v has only k components. Thus there are exactly k components in G^v since $G^v = D^v \cup (\bigcup_{i=1}^r (D_i + v))$.

Hence the theorem is proved.

Theorem 3.2. Let v be a vertex of a nontrivial graph G of order p. Then G^v is a forest with k components if and only if $G = D \cup (p-|V(D)|)K_1$ where D is a nontrivial component of G containing v, G-v is acyclic, $d_B(v) \in \{|V(B)|-1, |V(B)|-2\}$ for any branch B at v in G and $d_B(v) = |V(B)|-1$ only for k-1 branches B's.

Proof. Let G^v be a forest with k components. Using Theorem 3.1, G has at least k-1 branches at v and $d_B(v) = |V(B)|-1$ only for k-1 branches B's at v in G. Let v be in a component D of G and B^* be any branch at v in G with $d_{B^*}(v) \neq |V(B^*)|-1$. If $d_{B^*}(v) < |V(B^*)|-2$, then there exist at least two vertices, say x and y, in B^* which are non-adjacent to v in G. Since B^*-v is connected, there exists a x-y path in B^*-v and hence in G^v also. Now the edges vx and v and the path v form a cycle in v, which is a contradiction. This implies, v form a cycle in v is an edge v so that v forms a cycle in v in v which is a contradiction to the assumption that v is a forest. Hence all the components of v for except v for v is a forest. Hence all the components of v is acyclic, v for v for v in v in v for v for v in v for v for v for v in v for v and v for v

On the converse part of the theorem, using Theorem 3.1, G^v is disconnected with k components. If G^v is acyclic, then the proof is over. If not, let us assume that G^v has a cycle, say C. Since G^{-v} is acyclic, each cycle in G^v must contain v. Let B_1 be the branch at v in G^v containing the cycle C. Let $x, y \in V(B_1)$ be such that x and y are adjacent to v in G^v . Let $B^* = B_1^v$ so that $V(B^*) = V(B_1)$. If B^* is not a branch at v in G, then $B_1 - v$ is a nontrivial component of G other than D, which is a contradiction. Therefore B^* is a branch at v in G and so $d_{B^*}(v) < |V(B^*)| -2$ since x and y are non-adjacent to v in G. This is a contradiction. This implies that G^v is acyclic and thereby G^v is a forest with k components. This completes the proof.

Theorem 3.3. A forest G of order p=2n+1 with k components has a self vertex switching v if and only if $G=D(v;(k-1)P_2,(n-k+1)P_3)\cup(k-1)K_1$ and $k=p+1-|V(D)|, n\in N$.

Proof. Let v be a self vertex switching of the forest G with k components. Using Theorem 1.1, $d_G(v) = n$. G is acyclic and hence there are n branches at v in G. Since G^v is a forest, using Theorem 3.2, $G = D \cup (p-|V(D)|)K_1$ where D is a nontrivial component of G containing v, G-v is acyclic, $d_B(v) \in \{|V(B)|-1, |V(B)|-2\}$ for any branch B at v in G and $d_B(v) = |V(B)|-1$ only for k-1 branches B's. Using Lemma 2.1, $K_1+v=K_2$ is a branch at v in G^v . If B is a branch at v in G with $d_B(v) = |V(B)|-2$, then B^v is a branch at v in G^v . If B^* is a branch at v in G with $d_B(v) = |V(B)|-1$, then B^*-v is a component of G^v . Since v is a self vertex switching of G, both G and G^v have k components each and hence k-1=p-|V(D)|. This implies that G has k-1 branches at v and each is P_2 . Since G-v is acyclic, the remaining n-(k-1) branches at v in G are trees, and each is of order 3 since otherwise G has more than p vertices. Thus $G=D(v;(k-1)P_2,(n-k+1)P_3)\cup (k-1)K_1$ and k=p+1-|V(D)|.

Conversely, if $G = D(v; (k-1) P_2, (n-k+1) P_3) \cup (k-1) K_1$ and k = p+1-|V(D)|, then clearly v is a self vertex switching of G.

The minimum and maximum values of k are 1 and n+1, respectively.

Corollary 3.4. If G is a forest of order p with k components, then $ss_1(G) = 0$ or 1. And $ss_1(G) = 1$ if and only if $G = D(v; (k-1) P_2, (n-k+1) P_3) \cup (k-1) K_1$ where p = 2n+1 and k = p+1-|V(D)|, D is a component of G containing v and $n+1 \le |V(D)| \le 2n+1$.

Example 3.5. For n = 5 and |V(D)| = 6, 7, 8, 9, 10, 11, the six graphs G on p = 2n+1 = 11 vertices, each of which has v as the self vertex switching are given in figures 3.1 to 3.6, respectively.

Acknowledgement

I express my sincere thanks to an unknown referee for his valuable suggestions.

References

- [1] Jayasekaran, C., A study on self vertex switchings of graphs, PhD thesis, Manonmanium Sundaranar University, Tirunelveli, India, 2007.
- [2] Lauri, J., Pseudosimilarity in graphs a survey, Ars Combinatoria, 46(1997), 77-95.
- [3] Seidel, J. J., A survey of two graphs, Proceedings of the Inter National Coll. Theorie Combinatorie (Rome 1973). Tomo I, Acca, Naz. Lincei, (1976) 481-511.
- [4] Seidel, J. J., Taylor, D. E., Two-graphs a second survey, in "Algebraic Method in Graph Theory", Vol II (L. Lovasz and V. Sos, eds), Coll. Math. Soc. Janos Bolyai, (1981) 689-711.
- [5] Vilfred, V., Paulraj Joseph, J., Jayasekaran, C., Branches and Joints in the study of self switching of graphs, The Journal of Combinatorial Mathematics and Combinatorial Computing, 67(2008) 111-122.
- [6] Vilfred, V., Jayasekaran, C., Interchange similar self vertex switchings in graphs, Journal of Discrete Mathematical Sciences and Cryptography, 12(2009), 467-480.