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Abstract

A vertex v € V(G) is said to be a self vertex switching of G if
G is isomorphic to G¥, where G” is the graph obtained from G by
deleting all edges of G incident to v and adding all edges incident
to v which are not in G. The set of all self vertex switchings
of G is denoted by $51(G) and its cardinality by ss1(G). In [6],
the number ss;(G) is calculated for the graphs, cycle, path, regular
graph, wheel, Euler graph, complete graph and complete bipartite
graphs. In this paper for a vertex v of a graph G, the graph G*
is characterized for tree, star and forest with a given number of
components. Using this, we characterize trees and forests, each with
a self vertex switching.
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1. Introduction

For a finite undirected graph G(V, E) with | V(G)|= p and a set
o C V, the switching of G by o is defined as the graph G°(V, E'),
which is obtained from G by removing all edges between o and its com-
plement V-0 and adding as edges all non edges between ¢ and V-o.
Switching has been defined by Seidel [3, 4] and is also referred to as Seidel
switching. When o = {v} C V, we call the corresponding switching G{v}
as vertex switching and denoted it as G¥. A subset o of V(G) to be a
self switching of G if G= G7. The set of all self switchings of G with
cardinality k is denoted by SS(G) and its cardinality by ssi(G). If k =
1, then we call the corresponding self switching as self vertez switching
[1, 6]. A branch at v in G is a connected subgraph B of G such that B-v
is connected and maximal [5]. Two vertices » and v in G are said to be
interchange similar if there is an automorphism o of G such that o (u)
=vand a(v)=u (2.

In [6], the number ss;(G) for the graphs, cycle, path, regular graph,
wheel, Euler graph, complete graph and complete bipartite graphs are cal-
culated. In [5], a connected graph G in which any two self vertex switchings
are interchange similar is characterized for ss;(G) > 1. In this paper we
find the number ss;(G) for trees and forests.

Now consider the following results, which are required in the subsequent
sections. We consider simple graphs only unless otherwise it is mentioned
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specifically.

Theorem 1.1.[1] If v is a self vertex switching of a graph G of order p,
then dg(v) =(p-1)/2.

Lemma 1.2.[1, 6] In any graph G, vertex adjacent to a vertex of minimum
degree is not a self vertex switching.

Theorem 1.3.[5] Let B; be either a branch at v in G or the union of
v and a component of G not containing v, i = 1, 2, ..., k(G-v). Then

k k

G = |JB; and G¥=| B} where k = k(G-v), k(G) is the number of
i=1 i=1

compc;nents of G.

Theorem 1.4.[5] Let v be any vertex of a connected graph G such that
GV is connected. Then B is a branch at v in G if and only if BY is a
branch at v in GV.

2. Characterizing trees each with a self vertex switching

Let G be a graph and v be any vertex of G. Let G¥ be the switching of
G by v. In this section, we find the number of GV ’s to be connected if G is
either cycle, path, star, block, tree, complete bipartite graph or complete
graph. We characterize a vertex v of G such that GV is connected. Using
this, we characterize the vertex v such that GV is a tree and in particular
a star. Finally we characterize trees, each with a self vertex switching.

First we give a simple lemma which will be used to prove some theorems.

Lemma 2.1. D is a component of G not containing v if and only if D+v
is a branch at v in G

Proof. D is a component of G not containing v if and only if v is non-
adjacent to all vertices of D in G if and only if v is adjacent to all vertices
of D in GV if and only if D+v is a branch at v in GV. O
Theorem 2.2. Let v€ V(G) and | V(G)| = 2. Then G¥ is connected if
and only if dg(v) = 0 or dg(v) < | V(B)|-1 for every branch B at v in
G.

Proof. If dg(v) = 0, then obviously Gv is connected. Let us assume
that dg(v) < | V(B)|-1 for every branch B at v in G. Suppose GV is
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disconnected. Then let D be a component of G not containing v. Us-
ing Lemma 2.1, B = D+v is a branch at v in (G¥)" = G. This implies
that dp(v)=| V(B)|-1. This is a contradiction to our assumption that
dp(v) < | V(B)|-1 and hence GV is connected.

Conversely, let GY be connected. If dg(v) = 0, then the proof is over.
Now let dg(v) #0. Suppose dp(v)=| V(B)|-1 for at least one branch,
say B, at v in G. Then B-v is a component of G” not containing v and

hence GY is disconnected, which is a contradiction. This implies that
dp(v) < | V(B)|-1 for every branch B at v in G. O

Corollary 2.3. Let G be a connected graph of order p > 2 and v € V(G).
Then G¥ is connected if and only if dg(v) < | V(B)|-1 for every branch
Batvin G.

Note 2.4. It is interesting to note that corresponding to each v € V(G), we
get GV, the switching of G by v. In this section, we consider the following
notations.

[Gi={G"|ve V(G)} and [G];c={G" | G* is connected}.

From the above notations, the following properties are obvious.

L | [Kpic|=pforp>2.
2. | [Colic |=pforp>4.
3. | [Kplic |=0for p>2.
4. |[K1,n]1c|=nforn22.
5 | [Kmnlic |=m + nform, n>2.
0 ifp=2
6. |[Pp]1t:| =42 ifp=3
p—-2 ifp24
7. If G is a block of order p, then | [Glic | =|{v| dg(v) < p-1}].

Corollary 2.5. Let G be a nontrivial graph of order p. Then | [G];c | =
p if and only if either dg(v)= 0 or dg(v) < | V(B)|-1 for every branch
B atvin G, ve V(QG).

Theorem 2.6. For a tree G of order p > 2, | [Gl1 | = p-r where 7 is the
number of vertices, each of which is adjacent to an end vertex in G.

Proof. Let v € V(G). Consider the following two cases.
Case 1. v is adjacent to an end vertex.
Let w be an end vertex adjacent to v in G. Then B =Ko= vw is a
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branch at v in G and dg(v)=| V(B)|-1. Using Corollary 2.3, G" is not
connected.

Case 2. v is non-adjacent to any end vertex.

Let B be any branch at v in G. This implies that p >3 and B # Kj.
Since G is a tree, there exists a vertex, say z, in B such that z is non-
adjacent to v and hence dg(v) < | V(B)|-1. Using Corollary 2.3, G¥ is
connected since B is an arbitrary branch at v in G.

Thus from cases (1) and (2), the result follows. a

Theorem 2.7. Let v be any vertex of a nontrivial connected graph G.
Then GV is a tree if and only if G-v is acyclic and dg(v) =| V(B)|-2 for
every branch B at v in G.

Proof. Let GY be a tree. Then GV is connected and acyclic. Using Corol-
lary 2.3, dg(v) < | V(B)|-2 for every branch B at v in G. Suppose
dp-(v) < | V(B*)|-2 for some branch B* at v in G. Then there exist at
least two vertices, say « and w, in B* such that they are non-adjacent to v
in G. Since B*-v is connected, there exists a u-w path in B*-v and hence
in GV also. In this case, the u—w path and the edges wv and vu form a
cycle in G¥. This is a contradiction to GY is acyclic. This implies that

dp(v)=| V(B)|-2 for every branch B at v in G.

Conversely, let G-v be acyclic and dg(v) =| V(B) | -2 for every branch
B at v in G. Then using Corollary 2.3, GV is connected. Suppose there
exists a cycle, say C, in GY. Then the cycle C in G¥ must contain the
vertex v since G-v is acyclic. Let B; be the branch at v in G¥, which
contains C. Using Theorem 1.4, B =BY is a branch at v in G since G
and GV are connected. Let 2z and y be adjacent to v in B;. Clearly z
and y are non-adjacent to v in B and hence dg(v) < | V(B)|-2, which is
a contradiction to our assumption that dg(v)=| V(B)|-2. This implies
that G? is acyclic and hence is a tree. a

Theorem 2.8. Let v be any vertex of a disconnected graph G. Then G¥
is a tree if and only if G is either K, or DU (p~| V(D) |) K1 where D is
a component of G of order at least 3 containing v such that D-v is acyclic
and dg(v)=| V(B)|-2 for every branch B at v in D.

Proof. Let G¥ be a tree. Then GV is connected and acyclic. Using Theo-
rem 2.2, dg(v)=0or dg(v) < | V(B)|-2 for every branch B at v in G. If
dg(v) =0, then G =K,. Suppose dp(v) < | V(B)|-2 for every branch
B at v in G. This implies that G # K, and hence G has at least one non-
trivial component. Let v be in a nontrivial component, say D, of G. If G
has a nontrivial component, say E, which is different from D, then GV is
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not a tree. Thus G has exactly one nontrivial component D and hence G =
DuU(p-| V(D)|) K, . Clearly the branches at v in G are nothing but the
branches at v in D and hence dg(v) < | V(B)|-2 for every branch B at v
in D. If dp-(v) < | V(B*)|-2 for at least one branch, say B* at v in D,
then DY has a cycle and hence G” also has a cycle since G¥ = D" U (p-
| V(D) | ) K1 4v). This is a contradiction to our assumption that G¥ is
acyclic. This implies that dg(v)=| V(B)|-2 for every branch B at v in
D. Since GV is acyclic, D-v is also acyclic.

Conversely, if G =K, then for any vertex v of G, G* = K; ,—; and
hence G is a tree. Suppose G = DU (p-| V(D) |) K1 where D satisfies
the conditions given in the theorem. Then using Theorem 2.2, G? is
connected and using Theorem 2.7, DY is a tree. This implies that G” is
a tree since G¥ =D" U (p-| V(D) |)( K1 +v). O

Theorem 2.9. Let v be any vertex of a graph G of order p > 3. Then G*
is a star if and only if G is either K, or K3 p—p with dg(v) = p-2.

Proof. Let V(G¥) ={ w1, uz,...,up | dgv(v1) = p—landdg.(u;) = 1fori=
2,3,...,p}. If v=u;, then G =K, and if vy=u;, 2<i<p, then Gis a
graph in which u; and v are non-adjacent but both are adjacent to all
other p-2 vertices and thereby G=Kj3 ,_2.

Conversely, if G =K,, then G*=Kj p_; and if G = K3, with
dg(v) = p-2, then G¥ =K, ,;. Thus, in both cases, G¥ isastar. O

Note 2.10. Let v be a cutvertex of a connected graph G. Let By, B, ...,
By be the branches with n;, n, ..., nx number of copies at v in G, respec-
tively. In this case, we denote the graph G by G(v; n1By, neBs, ..., neBx ).

As an example, consider the graph G given in figure 2.1. There are
four distinct branches B, Bz, B3 and B, at v in G and they are given in
figure 2.2. Thus G = G(v; 2B, Bs, B3, By). The graph given in figure
2.3. is G(v; 6 P3).

Fig.2.1. G= G(v; 2By, By, Bs, By)
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B, B, B, Bs : ’ B, v

Fig.2.2.

Fig. 2.3.

Theorem 2.11. Let v be a self vertex switching of a connected graph G
and B be a branch at v in G. Then | V(B)| >3.

Proof. Using Lemma 1.2, v is non-adjacent to a vertex of minimum degree
in G. Let B be a branch at v. Then | V(B)| > 2. If possible, let | V(B)|=
2. Let u be the vertex adjacent to v in B. Then B = vu. This implies that v
is adjacent to the vertex u of minimum degree in G which is a contradiction.
Hence | V(B)| =2 3. ]

Theorem 2.12. Let G be a tree of order p = 2n+1, n € N. Then G has
a self vertex switching v if and only if G = G(v; nP3).

Proof. Let v be a self vertex switching of the tree G. Using Theorem 1.1,
dg(v) = n. Since G is a tree, there are n branches at v in G. Using Theorem
2.11, | V(B)| =3 for any branch B at v in G. If B* is a branch at v in G
such that | V(B*)| >3, then p > 3(n-1)+4-(n-1) = 2n+2 > p, which is
a contradiction. Hence | V(B)|= 3 for every branch B at v in G, which
implies that B = P;3. Thus G = G(v; nPF3).
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Conversely, let G = G(v; nP3). If n =1, then G = P; and v is a self
vertex switching of G. For n > 2, the center v of G is the only self vertex
switching of G. a

Corollary 2.13. For any nontrivial tree G,
2 if G=P;

s81(G)= (1 if G=G(v;nP3),n>2
0 otherwise.

3. Characterizing forests each with a self vertex switching

In this section we characterize a vertex v of a graph G such that G is
a forest. We also characterize forests, each with a self vertex switching.

Theorem 3.1. Let v be a vertex of a nontrivial graph G. Then G® is a
disconnected graph with k& components if and only if G has at least k-1
branches at v and dg(v) =| V/(B) | -1 only for k-1 branches B’s at v in G.

Proof. Let G¥ be a disconnected graph with & components and v be in

a component, say D, of G¥. Let D;,Ds,...,Dr_; be the remaining k-1

components of G¥. Let B;=D; +v for 1<i<k-1. Then using Lemma

2.1, B; is a branch at v in G with dp,(v)=|V(B;)|-1, 1<i<k-1.
k-1

Also G =Dv U( U B;). In DV, the vertex v is either a cutvertex or

i=
not. Suppose B is aL1 branch at v in G such that B# B;, 1<i<k-1. If
dp(v)=| V(B)|-1, then B-v is a component of G" other than D; and
hence the number of components of GV is greater than &, 1 < i < k-1. This
is a contradiction, which implies that G has at least k-1 branches B’s at v
with dg(v) =| V(B)|-1 only for k-1 branches B'’s.

Conversely, let B, Bj, ..., Bx_1 be the branches at v in G with
dp,(v) =|V(B;)|-1, 1<i<k-1. Using Lemma 2.1, B; —v,B; — v,
...y Bx_1 —v are components of G¥. Here G may be connected or discon-
nected and correspondingly we consider the following two cases.

Case 1. G is connected.

Here we consider the following two subcases with respect to the number
of branches at v.
Case 1.a. G has only k-1 branches at v.
k-1
In this case, G*=K; U( U (B; —v)) where K} = v and hence G
et
has exactly k& components. '
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Case 1.b. G has at least k£ branches at v.
Let H be the graph obtained from G by deleting the branches By, Bz,
k-1
.eey Br-1 excluding the vertex v. Clearly G = HU( U B;). By the

i=1

assumption, we have dg(v) < | V(B)|-1 for any branch B# B; at v in
G, 1< i < k-1. This implies that dg(v) < | V(B)|-1 for any branch B at
vin H and hence H" is connected using Corollary 2.3. Now GV =H" U

k-1
(U (B: —v)) implies that G* has k

i=1

components.

Case 2. G is disconnected.

Let D, Dy, D,,...,D, be the components of G and v be in D. Then

G'=Dv U (U (D;+v)). For1<i<rn D;+visabranchat vin G".
i=1
Since D is connected, using case-1, DV has only k components. Thus there
T

are exactly k components in G? since G¥=D" U ( U (Di +v)).
i=1
Hence the theorem is proved. O

Theorem 3.2. Let v be a vertex of a nontrivial graph G of order p.
Then GV is a forest with k components if and only if G = DU (p-
| V(D)|) K, where D is a nontrivial component of G containing v, G-v
is acyclic, dg(v) € {| V(B)|-1, | V(B)|-2} for any branch B at v in G
and dg(v)=| V(B)|-1 only for k-1 branches B’s.

Proof. Let G* be a forest with k¥ components. Using Theorem 3.1, G has
at least k-1 branches at v and dp(v)=| V(B)|-1 only for k-1 branches
B’s at v in G. Let v be in a component D of G and B* be any branch at
v in G with dg-(v) # | V(B*)|-1. If dp-(v) < | V(B*)|-2, then there
exist at least two vertices, say ¢ and y, in B* which are non-adjacent to v
in G. Since B*-v is connected, there exists a z-y path in B*-v and hence
in GY also. Now the edges vz and yv and the path z-y form a cycle
in G, which is a contradiction. This implies, dg-(v)=|V(B*)|-2 or
| V(B*)|-1. Let E#D be a component of G. If E# K,, then E has
an edge uw so that vuwv forms a cycle in GY, which is a contradiction
to the assumption that GV is a forest. Hence all the components of G,
except D, are trivial graphs. Thus G = DU(p-| V(D)|) K1, G-v is
acyclic, dg(v) € {| V(B)|-1, | V(B)|-2} for any branch B at v in G
and dg(v)=| V(B)|-1 only for k-1 branches B’s.



On the converse part of the theorem, using Theorem 3.1, GV is discon-
nected with & components. If GV is acyclic, then the proof is over. If not,
let us assume that G¥ has a cycle, say C. Since G-v is acyclic, each cycle in
G must contain v. Let B; be the branch at v in GV containing the cycle
C. Let z, y € V(B;) be such that z and y are adjacent to v in G¥. Let
B* = BY so that V(B*) = V(B;). If B* is not a branch at v in G, then
B; — v is a nontrivial component of G other than D, which is a contra-
diction. Therefore B* is a branch at v in G and so dg-(v) < | V(B*)|-2
since z and y are non-adjacent to v in G. This is a contradiction. This
implies that GV is acyclic and thereby G is a forest with k components.
This completes the proof. O

Theorem 3.3. A forest G of order p = 2n+1 with k components has a self
vertex switching v if and only if G = D(v; (k-1) Py, (n-k+1) P3 ) U (k-
1)K, and k = p+1-| V(D)|, ne N.

Proof. Let v be a self vertex switching of the forest G with k£ compo-
nents. Using Theorem 1.1, dg(v) = n. G is acyclic and hence there are n
branches at v in G. Since G is a forest, using Theorem 3.2, G = DU (p-
| V(D)|) K1 where D is a nontrivial component of G containing v, G-v
is acyclic, dp(v) € {| V(B)|-1, | V(B)|-2} for any branch B at v in
G and dp(v)=| V(B)|-1 only for k-1 branches B’s. Using Lemma 2.1,
K, +v =K, is a branch at v in G¥. If B is a branch at v in G with
dg(v)=| V(B)|-2, then B® is a branch at v in G¥. If B¥ is a branch
at v in G with dg.(v)=| V(B*)|-1, then B*-v is a component of G".
Since v is a self vertex switching of G, both G and G¥ have k components
each and hence k-1 = p—| V(D) |. This implies that G has k-1 branches
at v and each is P,. Since G-v is acyclic, the remaining n—(k-1) branches
at v in G are trees, and each is of order 3 since otherwise G has more
than p vertices. Thus G = D(v; (k-1) P2, (n-k+1) P3)U (k-1) K; and k
= p+1-| V(D)]|.

Conversely, if G = D(v; (k-1) P, (n-k+1) P3)U(k-1) K; and k =
p+1-| V(D) |, then clearly v is a self vertex switching of G. a

The minimum and maximum values of k£ are 1 and n+1, respectively.

Corollary 3.4. If G is a forest of order p with k components, then
$51(G)= 0 or 1. And s5,(G)= 1 if and only if G = D(v; (k-1) P,,
(n-k+1) P3) U (k-1) K, where p = 2n+1 and k = p+1-| V(D)|, Dis a
component of G containing v and n+1 < | V(D) | < 2n+1.

41



Example 3.5. Forn =5and | V(D)|=6,7,8,9, 10, 11, the six graphs G
on p = 2n+1 = 11 vertices, each of which has v as the self vertex switching
are given in figures 3.1 to 3.6, respectively.

7
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